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The effects of typical ageing on
cognitive control: recent
advances and future directions
Melissa Dexter and Ori Ossmy*

Centre for Brain and Cognitive Development, Department of Psychological Sciences, Birkbeck,
University of London, London, United Kingdom

Cognitive control is one of the most fundamental aspects of human life. Its

ageing is an important contemporary research area due to the needs of the

growing ageing population, such as prolonged independence and quality of life.

Traditional ageing research argued for a global decline in cognitive control with

age, typically characterised by slowing processing speed and driven by changes

in the frontal cortex. However, recent advances questioned this perspective by

demonstrating high heterogeneity in the ageing data, domain-specific declines,

activity changes in resting state networks, and increased functional connectivity.

Moreover, improvements in neuroimaging techniques have enabled researchers

to develop compensatory models of neural reorganisation that helps negate

the effects of neural losses and promote cognitive control. In this article on

typical ageing, we review recent behavioural and neural findings related to the

decline in cognitive control among older adults. We begin by reviewing traditional

perspectives and continue with how recent work challenged those perspectives.

In the discussion section, we propose key areas of focus for future research in

the field.
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1. Introduction

One of the most fundamental human skills is cognitive control—the ability to regulate
and coordinate one’s thoughts, actions, and emotions to achieve goals and adapt to
changing environmental demands. Lifespan research has focussed on the emergence of
cognitive control from infancy (Zelazo et al., 2004) and in recent years, it has become a
pressing research goal to identify what behavioural, neural, and computational factors drive
developmental improvements in cognitive control (Lindenberger, 2014).

Cognitive control has been defined as an inherently variable dual-mechanism framework
that allows individuals to switch between proactive and reactive control strategies, or
modes, to adapt to the needs of a task or goal (Braver and West, 2008; Braver, 2012;
Grady, 2012). Others have highlighted the role of cognitive control in the regulation and
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allocation of cognitive resources to process information (Fan,
2014). Because of the vast amount of information transmitted both
internally (physiologically) and from the external environment,
cognitive control is necessary for continuously adapting
responses according to present goals (Braver, 2012; Fan, 2014).
Environmental manipulations have been found to cause major
changes in cognitive-control strategies and corresponding brain
regions, and models like these are important for considering
age-related changes in cognitive strategy (Braver, 2012). Even more
so when cognitive demands are high during times of increased
competition for resources, conflict, or distraction (Ludwig et al.,
2010; Korotkevich et al., 2015).

However, understanding how cognitive control fades is
as essential as understanding its emergence. The decline in
cognitive control with ageing affects foundational skills in
daily life, such as preserving independence, completing job-
related tasks, and maintaining a healthy active lifestyle (Wiles
et al., 2012; Bacsu et al., 2014; Denburg and Hedgcock, 2015;
Strout et al., 2018). As a society we must promote quality of
life alongside longer living, therefore it is critical to ensure
sufficient knowledge to protect and conserve cognitive control
in older adults, and to support the efforts of researchers and
healthcare professionals to develop interventions and treatments
(Lindenberger, 2014).

During the past two decades, a growing body of literature
in psychology and neuroscience has challenged traditional
perspectives on the decline of cognitive control with age,
emphasising the heterogeneity in research data and the role of brain
plasticity during ageing (Lövdén et al., 2010a; Bherer et al., 2013;
Park and McDonough, 2013), as well as shifts in cognitive control
strategies to compensate for age-related neurocognitive changes
(Jimura and Braver, 2010). We begin this article by reviewing
traditional perspectives and continue with how recent advances
affect those perspectives. Finally, we propose key areas of focus for
future research in the field. Atypical ageing is beyond the scope of
this short review.

2. Traditional perspectives on ageing
of cognitive control

Cognitive control has been used interchangeably with executive
processes, executive functioning, or executive control (Jurado and
Rosselli, 2007; Vaughan and Giovanello, 2010; Diamond, 2013).
The exact sub-domains under this umbrella term remain under
debate (Jurado and Rosselli, 2007; Maldonado et al., 2020), but
some of the core behavioural processes have been identified as
inhibitory control (inhibiting or stopping pre-potent responses or
resistance to interference), mental task or set shifting (the ability
to quickly shift between two goals), memory updating (relating to
holding and updating relevant information in working memory),
and coordination (for example, aiding motor control; Verhaeghen,
2011; Zelinski et al., 2011; Maldonado et al., 2020). These processes
are at the core of ageing research because they dominate vital
aspects of life quality, including mental and physical health,
career, academic ambitions, social cohesion, and the fostering of
relationships (Jurado and Rosselli, 2007; Diamond, 2013).

