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Background: Parkinson’s disease (PD) is a complex neurodegenerative disease 
with an elusive etiology that involves the interaction between genetic, behavioral, 
and environmental factors. Recently, epigenetic modifications, particularly 
DNA methylation, have been recognized to play an important role in the onset 
of PD. Glycoprotein non-metastatic melanoma protein B (GPNMB), a type 
I  transmembrane protein crucial for immune cell activation and maturation, 
has emerged as a potential biomarker for the risk of PD. This research aims to 
investigate the influence of exercise and gender on the regulation of methylation 
levels of GPNMB cg17274742 in individuals.

Methods: We analyze data from 2,474 participants in the Taiwan Biobank, collected 
from 2008 and 2016. Methylation levels at the GPNMB cg17274742 CpG site 
were measured using Illumina Infinium MethylationEPIC beads. After excluding 
individuals with incomplete data or missing information on possible risk factors, 
our final analysis included 1,442 participants. We used multiple linear regression 
models to assess the association between sex and exercise with adjusted levels of 
GPNMB cg17274742 for age, BMI, smoking, drinking, coffee consumption, serum 
uric acid levels, and hypertension.

Results: Our results demonstrated that exercise significantly influenced the 
methylation levels of GPNMB cg17274742  in males (β  =  −0.00242; p =  0.0026), 
but not in females (β  =  −0.00002362; p =  0.9785). Furthermore, male participants 
who exercised showed significantly lower levels of methylation compared 
to the reference groups of the female and non-exercising reference groups 
(β  =  −0.00357; p  =  0.0079). The effect of the interaction between gender and 
exercise on the methylation of GPNMB cg17274742 was statistically significant 
(p =  0.0078).

Conclusion: This study suggests that gender and exercise can modulate GPNMB 
cg17274742, with hypomethylation observed in exercise men. More research 
is needed to understand the underlying mechanisms and implications of these 
epigenetic changes in the context of risk and prevention strategies.
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Introduction

Parkinson’s disease (PD) is a common neurodegenerative disorder 
characterized by progressive loss of dopaminergic neurons in the 
substantia nigra and accumulation of α-synuclein within Lewy bodies 
(Alam and Schmidt, 2002). PD manifests severe motor and non-motor 
symptoms that significantly affect the quality of life of patients and 
caregivers. In particular, less than 10% of cases of PD can be attributed 
to identified genetic causes (Farrer, 2006). The etiology of idiopathic 
Parkinson’s disease remains largely enigmatic; however, it is postulated 
that a combination of genetic, behavioral, and environmental factors 
contribute to its development (Blauwendraat et al., 2020).

Recently, a growing body of evidence has suggested that epigenetic 
modifications, particularly DNA methylation, may play a crucial role 
in the development and progression of PD and could play a role in 
pathogenesis including α-synuclein misfolding and aggregation, 
mitochondrial dysfunction, impaired protein clearance, 
neuroinflammation, and oxidative stress (Pieper et al., 2008; Masliah 
et al., 2013; Coupland et al., 2014; Su et al., 2015; Eryilmaz et al., 2017; 
Jankovic and Tan, 2020; Kia et  al., 2021). DNA methylation, a 
biochemical modification that occurs predominantly at cytosine 
residues in CpG dinucleotides, can influence gene expression and 
contribute to the complex regulation of cellular processes (Gius et al., 
2004). As aging progresses, the accumulation of errors in the 
epigenetic machinery increases the risk of age-related pathologies, 
such as brain deterioration and neurodegeneration (Salameh et al., 
2020). Aberrant DNA methylation has been implicated in the 
dysregulation of various molecular pathways associated with PD, 
highlighting the importance of further investigating the role of 
epigenetics in the context of the pathogenesis of PD (Renani et al., 
2019; Kia et al., 2021).

