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Introduction: Cognitive decline in the elderly population is a growing concern,

and vascular factors, such as hypertension, diabetes, cerebrovascular disease, and

coronary heart disease, have been associated with cognitive impairments. This

study aims to provide deeper insights into the structure of cognitive function

networks under these different vascular factors and explore their potential

associations with specific cognitive domains.

Methods: Cognitive function was assessed using a modified Chinese version

of the mini-mental state examination (MMSE) scale, and intensity centrality and

side weights were estimated by network modeling. The network structure of

cognitive function was compared across subgroups by including vascular factors

as subgroup variables while controlling for comorbidities and confounders.

Results: The results revealed that cerebrovascular disease and coronary heart

disease had a more significant impact on cognitive function. Cerebrovascular

disease was associated with weaker centrality in memory and spatial orientation,

and a sparser cognitive network structure. Coronary heart disease was associated

with weaker centrality in memory, repetition, executive function, recall, attention,

and calculation, as well as a sparser cognitive network structure. The NCT

analyses further highlighted significant differences between the cerebrovascular

disease and coronary heart disease groups compared to controls in terms of

overall network structure and connection strength.

Conclusion: Our findings suggest that specific cognitive domains may be more

vulnerable to impairments in patients with cerebrovascular disease and coronary

heart disease. These insights could be used to improve the accuracy and
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sensitivity of cognitive screening in these patient populations, inform personalized

cognitive intervention strategies, and provide a better understanding of the

potential mechanisms underlying cognitive decline in patients with vascular

diseases.

KEYWORDS
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Highlights

- First study to use network analysis to examine the relationship
between cognitive function and cardiovascular health.

- Cerebrovascular disease group had weaker centrality in memory
and spatial orientation.

- Coronary heart disease group had weaker centrality in temporal
orientation, immediate recall and delayed recall.

- Study identified potential associations between the four disorders
and cognitive impairments.

1. Introduction

Dementia is a progressive neurocognitive disorder
characterized by insidious cognitive and functional decline
until death. Mild cognitive impairment (MCI) typically precedes
dementia and is characterized by impairment in one or more
cognitive domains (World Health Organization [WHO], 2019;
GBD 2019 Dementia Forecasting Collaborators, 2022). With the
acceleration of population aging, cognitive disorders, including
dementia and MCI, have become a significant public health
issue, attracting increasing attention from healthcare providers,
researchers, and policymakers (Wu et al., 2017). Cognitive
decline is often accompanied by neuropsychiatric symptoms and
decreased ability to complete daily living activities, negatively
impacting the quality of life for patients and caregivers and
imposing a heavy burden on their families and society as a whole
(Sun et al., 2018). According to estimates by the International
Alzheimer’s Association, there are approximately 50 million
people with dementia worldwide, a number that is expected
to double by 2050, with two-thirds living in low- and middle-
income countries (Alzheimer’s Disease International [ADI],
2018). In China, approximately 15 million people aged 60 and
older suffer from dementia, with an estimated overall MCI
prevalence of 15.5% (Baumgart et al., 2015). The neuropathological
changes associated with cognitive decline begin to progress
long before clinical manifestation and mostly occur in older
age, providing ample time for the implementation of preventive
strategies to effectively delay age-related cognitive decline and
dementia (Feldman et al., 2014). As there are currently no
effective treatments, reducing the risk of cognitive decline
and modulating modifiable risk factors to delay disease onset
have become important components of prevention strategies
(Scheltens et al., 2021).

Numerous risk factors contribute to cognitive decline with
varying mechanisms and scopes of damage, including specific
neurobiological differences (Bellou et al., 2017; Zhang et al., 2022).
Hypertension, diabetes, cerebrovascular disease, and coronary
artery disease, common chronic conditions in elderly individuals,
are considered to be closely related to cognitive decline (Kivimäki
et al., 2019; Ou et al., 2020; Yang et al., 2020; Andrews et al.,
2021; Feter et al., 2022). These four vascular factors can be easily
identified and subjected to intervention, making them suitable
for preventing the development of cognitive impairment and
dementia. Although vascular factors share similar pathological
mechanisms, including causing damage to small blood vessels,
some phenomenological studies have found that the extent and
range of cognitive impairment vary among populations with
different vascular factors (Skoog et al., 1996; Ray et al., 2016; Xie
et al., 2019). With the deepening of pathophysiological research
in recent years, researchers have discovered that different vascular
factors have varying mechanisms of damaging cognitive function.
They produce different inflammatory factors and endogenous
hormones, which bind to their corresponding receptors, leading
to impaired synaptic, metabolic, and immune responses, and
cause differences in brain structure and neural connections
(Skoog et al., 1996; Langbaum et al., 2012; Love and Miners,
2016; Niu et al., 2022). For instance, hypertension may impact
cognitive function by influencing cerebral blood flow and causing
cerebral microvascular damage (Ungvari et al., 2021), while
diabetes primarily results in the accumulation of abnormally
folded amyloid-beta peptide (Aβ) and tau protein in amyloid
plaques and neurofibrillary tangles, as well as various forms
of vascular injury (Moran et al., 2015; Xue et al., 2019).
Cerebrovascular disease may disrupt brain tissue structure and
function through localized or global cerebral ischemia and
induce brain infarction or hemorrhage (Gorelick et al., 2011),
whereas coronary artery disease might affect brain blood flow
and oxygen supply by impacting cardiac pumping function
and causing microemboli (Wolters et al., 2018). The specific
range of cognitive impairment caused by different risk factors
requires further elucidation to develop personalized intervention
measures.