2.1. The global decline approach

Past research has argued for a global decline of cognitive
control, typically underlined by slowing processing speed with age
(Sorel and Pennequin, 2008). This deceleration in information
processing affects cognitive skills, such as attention, memory,
and executive functions (Korotkevich et al., 2015), making it
harder to keep up in tasks that require simultaneous processing
of multiple pieces of information (Li et al., 2001; Verhaeghen
and Cerella, 2002). The cause of this decline relates to changes
in brain structure and function over time (Adnan et al., 2019),
and factors such as decreased blood flow and oxidative stress
(Glade, 2010; Insel et al., 2012). Due to slow processing,
older adults are also less likely to encode new information
effectively, causing difficulties in retrieving information from
long-term memory (Salthouse et al., 2003; Salthouse, 2009;
Spreng and Turner, 2019).

Global declines also affect working memory—the ability to
temporarily hold and manipulate information in mind. Working
memory declines with age (Borella et al., 2010; Köstering et al.,
2016), impacting a variety of daily activities, such as decision
making and problem solving (Royall et al., 2005; Vaughan and
Giovanello, 2010). The decrease in working memory limits the
amount of information that can be actively processed, making it
harder to switch between tasks and manipulate information to solve
problems (Thornton and Dumke, 2005; Spieler et al., 2006).

As individuals age, their cognitive resources become
increasingly taxed, leading to greater attention costs, particularly
in tasks requiring cognitive resources such as attention shifting.
Some researchers have proposed that performance level in two
tasks simultaneously is a predictor of cognitive impairments
in older adults (Downey et al., 2022). While researchers have
pointed to divided attention—the ability to attend to multiple
tasks simultaneously—as the source of this decline (McDowd and
Craik, 1988; Craik et al., 1996; Verhaeghen and Cerella, 2002),
selective attention—the ability to ignore unrelated information
when performing a task—is vulnerable to ageing due to differences
suppressing or filtering task-irrelevant information (Gazzaley et al.,
2005; Schmitz et al., 2010; Jost et al., 2011). Additionally, difficulties
in cognitively demanding situations have been related to an overall
slowing of the cognitive-control network (Sorel and Pennequin,
2008; Wunsch et al., 2017) as shown in cases where older adults
manage attentional control poorly during situations with salient
distraction (Mayas et al., 2012).

Finally, older adults exhibit a decline in their ability to ignore
irrelevant information or inhibit impulses to focus on relevant
information (Hasher and Zacks, 1988; Reuter-Lorenz et al., 2021).
Age has also been associated with retaining information that is
no longer task relevant, which can hinder or benefit performance
depending on the task (Amer et al., 2016, 2022). Inefficient
inhibitory control leads to more distractibility and decreased
attentional control. For example, older adults perform poorly when
required to suppress prepotent actions of dominant responses
(Park and Reuter-Lorenz, 2009; Zelinski et al., 2011). A large-
scale cross-sectional study featuring more than 3,000 older adults
suggested that the effects of ageing on inhibitory control result from
a decline in fine motor skills, processing speed, and visuospatial
abilities (Hoogendam et al., 2014) which are strong early markers
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for the general decline in cognitive control (Wunsch et al., 2017;
Glover et al., 2021).

2.2. The frontal lobe hypothesis

At the neural level, evidence points to the pre-frontal cortex
(PFC) as the central brain region that is responsible for cognitive
control (Vaughan and Giovanello, 2010; Park and McDonough,
2013). The PFC is involved in a wide range of functions, including
working memory (Diamond, 2013; Köstering et al., 2016), decision
making (Craik and Bialystok, 2006; Denburg and Hedgcock, 2015),
attentional regulation (Diamond, 2013), regulation of thoughts
(Vaughan and Giovanello, 2010), and the processing of conflicting
information and resolution of cognitive conflicts (Mayas et al.,
2012).