Glycoprotein non-metastatic melanoma protein B (GPNMB) is a 
type I  transmembrane protein that plays a key role in immune cell 
maturation and activation. It has been closely associated with PD as a 
potential risk biomarker and in modulating neuroinflammation, a 
hallmark of the pathogenesis of PD (Jankovic and Tan, 2020; Saade 
et al., 2021; Diaz-Ortiz et al., 2022; Kaiser et al., 2023). Recent studies 
have shown an increase in GPNMB expression within the substantia 
nigra of PD patients, suggesting a risk factor through its interaction with 
alpha-synuclein (Moloney et al., 2018; Diaz-Ortiz et al., 2022). Recent 
evidence on the causality and heterogeneity of PD suggests that 
GPNMB is the main causal protein in the high-throughput proteomic 
analysis of cerebrospinal fluid (Kaiser et  al., 2023). Interestingly, 
overexpression of GPNMB in animal models has been shown to reduce 
dopaminergic neuron degeneration and exert an anti-
neuroinflammatory effect (Neal et  al., 2018; Budge et  al., 2020). 
Genome-wide association studies (GWAS) have also discovered single 
nucleotide polymorphisms (SNPs) within the GPNMB gene, which can 
increase the risk of PD and could be regulated by DNA methylation. 
Specifically, the CpG site, located in the exon region of the GPNMB gene 
on chromosome 7, is associated with the methylation status of the 
GPNMB gene (International Parkinson’s Disease Genomics Consortium 

(IPDGC), and Wellcome Trust Case Control Consortium 2 (WTCCC2), 
2011; Nalls et al., 2014; Kia et al., 2021).

The prevalence of Parkinson’s disease varies significantly by sex, 
with a higher incidence observed in men than in women. This gender 
difference can be attributed to hormonal, genetic, and lifestyle factors 
(Picillo et al., 2017; Russillo et al., 2022). Several lifestyle and behavioral 
choices are associated with gender differences (Bellou et al., 2016; Cerri 
et al., 2019), and among lifestyle factors, exercise is one of the well-
studied factors believed to alter DNA methylation (Daniele et al., 2018; 
Ferioli et  al., 2019; Xu et  al., 2021). Exercise can also mitigate the 
progression of PD, with neuroinflammatory modulation suggested as a 
key mechanism (Chen et al., 2005; Crotty and Schwarzschild, 2020; Xu 
et al., 2021; Sujkowski et al., 2022). However, complex epigenetic changes 
related to exercise and different sexes in PD are not fully understood.

Currently, no studies have examined the influence of sex and 
exercise on GPNMB expression and DNA methylation. Given that both 
epigenetic alterations and lifestyle factors can affect GPNMB expression 
and contribute to the pathogenesis of PD, this research could provide 
valuable information on the progression of the disease and possible 
interventions. Using DNA methylation data, precision public health can 
facilitate personalized prevention for people at risk of developing 
Parkinson’s disease, such as providing specific physical activity guidelines 
based on the individual’s unique methylation profile. Therefore, a 
comprehensive assessment of the impact of gender and exercise on 
GPNMB expression and DNA methylation status in PD could have 
significant implications for precision public health strategies in PD.

Materials and methods

Data source and participants

Data for this study were sourced from Taiwan Biobank (TWB), an 
ongoing prospective cohort study that includes more than 150,000 
participants. The TWB contains demographic and whole genome 
sequencing data from Taiwanese (99% Han Chinese) between 20 and 
70 years of age who do not have a cancer diagnosis, with lifestyle 
information obtained through individual interviews (Chen et  al., 
2016; Wei et al., 2021).

Anthropometric and biochemical data was collected from the 
medical centers that enroll subjects. Initially, 2,474 participants were 
enrolled in this study. After the exclusion of patients with incomplete 
data (N  = 1,032), the final sample for analysis consisted of 
1,442 subjects.

This study was approved by the Institutional Review Board of the 
Chung Shan Medical University Hospital (CS1-20009).