Network analysis has been widely applied in recent years
to the research and description of psychological traits and
psychiatric symptoms (van Borkulo et al., 2014; Borsboom, 2017).
It directly utilizes observable variables, such as attitudes, feelings,
and behaviors, as nodes and employs regularization techniques
to establish partial correlation networks between these variables
(Epskamp et al., 2012). This approach supplements traditional
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factor analysis and latent variable research methods, providing
novel insights for better understanding human psychological
phenomena and exploring the structure of psychiatric disorders
(Epskamp and Fried, 2018). When cognitive conditions are viewed
from a network theory perspective, dimensions and domains
interact directly and continuously (van Loo et al., 2018). The
presence of different risk factors may affect the pathway and
intensity of the connections between these symptoms, potentially
leading to individual differences in developmental obstacles.

To date, no studies have used network analysis to explore
the potential relationship between cognitive function and
cardiovascular health in older adults. In this study, we present
cognitive ability scales in a network format to display the
characteristics of cognitive function network structure in older
adults more clearly. By using vascular factors as grouping
variables, we compared the cognitive function network structures
of different subgroups and investigated the potential impact
of vascular factors on cognitive abilities. Simultaneously,
we established graphical models to identify core nodes and
modules in cognitive function networks of the various vascular
factors, which may serve as key elements for future disease
identification and intervention. This approach provides guidance
for developing personalized intervention measures tailored to
different risk factors.

2. Materials and methods

2.1. Participants

This cross-sectional survey was conducted from September
2018 to June 2022 using a convenience snowball sampling
method. The study population consisted of older adults residing
in communities, nursing homes, townships, and hospitals in
Liaoning Province, China. Selection criteria included the following:
(1) individuals aged 60 years and older; (2) individuals residing
in the survey area for at least 6 months; (3) individuals
without moderate to severe visual or hearing impairment,
motor dysfunction, language barriers, or other conditions that
may affect cognitive function measurement; (4) individuals
without a clinical diagnosis of dementia or severe mental
illness; (5) individuals currently in a stable physical condition
without medication non-compliance; and (6) participants who
voluntarily participated in the study and signed informed consent
forms. Individuals with severe diseases, terminal illnesses, or
complete bedridden disability were excluded. The study protocol
was approved by the Human Ethics Committee of China
Medical University.

2.2. Procedure

Upon meeting the study’s inclusion criteria, being informed
of the research purpose, and signing the informed consent
form, participants underwent clinical interviews conducted by
trained researchers. Relevant demographic information (age, sex,
education level, hypertension, diabetes, cerebrovascular disease,
coronary heart disease, and history of psychological trauma) was
collected, and cognitive function assessment tests were completed.

2.3. Cognition assessment

The mini-mental state examination (MMSE) is primarily
utilized for screening dementia patients, assessing the severity
of cognitive impairment, and monitoring disease progression
(Tombaugh and McIntyre, 1992). Due to its ease of use and
short administration time (5–10 min), the MMSE has been widely
adopted both domestically and internationally. In this study, we
used the Chinese mini-mental status (CMMS) (Zhang et al., 1990),
a Chinese version of the MMSE revised by Zhang Mingyuan,
to assess cognitive function. Its validity and reliability have been
proven previously (Wu et al., 2022). The CMMS is a fundamental
tool for evaluating overall cognitive function, with a maximum
achievable score of 30 points. It contains five subsets, orientation,
registration, attention and calculation, recall, and language and
visual construction, with a total of thirty items, each rated on a scale
of 0 to 1.

2.4. Data analysis

We used EpiData 3.1 software to input information from paper
questionnaires. Data entry and validation were independently
completed by two researchers, eliminating any inconsistencies or
logical errors in the basic information. After ensuring accuracy,
a database was established. We monitored missing data patterns
in the collected data and utilized R 4.1.3 software (R Core
Team, 2022) and the mice package (van Buuren and Groothuis-
Oudshoorn, 2011) for data computation, missing data imputation,
and model validation. For values meeting the conditions for
multiple imputation, the data were imputed using the software
package.