Evidence linking PFC activation and cognitive control led to the
frontal lobe hypothesis of ageing (West, 1996; Reuter-Lorenz et al.,
2021). The main argument in this hypothesis is that the frontal
lobe has a greater decline with age compared to other brain regions
and it deteriorates at an accelerated rate (Rosselli and Torres,
2019), thereby leading to poorer cognitive control in older adults.
Supporting empirical evidence includes structural and functional
changes in the frontal lobe as people age (Park and McDonough,
2013; Cabeza et al., 2018), specifically decreased neural activity
in the PFC (Jimura and Braver, 2010) and decreased grey matter
volume (Rosselli and Torres, 2019). Because the PFC is one of the
first areas to show decreased activity when under strain (e.g., during
high stress, depression, or lack of sleep), it has been identified as a
“warning system” for cognitive ageing (Diamond, 2013).

The frontal lobe hypothesis is also supported by ageing changes
in neurotransmitter systems which are involved in the regulation of
PFC functions. For example, the dopamine system is known to play
a role in executive functioning, working memory, and attention
(Zelazo et al., 2004; Park and Reuter-Lorenz, 2009), and ageing is
associated with decreased dopamine modulation in the PFC, which
contributes to age-related declines in cognitive control (Grady,
2012; Gutchess, 2014; Lindenberger, 2014). Other important
neurotransmitters involved in PFC maturation and its effects on
cognitive control are the acetylcholine (involved in attention,
learning, and memory; Blokland, 1995) and norepinephrine
systems (involved in attention, arousal, and the regulation of
mood).

3. Recent advances: challenging
traditional perspectives

3.1. Heterogeneity of the ageing
cognitive-control system

For more than a decade, researchers have challenged the idea of
a global cognitive decline by emphasising the heterogeneity found
in the ageing research data (Lindenberger and Baltes, 1997; Wilson
et al., 2002; Raz et al., 2005; Verhaeghen, 2011). While attention
allocation and inhibitory control may decline with age (Rozas et al.,
2008; Zanto and Gazzaley, 2017), working memory and reasoning

abilities may be preserved or even improved (Hoogendam et al.,
2014; Maldonado et al., 2020). Older adults even triumph over
younger adults in certain crystallised cognitive control tasks,
specifically remembering task-relevant information in a real-world
multiple errands task (Kliegel et al., 2007). High variability was
also found in the onset of decline across different cognitive-control
processes (Jurado and Rosselli, 2007), and the onset of declines
could be exaggerated by cross-sectional data due to cohort effects,
such as age-related similarities in education level (Nyberg et al.,
2012).

Heterogeneity can depend on the experimental tasks. For
example, a recent meta-analysis indicated that common tasks used
to measure cognitive control, such as Stroop and flanker, do not
show reliable age-related deficits, whereas go/no-go and stop-signal
tasks are associated with impairments in inhibitory control (Fan,
2014; Rey-Mermet and Gade, 2018). Even within inhibitory control,
impairments depend on the type of task used (Borella et al., 2009;
Mayas et al., 2012). These cross-task differences suggest that the
ageing process of cognitive control is not a univariate reduction in
performance but rather a more complex, unsynchronised change
among cognitive processes.

Significant heterogeneity is also observed across individuals due
to variability in socio-economic status (SES) and quality of living
factors such as education, lifestyle, and general health (Migeot
et al., 2022). Processes that are sensitive to stress or environmental
adversity (e.g., attention allocation, emotional regulation, and
decision making) are affected more by differences in SES compared
to other processes. These effects relate to the limited access of
individuals to quality education, healthcare, and other protective
resources, alongside increased exposure to environmental toxins
and other life stressors that can have a negative impact on
brain function. Historically, protective factors, such as higher
education and occupation attainment levels, have been discussed
as promoting individual cognitive reserve levels (Stern, 2002).
Reuter-Lorenz and Park (2014) suggested that factors such as
education level, physical fitness, and multilingualism could protect
cognitive functioning by improving brain structure and function
and providing neural and cognitive support against age-related
cognitive declines. Likewise, individuals with higher levels of
education (Lenehan et al., 2015) and better health practices (Woods
et al., 2012) exhibit fewer declines in inhibitory control and a slower
decline in cognitive control.