DNA methylation

Methylation profiles were analyzed with the Infinium 
MethylationEPIC BeadChip Kit (Illumina Inc., San Diego, CA, 
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United States) (Shen et al., 2007; Irizarry et al., 2008; du et al., 2010), 
which targets more than 850,000 CpG sites. Epigenetic data was 
obtained from whole blood samples. Epigenetic data was extracted 
from whole blood. We adjust the cell-type composition using the 
Reference-Free Adjustment for Cell-Type Composition (ReFACTor) 
method (Chen et al., 2016). Methylation levels were quantified using 
a beta value (0–1) to present hypo/hypermethylation. Beta value of the 
CpG site within the exon region of the GPNMB gene.

Outcome definition and covariates

The beta value of GPNMB cg17274742 for each participant. Body 
mass index (BMI) (kg/m2) was calculated as body weight (kilogram) 
divided by body height (meter) squared. The BMI classifications were 
the following: underweight (0 to 18.5), normal (18.5 to 24), overweight 
(), and obese (more than 27). For this study, people who exercised for 
more than 30 min at least three times a week were considered to have 
regular exercise habits. The waist-hip ratio (WHR) is derived by 
dividing the waist circumference by the hip circumference. Current 
drinkers were classified as individuals who consumed more than 
150 mL/week in the previous 6 months, while former drinkers had 
abstained for at least 6 months. Current smokers were identified as 
individuals who smoked continuously within the last 6 months, and 
former smokers had resisted smoking for at least 6 months. Coffee 
consumption was classified into ‘no / yes’ groups. A positive history of 
hypertension was determined in the self-report of a physician’s 
diagnosis. Taiwan Biobank has commissioned the Linkou Branch of 
Chang Gung Memorial Hospital to supervise blood and urine 
analyzes. Within the scope of serological assessments, particular 
emphasis is placed on the quantification of uric acid, with a reference 
threshold established at <7 mg/dL.

Statistical analysis

To investigate the association between methylation in GPNMB 
cg17274742 and sex and exercise status, multiple linear regression was 
used after adjusting for age, BMI, smoking status, alcohol 
consumption, coffee intake, serum uric acid level, and hypertension. 
The interaction between sex and exercise was also considered in the 
model. Statistical significance was established with a value of p 
<0.05 in a two-tailed test. Differences were evaluated using the t-test 
for continuous variables and the chi-square test for categorical 
variables. All analysis procedures were performed using the SAS 9.4 
software version (SAS Institute Inc., Cary, NC, United States).

Results

The analysis included a total of 1,442 subjects (men = 690, 
women = 752). The average age of the participants was similar between 
sexes (48.73 ± 0.39 for women, 49.66 ± 0.43 for men, p-value = 0.1121) 
(Table 1). The level of methylation of GPNMB cg17274742 (beta value) 
did not show significant differences between men and women 
(0.9480 ± 0.000401  in men, 0.9487 ± 0.000428  in women, 
p-value = 0.2257). Men exhibited a higher proportion of regular 
exercise (47.1% in men, 40.7% in women, p = 0.0142), higher BMI 

(61.6% in men, 37.3% in women, p < 0.0001), higher prevalence of 
smoking (42.7% in men, 6.4% in women, p  < 0.0001), alcohol 
consumption (17.8% in men, 2.3% in women, p < 0.0001), history of 
hypertension (17% in men, 8.1% in women, p < 0.0001), and higher 
serum uric acid levels (6.34 mg/dL in men, 4.76 mg/dL in women, 
p < 0.0001). Coffee consumption was comparable between sexes. The 
WHR for women is manifested as 0.8411 ± 0.003, while for men, it 
registers at 0.8931 ± 0.002.

The regression model revealed that being male was associated 
with a significantly lower level of GPNMB cg17274742 than being 
female (β = −0.00252; p-value = 0.0417) after adjusting for possible 
confounders (Table  2). Furthermore, patients with hypertension 
showed a higher beta value, indicative of hypermethylation. Regular 
exercise was not associated with the level of methylation (β = −0.00108; 
p-value = 0.0681).

TABLE 1 Demographic characteristics.