Taken together, recent advances challenge the global decline
approach by suggesting a domain-specific decline, affecting some
cognitive-control processes more than others, with varying degrees
of decline in different stages of ageing (Cabeza et al., 2018). These
findings highlight the importance of considering specific domains
when studying age-related changes and developing interventions to
improve cognitive control in older adults.

That said, the lack of consensus on the definition of cognitive
control contributes to the discussion about heterogeneity (Rey-
Mermet and Gade, 2018; Heckner et al., 2021). For some
researchers, cognitive control refers to the ability to focus attention
and ignore distractions (Mayas et al., 2012), while for others it
encompasses a wider range of functions. Some researchers use
working memory (Zelazo et al., 2004) or attention to measure
cognitive control, while others use inhibitory control (Persad
et al., 2002; Salthouse et al., 2003; Vaughan and Giovanello, 2010).
Theories need to account for these inconsistencies and form a more
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complex view of what cognitive control is and how its ageing should
be measured.

3.2. Beyond the pre-frontal cortex

Despite strong evidence supporting the frontal lobe hypothesis
of ageing, the theory does not explain all the neural effects and it is
still a matter of scientific debate (Verhaeghen, 2011). To that end,
researchers raised questions about whether declines in cognitive
control result solely from frontal lobe changes and investigated
the role of other relevant brain regions, such as the parietal and
temporal lobes (Jimura and Braver, 2010; Vallesi et al., 2011). There
are also knowledge gaps concerning the relation between declines
in the frontal lobe and various environmental factors (e.g., lifestyle;
Lövdén et al., 2010a).

Recent advances have attempted to challenge the focus on
the frontal cortex. Large-scale neural changes in older adults’
regulation of default network (DN) activity have been related to
the ageing of cognitive control (Park and Reuter-Lorenz, 2009;
Grady, 2012). The DN refers to areas of the brain that are
active when an individual is “at rest” or involved in tasks that
are internal, such as self-reflective thoughts (Park and Reuter-
Lorenz, 2009). When the brain moves to more demanding
tasks, the DN is suppressed (Spreng and Turner, 2019). This
suppression is reduced in older adults and this reduction is
associated with underperformance on cognitive control tasks.
Moreover, declines in DN activity and its functional connectivity
have been associated with impaired resource allocation, accounting
for observed age-related differences in cognitive performance
(Park and Reuter-Lorenz, 2009).

In younger adult brains, neural networks are highly specialised,
meaning they are densely connected within specific subnetworks
but more sparsely connected between other networks (Chan et al.,
2014; Geerligs et al., 2015). With age, networks become less
specialised, as seen in a reduction of within-network connectivity
and increase in internetwork activity both during specific tasks
and in resting state conditions (Chan et al., 2014; Geerligs
et al., 2015). The role of resting state networks and their
functional segregation during cognitive control declines have been
tested longitudinally. A recent study tested changes in brain
networks over a 4-year period during older adulthood (Malagurski
et al., 2020). The segregation of the DN, salience network,
and frontoparietal control network deteriorated. Moreover, the
drop in segregation of the frontoparietal control network was
associated with declines in processing speed. Mixed patterns
in network connectivity, including increases in DN and in
between-network connectivity has been associated with strong
cognitive functioning (La Corte et al., 2016). While resting
state network activity has provided these insights and is useful
for investigating whole-brain connectivity patterns, it has been
recognised that an over-reliance on resting state data may
withdraw from the focus on task-relevant cognitive measures,
and the two should be used as complementary approaches
(Campbell and Schacter, 2017).

Finally, older adults exhibit longer stop-signal reaction times
compared to young adults and those age-related differences
are associated with functional changes in the supramarginal

gyrus, anterior insula, right inferior frontal cortex, and pre-
supplementary motor areas (Coxon et al., 2016). These findings
tie in with existing research showing the relationship between
brain structure maintenance and improved cognitive control. For
example, in task-switching studies, connectivity of task-relevant
frontoparietal regions in younger adults was increased compared
to older adults (Madden et al., 2010). Taken together, neural
mechanisms underlying ageing of cognitive control goes beyond
the functionality of the frontal cortex.

3.3. Plasticity and compensation

Another focal point in the neuroscience of cognitive-control
ageing is plasticity—the ability of the neural networks to change
and adapt in response to experiences and learning (Park and
McDonough, 2013; Gutchess, 2014). Plasticity allows the brain to
respond to environmental demands by way of structural changes
that alter brain function and behaviour over time (Lövdén et al.,
2010b; Lindenberger, 2018). Neuroplasticity models have helped
to explain how structural changes occur due to a metaphoric
mismatch between the scope of current functioning and the
demands of the environment (Lövdén et al., 2010b; Lindenberger,
2018). This mismatch must occur for enough time and be intense
enough to surpass a threshold, causing the changes necessary for
a new state of balance between supply and demand (Lövdén et al.,
2010b; Lindenberger, 2018; Lindenberger and Lövdén, 2019).

The exploration-selection-refinement (ESR) model of
neuroplasticity posits three phases of learning (Lindenberger and
Lövdén, 2019). Following heightened levels of activity, structural
neural changes are supported by myelination and the formation
of new dendric spines leading to an increase in new circuits
formed and trialled. The best performing microcircuit is selected,
variability decreases, and then the microcircuitry is stabilised
and unselected microcircuits are withdrawn (Lindenberger and
Lövdén, 2019).

Plastic changes in cognitive abilities may require both local
plasticity (for example within the PFC) and widespread changes,
such as improved network reorganisation aided by myelination
of white matter tracts (Lindenberger and Lövdén, 2019). When
considering neuroplasticity models in relation to neural activity
patterns related to ageing, older age is more strongly associated
with neural maintenance and cognitive flexibility than growth
(Braver et al., 2014; Coxon et al., 2016; Kühn and Lindenberger,
2016), and neural patterns in older adults are less distinctive
than in younger networks (Li et al., 2000). This could be due to
an increased reliance on stronger network reorganisation which
can be observed through increased bi-hemispheric activation
(Cabeza, 2002).

Cabeza et al. (2002) theorised that if activity in specific
regions of the brain declines with age, it would be reasonable to
assume that compensatory mechanisms could gradually permit
adaptive neurocognitive functioning to ageing of cognitive control.
This idea has been supported by the notion of adaptations
as driven by neurological supply deficits and environmental
demand mismatches, which lead to plasticity-related changes
in old age (Lövdén et al., 2010b). Increased neurological
generalisation has been shown to counter neurocognitive
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declines, acting as a supportive adaptation (Cabeza et al., 2002;
Park and McDonough, 2013).

Increasing age is associated with losses in controlled or fluid
cognition (Zelazo et al., 2004; Thornton and Dumke, 2005; Wang
et al., 2020). However, researchers have suggested older adults’ gains
in crystalised knowledge (Kramer and Willis, 2002) could be due
to shifts in cognitive architecture, with crystallised gains reflected
in functional network architecture changes in the brain (Spreng
and Turner, 2019). Increased reliance on prior knowledge has been
highlighted as a compensatory mechanism that allows older adults
to offset restrictions in cognitive resources, for example in decision
making and planning tasks (Denburg and Hedgcock, 2015), and
when strategically prioritising higher-value information in memory
(Castel, 2007; Knowlton and Castel, 2022). Neural activity in
older adults has shown increased recruitment of PFC regions and
reduced suppression of the DN (Park and Reuter-Lorenz, 2009;
Grady, 2012; Spreng and Turner, 2019). Thus, with age, cognition
becomes increasingly influenced by existing knowledge, engaging
the DN and lateral prefrontal brain regions to compensate for
cognitive supply limitations (Lövdén et al., 2010b; Spreng and
Turner, 2019).