Female 
(n =  752)

Male 
(n =  690)

p-value

methylation of 

cg17274742 

methylation (beta 

value)

0.9487 ± 0.000428 0.9480 ± 0.000401 0.2257

Exercise (n, %) 0.0142

  No 446 (59.31) 365 (52.90)

  Yes 306 (40.69) 325 (47.10)

Age (years) 48.73 ± 0.39 49.66 ± 0.43 0.1121

Body Mass Index 

(n, %)

<0.0001

  Normal 439 (58.38) 259 (37.54)

  Underweight 32 (4.26) 6 (0.87)

  Overweight 169 (22.47) 251 (36.38)

  Obese 112 (14.89) 174 (25.22)

Smoking (n, %) <0.0001

  Never 704 (93.62) 395 (57.25)

  Former 27 (3.59) 169 (24.49)

  Current 21 (2.79) 126 (18.26)

Drinking (n, %) <0.0001

  Never 735 (97.74) 567 (82.17)

  Former 6 (0.80) 40 (5.80)

  Current 11 (1.46) 83 (12.03)

Coffee (n, %) 0.8008

  No 478 (63.56) 443 (64.20)

  Yes 274 (36.44) 247 (35.80)

Serum Uric Acid 

Level (mg/dL)

4.7641 ± 0.0388 6.3399 ± 0.0503 <0.0001

Hypertension (n, 

%)

<0.0001

  No 691 (91.89) 573 (83.04)

  Yes 61 (8.11) 117 (16.96)

Data are displayed as mean ± standard error (SE) or numbers (percentage).
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A significant interaction was observed between sex and exercise 
on the methylation of GPNMB cg17274742 (p-value = 0.0078). 
Stratified analysis by sex (Table 3) revealed that exercise was associated 
with GPNMB cg17274742 only in men (β = −0.00242; p-value = 0.0026) 
and not in women (β = −0.00002362; p-value = 0.9785). When 
stratified by exercise, no significant association was found for either 
sex group (Table 4). When considering sex and exercise together, men 
who exercised regularly exhibited significantly lower levels of GPNMB 
cg17274742 compared to women who did not exercise regular exercise 
(β = −0.00357; p-value = 0.0079) (Table 5).

Discussion

Using data from a large prospective cohort, we  discerned a 
sex-specific association between exercise and methylation status. Our 
findings suggest that men who exercise regularly have a lower level of 
methylation of cg17274742, which can result in increased expression 
of GPNMB. Furthermore, we can discern a tangible impact of exercise 
on methylation patterns at the cg17274742 locus, particularly within 
the male cohort. Men who exercise are observed to experience a 
significant reduction in methylation at this genomic site. When these 
data are juxtaposed against the corresponding female cohort, a stark 
contrast emerges. Within the exercise-engaged population, males 
show a more pronounced decrease in methylation relative to females. 
These findings not only reveal a complex interplay between physical 
exercise and DNA methylation, but also underscore the need to 

consider gender-specific variations in the field of epigenetic research. 
This is the first study to find a relationship between different sexes and 
exercise-associated methylation changes, suggesting that a lifestyle 
change, particularly a routine exercise habit in men, could increase the 
expression of GPNMB, which is highly correlated with Parkinson’s 
disease and the anti-inflammatory reaction.

GPNMB is a protein that is found in cell membranes of various 
tissues, including the nervous system, skin, and bone (Lazaratos et al., 
2022). Previous studies have noted the importance of different 
biological processes and functions of GPNMB, including cell 
differentiation and development, inflammation and immune response, 
progression, and neurodegeneration deterioration (Zhang et al., 2017; 
Neal et al., 2018; Budge et al., 2020; Saade et al., 2021; Diaz-Ortiz et al., 
2022; Lazaratos et al., 2022). GPNMB can have neuroprotective effects 
in mitigating the effects of harmful protein aggregates, a common 
feature in many neurodegenerative diseases (Tanaka et  al., 2012; 
Budge et  al., 2018; Zhu et  al., 2022). Gpnmb levels are a reliable 
indicator of the severity of the disease in various medical conditions. 
When Gpnmb is up-regulated, it is commonly associated with 
infiltration of antigen-presenting cells into the affected tissue (Maric 
et al., 2013; Suda et al., 2022). Initially, significant up-regulation is 
often interpreted as disease-related and harmful. However, it is 
essential to consider that up-regulation of Gpnmb may result from 
macrophages that exert anti-inflammatory and immune-balancing 
effects, possibly through interactions with T cells. Cancer cells may 
take advantage of this immune-dampening property of Gpnmb to 
enhance their progression. The role of Gpnmb in different diseases, 