Researchers have refined the compensatory model by
examining how plasticity negates the effects of neural losses
and promotes cognitive control in situations where cognitive
demands are high (Vallesi et al., 2011; Park and McDonough,
2013; Cabeza et al., 2018). During demanding tasks older
adults show increased bilateral activation in the frontal gyrus,
the inferior parietal lobule, and posterior cerebellum. These
activations are associated with over-recruitment of additional
regions during more difficult tasks. Over-recruitment may
lead older adults to reach their peak performance during
difficult tasks at an earlier rate than younger adults, with
quick improvements followed by plateaus in performance
during inhibitory control tasks [for an explanation of neural
activation and level of task demand, see the compensation-related
utilisation of neural circuits hypothesis (CRUNCH), Reuter-
Lorenz and Cappell, 2008; Vallesi et al., 2011; Reuter-Lorenz
et al., 2021]. Thus, compensatory mechanisms include neural
reorganisation in response to cognitive losses; upregulation
of existing processes; and selection/promotion of an existing
cognitive strategy without the development of a new structure or
process (Cabeza et al., 2018).

4. Discussion

The reviewed research clarifies the need to provide a more
nuanced understanding of the complex interaction between
cognitive processes during ageing. To achieve this, we propose key
areas of focus for future research, along with challenges in this field.

4.1. Neural plasticity

Studies on the role of plasticity and its relation to compensation
during ageing suggest that the same brain regions can play different
roles in older vs. younger adults depending on the connections
with other intra-network regions. Yet, the structure of brain activity

changes with age and their origins remain under debate and
researchers have noted the need for any interpretations to be
supported by behavioural evidence.

Building on the positive connections between behavioural
measures, structural brain changes, and neural changes in
functional connectivity (Lövdén et al., 2010a; Grady, 2012;
de Lange et al., 2017), further examination of how neural
plasticity underlies shifts in cognitive control during ageing holds
promise for identifying ways to promote healthy ageing and
maintain cognitive function throughout the lifespan. Specifically,
similar to recent work in child development (Ossmy and
Adolph, 2020), future ageing research would benefit from using
advanced analytic techniques to (1) describe the heterogeneity
in cognitive control ageing using a multivariate approach;
(2) identify factors that contribute to different types of age-
related declines; and (3) use identified factors and patterns to
generalise findings from one group of older adults to another and
help explain individual differences. When considering structural
brain changes, researchers should also investigate structural
invariance, as longitudinal stability has been associated with
greater performance on different cognitive performance measures
(de Frias et al., 2009).

4.2. Ageing cascades

Developmental researchers have increasingly examined child
development as a cascadic effect, acknowledging that multiple
processes and factors during development are at play during any
given moment (Oakes and Rakison, 2019). This is also true for
cognitive changes in later life. A person’s environment, behaviours,
and cognitive resources continue to change from adulthood into
old age, contributing to the significant individual differences in
ageing.

The ageing research to-date has supported the notion of a
multidimensional change in cognitive control with age and has
acknowledged how individual experiences, such as education level,
have been shown to impact brain network segregation (Chan et al.,
2021). However, research has neglected a cascadic approach that
considers how experiences influence ageing outcomes through
a series of interconnected and reciprocal effects across multiple
domains and their cumulative effect (Oakes and Rakison, 2019).
Cognitive control is an ideal candidate for exploring ageing
cascades because of the involvement of multiple processes and
functions and their potential interactions (Oakes and Rakison,
2019). Specific attention should be paid to the cascading effects of
life experiences on neural plasticity (Gutchess, 2014).

A longitudinal study design could be used to investigate
the cascadic effects of life experiences on neural plasticity. As
with developmental studies with infants and children, participants
would be recruited from different age groups and researchers
would follow them over an extended period, collecting data at
multiple time points. Education, occupation, physical activity,
social engagement, stress levels, and cognitive stimulation would
be collected and analysed in a multivariate approach (i.e.,
full patterns from multiple data sources are used to predict
changes in neural activity). Cognitive function could be assessed
using neuropsychological tests, while neuroimaging techniques
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such as structural MRI, fMRI, and Diffusion Tensor Imaging
would provide insight into brain structure and connectivity.
Statistical analysis techniques, including regression models and
mediation/moderation analyses, should be used to explore the
relationships between life experiences and neural measures while
accounting for confounding factors. Cross-sectional comparisons
between individuals with diverse life trajectories and intervention
studies, such as cognitive training programmes or physical exercise
interventions, could further elucidate the impact of specific life
experiences on neural plasticity in ageing.