TABLE 2 The association of sex and exercise with the methylation of 
cg17274742.

β p-value

Sex (ref: female)

  Male −0.00252 0.0417

Exercise (ref: no)

  Yes −0.00108 0.0681

Age (years) 0.00005839 0.1413

Body Mass Index (ref: normal)

  Underweight −0.00309 0.0716

  Overweight 0.00047922 0.4660

  Obese −0.00051091 0.5017

Smoking (ref: never)

  Former 0.00007943 0.9261

  Current −0.00023201 0.8152

Drinking (ref: never)

  Former −0.00209 0.1837

  Current 0.00026805 0.8146

Coffee (ref: no)

  Yes 0.00024941 0.6576

Serum Uric Acid Level (mg/dL) 0.00004080 0.8617

Hypertension (ref: no)

  Yes 0.00183 0.0332

β, beta value.

TABLE 3 The association of exercise with methylation of cg17274742 
stratified by sex.

Female Male

β p-
value

β p-
value

Exercise (ref: no)

  Yes −0.00002362 0.9785 −0.00242 0.0026

Age (years) 0.00009677 0.1070 0.00003282 0.5372

Body Mass Index (ref: normal)

  Underweight −0.00358 0.0702 0.00070555 0.8602

  Overweight −0.00005231 0.9580 0.00104 0.2326

  Obese −0.0014 0.2306 0.00040407 0.6896

Smoking (ref: never)

  Former 0.00238 0.2590 −0.00027879 0.7595

  Current −0.00002935 0.9903 −0.00018952 0.8592

Drinking (ref: never)

  Former 0.00564 0.2009 −0.00254 0.1203

  Current 0.00431 0.1863 −0.00036559 0.7584

Coffee (ref: no)

  Yes −0.00036098 0.6603 0.00105 0.1756

Serum Uric Acid 

Level (mg/dL)

−0.00011601 0.7639 0.00001066 0.9713

Hypertension (ref: no)

  Yes 0.00282 0.0573 0.00119 0.2530

Interaction (sex * exercise) p-value = 0.0078. β, beta value.
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especially neurodegenerative diseases, becomes complex, particularly 
due to potential variations in its function when bound to cells or 
present in a soluble form (Tanaka et al., 2012; Neal et al., 2018; Xie 
et al., 2019; Saade et al., 2021; Zhu et al., 2022).

Recent studies highlight the importance and benefits of involving 
diverse and multi-ethnic populations in genetic studies (Popejoy and 
Fullerton, 2016; Graham et  al., 2021) including a more accurate 
representation of the risks of genetically associated diseases in 
different populations (Sirugo et al., 2019). To our knowledge, most 
published genome-wide association studies (GWAS) and methylomic 
investigations involving GPNMB variants were conducted 
predominantly with Caucasian populations (Nalls et al., 2014; Chang 
et al., 2017; Murthy et al., 2017; Iwaki et al., 2019; Prasad and Jho, 
2019; Langmyhr et al., 2021). Our study used information from the 
Taiwan Biobank (TWB), the largest biobank in East Asia, known for 
its high-coverage whole genome sequencing and DNA methylation 
data in a Han Chinese population (Wei et al., 2021).