4.3. Computational modelling

Despite much evidence from psychology and neuroscience,
the exact mechanisms that contribute to age-related declines in
cognitive control are still unclear. Computational modelling of
cognition—the use of mathematical and computational approaches
to simulate and explain neural and cognitive processes—has a high
potential to achieve such understanding.

Previous work used computational modelling to formulate
cognitive control as a process of controlling the flow of information
between perceptual and executive systems, feeding internal system
and external environment information to the controller (Haykin
et al., 2012). In their review of the literature on computational
modelling in ageing, Dully et al. (2018) discussed the useful nature
of models for explaining individual differences by identifying
age-associated processes related to multiple cognitive domains.
One useful example is sequential sampling modelling, which
explains decision making as a threshold that is passed once
sufficient pre-determined sensory information is gathered, leading
to a decision (Forstmann et al., 2016; Dully et al., 2018).
In the context of cognitive-control ageing, sequential sampling
models are useful in considering behavioural data associated
with relevant latent variables such as the quantity and quality
of evidence entering the decision-making process, and associated
processes including sensory encoding and motor execution
(Dully et al., 2018).

Utilising computational models could provide a quantitative
framework for understanding the role of different brain regions
and neurotransmitter systems in changes that occur with
ageing and how they affect cognitive control performance.
Moreover, simulating different ageing models and comparing
the results to empirical data may provide the most likely
explanations for observed changes in cognitive control with
ageing, thereby guiding the development of interventions to
maintain cognitive control in older adults. Finally, computational
modelling facilitates communication and collaboration between
researchers in different fields, such as cognitive neuroscience,
psychology, and computer science, by providing a shared language
and conceptual framework for understanding the ageing of
cognitive control.

4.4. Whole brain connectivity patterns

Our final proposal for future direction involves the
investigation of brain connectivity patterns at a whole-brain

level. Recent advancements have initiated the exploration of how
ageing affects whole-brain functional connectivity by examining
patterns of segregation and integration throughout the entire brain
(Park and Reuter-Lorenz, 2009; Campbell et al., 2013), as well
as connectivity strength in relation to age and task performance
(Lugtmeijer et al., 2023). This comprehensive approach holds
significant promise for testing the role of age-related changes
in brain connectivity in shaping cognitive control abilities
(Geerligs et al., 2017).

By employing whole-brain analyses, researchers can
unravel the intricate interactions and communication between
segregated brain regions, shedding light on a spread of
underlying mechanisms of cognitive control during ageing.
Critically, it will enable the identification of specific networks
or pathways that may be particularly susceptible or resilient
to the effects of ageing. Furthermore, by considering the
concept of cognitive reserve, which pertains to the brain’s
capacity to cope with age-related decline through efficient
neural processing or alternative strategies, researchers can
gain insights into the individual differences observed in
cognitive ageing trajectories. Finally, whole-brain approaches
can potentially lead to the discovery of novel biomarkers and
therapeutic targets for interventions aimed at promoting healthy
cognitive ageing.

4.5. The challenges

Pushing the envelope of ageing research of cognitive control
also comes with major challenges. One key challenge is the
need for cross-sectional and longitudinal covariation studies. Such
studies are crucial for capturing the dynamic nature of cognitive
control and its changes across the lifespan. Examining both
within-subject changes and individual differences in cognitive
control abilities over time allows for identification of age-
related trajectories and the exploration of potential predictors
or moderators that contribute to individual differences in
cognitive ageing.

Another critical challenge lies in unravelling the interplay
between maturation, senescence, plasticity, and flexibility in
cognitive control processes. The question of how age-related
changes in brain maturation and senescence influence the
contributions of plasticity and flexibility remains unanswered.
Understanding these dynamics is crucial for developing effective
interventions. Future research should aim to elucidate the complex
interactions between these factors, providing insights into how
cognitive control can be maintained or enhanced throughout
the ageing process.

In conclusion, recent studies on the effects of typical ageing
on cognitive control have revealed valuable insights into the
complex interplay between brain function and cognitive
abilities. However, there are still important knowledge gaps
that concern the complexity of these effects in the space
(whole brain networks) and in time (ageing cascades).
Those knowledge gaps should be addressed by integrating
computational, neural, behavioural perspectives, and methods
from different disciplines to push the ageing cognition
research forward.
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