A recent comprehensive strategy aims to colocalize the expression 
quantitative trait loci (eQTL) and GWAS signals in PD using an 
updated PD GWAS dataset. The methylation study identified 
cg17274742 in the GPNMB gene, which has implications for Coloc 
expression, which evaluates shared causal variants between eQTL and 
GWAS signals. Methylation has an impact on gene expression, and 
specifically cg17274742 in GPNMB influences not only expression but 
also the splicing function at the GPNMB (gene level)/ NUPL2 
(splicing) locus through strong protein–protein interactions evidence 
that connects to mendelian or sporadic risk genes (Kia et al., 2021). 

PD-associated variants exert their influence on GPNMB through this 
methylation site, uncovering molecular insights into the mechanisms 
of PD and underscoring the importance of genetic and 
epigenetic factors.

We observed a predominant hypomethylation of cg17274742 in 
men, which could lead to an increase in GPNMB expression. After 
adjusting for age in the epidemiological study, the prevalence of PD in 
men is approximately 1.4 times that of women (Dorsey et al., 2018) 
although a 2014 meta-analysis suggests that this difference is evident 
only in the age group (Pringsheim et al., 2014). The sex differences in 
GPNMB cg17274742 observed in our study could partially explain this 
prevalence disparity in PD. Hormonal variances, especially estrogen 
levels, can contribute to risk and progression, given the neuroprotective 
effects demonstrated in animal models (Russillo et al., 2022). The 
intricate interplay of sex hormones, such as estrogens, manifests itself 
as a modulatory influence on humoral immunity, effectively 
improving its response. In contrast, androgens, progesterone, and 
glucocorticoids exhibit inherent immunosuppressive properties that 
contribute to the regulation and fine-tuning of the immune system. 
Of particular importance is the heterogeneity of sex steroids, which 
encompass estrogens, progesterone, and testosterone, which exhibit 
notable differences between genders and undergo dynamic changes in 
various reproductive phases. These complex hormonal variations exert 
a substantial influence on the intricate details of neural function, 
prompting a critical exploration of their roles in neurological 
pathophysiology (Bouman et al., 2005). GPNMB protein was also 
found to be regulated by sex hormones or modulated in a specific sex 
manner in deep immunophenotyping animal model studies (Tsui 
et al., 2012; Houser et al., 2022). Recent research has also identified 
specific sex changes in DNA methylation in brain tissue (Kochmanski 
et al., 2022).

Furthermore, our findings indicate that hypertension is associated 
with hypermethylation of cg17274742, which could reduce the 
expression of GPNMB and therefore possibly lower the risk of PD 
(Murthy et al., 2017; Diaz-Ortiz et al., 2022). However, the existing 
literature presents contradictory evidence linking hypertension and 
the diagnosis of PD, and different effects of hypertension have been 
reported in Caucasian versus Asian populations (McCann et al., 1998; 
Paganini-Hill, 2001; Qiu et al., 2011; Hou et al., 2018; Chen et al., 
2019; Ng et  al., 2021). Additionally, certain antihypertensive 
medications can influence the risk of PD (Lee et al., 2014; Cai et al., 
2019; Simmering et al., 2021; Jo et al., 2022; Lin et al., 2022; Simmering 
et al., 2022).

Regular exercise is widely recognized to exert a protective influence 
against PD through mechanisms such as neuroplasticity, angiogenesis, 
and modulation of oxidative damage and neuroinflammation 
(Ascherio and Schwarzschild, 2016; Jang et al., 2017; Palasz et al., 2019; 
Mahalakshmi et al., 2020; Ruiz-González et al., 2021; Mazo et al., 2022). 
Increasing evidence suggests that exercise can alter brain function and 
structure, slowing the progression of motor and non-motor symptoms 
of PD (Reynolds et al., 2016; Schenkman et al., 2018; van der Kolk 
et al., 2019; Johansson et al., 2022; Tsukita et al., 2022). Exercise can 
also produce gender-specific effects on gene regulation and expression 
through epigenetic modifications and hormonal changes (Landen 
et al., 2019; Wu et al., 2020). Both the innate and adaptive immune 
systems involve essential cellular components that possess receptors for 
sex hormones, enabling them to respond to hormonal signals. This 
intriguing observation suggests that the impact of exercise on the 

TABLE 4 The association of sex with stratified methylation of cg17274742 
by exercise.

No-Exercise Exercise

β p-
value

β p-
value

Sex (ref: female)

  male −0.00243 0.1580 −0.00248 0.1717

Age (years) 0.00004747 0.3758 0.00006807 0.2581

Body Mass Index (ref: normal)

  underweight −0.00542 0.0073 0.00341 0.3024

  overweight 0.00059352 0.5139 0.00037876 0.6923

  obese −0.00101 0.3050 0.00037229 0.7615

Smoking (ref: never)

  former 0.00021207 0.8571 −0.00011083 0.9304

  current −0.00046354 0.7037 −0.00016023 0.9269

Drinking (ref: never)

  former −0.00154 0.4813 −0.00153 0.5054

  current 0.00003673 0.9808 0.00043187 0.8045

Coffee (ref: no)

  yes 0.00015507 0.8369 0.00063038 0.4647

Serum Uric Acid 

Level (mg/dL)

0.00008704 0.7812 0.00001214 0.9729

Hypertension (ref: no)

  yes 0.00155 0.2120 0.00207 0.0847

Interaction (sex * exercise) p-value = 0.0078. β, beta value.
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immune system could differ between men and women, highlighting 
the potential role of sex-dependent factors in mediating immune 
responses during physical activity (Kadel and Kovats, 2018; Fuentes 
and Silveyra, 2019; Becerra-Diaz et al., 2020). In a similar vein, the 
female reproductive cycle can influence changes in the expression of 
inflammatory genes induced by exercise in various circumstances 
(Northoff et al., 2008). In addition, there is an ongoing debate about the 
contrasting effects of different types of exercise on immune responses 
and related outcomes between men and women (Soligard et al., 2017; 
Barrett et al., 2018; Drew et al., 2018; Zhou et al., 2018). Furthermore, 
a large-scale epigenome-wide association meta-analysis suggested that 
genes with differences in methylation between sexes are also present in 
human skeletal muscle (Landen et al., 2021).

The first limitations of our research include the focus on carriers 
of the GPNMB variant, rather than individuals with a clinically 
confirmed diagnosis of Parkinson’s disease. However, the potential 
influence of methylation alterations on gene expression, compounded 
by environmental and lifestyle variables, underscores the importance 
of precision public health in our investigative approach. To capitalize 
on this concept, our study aims to elucidate the lifestyle determinants 
that affect gene carriers during the incipient stages of the disease. 
Through these insights, we  anticipate the development of suitable 
interventions that can postpone the onset of the disease. The second 
source of uncertainty is that according to the Taiwan Human Biobank, 
inquiries related to alcohol consumption only address drinking habits 
and do not include questions pertaining to the quantification of alcohol 
intake, and only address the frequency of smoking, without 

encompassing questions related to the total volume of cigarette 
consumption. The other constraint of our study lies in the inability to 
fully account for all possible confounders, such as diet, lifestyle, and 
environmental exposure. However, we adjusted for factors such as age, 
BMI, smoking, drinking, coffee consumption, serum uric acid levels, 
and hypertension, which are widely recognized as potential risk or 
protective factors based on extensive epidemiological studies. Although 
our research offers valuable information on the relationship between 
exercise and DNA methylation between sexes, the findings should 
be interpreted with caution due to the limitations of the study. Future 
experimental studies could potentially confirm our findings using 
animal models, further elucidating the causal relationship between 
exercise and DNA methylation of the GPNMB gene in different sexes.

Ultimately, our results provide epigenetic insight into the sex and 
lifestyle factors associated with GPNMB expression, which served as 
a potential biomarker and therapeutic target for PD. DNA methylation 
presents a promising avenue for the application of precision public 
health in the treatment of PD, including personalized diet 
recommendations and exercise programs for different sexes based on 
an individual methylation profile. More research is needed to fully 
understand the intricate relationships between lifestyle factors, DNA 
methylation, and the progression of PD.
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