2.4.1. Network model construction
The construction of the network model was performed with R

4.1.3 software (R Core Team, 2022). Networks consist of “nodes”
and “edges,” with each symptom considered a node and the
association between two symptoms treated as an edge (Borsboom
and Cramer, 2013; van Borkulo et al., 2015). Blue and green edges
represent positive correlations and red edges represent negative
correlations between symptoms, and edge thickness indicates the
strength of their association. The magnitude of an edge weight
reflects the strength of the association, with higher absolute
values indicating stronger associations and lower absolute values
indicating weaker associations. Nodes with stronger connections
to other nodes are closer to the center of the network, while
nodes with fewer connections are distributed around the network’s
periphery. Each color node in the network represents a subset (e.g.,
different cognitive domains, cardiovascular disease prevalence,
covariates).

Since the data in this study did not follow a normal distribution,
we employed the “IsingFit” package (van Borkulo et al., 2014)
in R 4.1.3, using an Ising model based on binary data to
construct a computationally efficient model for estimating network
structure. To improve the sensitivity of the network model in
detecting changes in cognitive function, we encoded the scores
of the 30 MMSE items as binary data, with the minimum
sample size for each network estimated to be ten times the
number of nodes (van der Ploeg et al., 2014). We then applied
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the graphical least absolute shrinkage and selection operator
(GLASSO) to introduce a penalty factor, removing relatively weak
connections in the network to obtain a more stable and easily
interpretable regularized sparse network. The statistical analysis
and visualization features of these networks were implemented
using the R packages “qgraph” (Epskamp et al., 2014) and “glasso”
(Friedman et al., 2014).

2.4.2. Network estimation and centrality
measurements

We estimated network models ranging from simple to complex.
In the network models, nodes represent variables, and edges
between nodes represent conditional dependencies, which can
be understood as partial correlations. Centrality parameters for
each node can be assessed as strength, closeness, and betweenness
(Bringmann et al., 2013). Since closeness and betweenness may be
unreliable in the cognitive network model presented in this study
(Bringmann et al., 2019), we primarily focused on the effects of
strength centrality. Strength centrality is reported as standardized
z scores, a high centrality Z score for a cognitive domain indicates
that it plays a more central role in the network, with stronger
connections to other nodes and potentially greater impact on
cognitive function.

Before interpreting centrality estimates, we assessed network
stability using a case deletion bootstrap approach. We removed
varying proportions of samples, ranging from 10 to 75%, and
estimated the network model using only the remaining data. By
calculating the correlation between bootstrap measures for the
subset models and the original subset models, we evaluated the
robustness of the estimated parameters, which should theoretically
be higher than 0.25 (Armour et al., 2017).

2.4.3. Covariates and network comparisons
We explored the potential effects of four disease factors on

cognitive abilities by comparing the cognitive function network
structures of subgroups using these factors as grouping variables.
Specifically, we divided the population into eight subsets within
four subgroups: with and without diabetes, with and without
hypertension, with and without cerebrovascular disease, and with
and without coronary heart disease. Based on previous research
(Harada et al., 2013; Baumgart et al., 2015; Maccora et al.,
2020; Levine et al., 2021), we selected sex, age, and educational
level as covariates. For each subgroup, we included the presence
of the other three diseases, sex, age, and educational level
as covariates in the network to control for comorbidities and
other confounding factors related to cognition that may affect
the cognitive network structure. The network comparison test
(NCT) was used to compare the overall network structure and
the global strength of connections of the two subset cognitive
network models within each subgroup (van Borkulo et al., 2022)
to explore the potential impact of the presence or absence of
the cardiovascular health-related factors under investigation on
the cognitive network structure. “Overall network structure” refers
to the assumption that the entire network (i.e., the specific
pattern of edges connecting nodes) is the same between groups.
“Global strength of connections” refers to the assumption that
the total absolute sum of all edges is the same across the
network.

In all analyses, results with p < 0.05 were considered statistically
significant. The code for network analysis can be found at https:
//osf.io/vh825/?view_only=e18be553d28047788e5dfbc9303a2817.
We also provide the model outputs to make the
analysis reproducible.

3. Results

3.1. Sample characteristics

A total of 2,225 valid questionnaires were collected. The
study included 1,152 men (51.8%) and 1,073 women (48.2%).
The average age was 72.44 ± 9.63 years. Regarding education
level, 400 participants (18.0%) had a college degree or higher, 991
(44.5%) had a high school education, 781 (35.1%) had a primary
school education, and 53 (2.4%) were illiterate. There were 921
individuals (41.3%) with hypertension, 381 (17.1%) with diabetes,
732 (32.8%) with cerebrovascular disease, and 484 (21.7%) with
coronary heart disease. The average MMSE score for the study
population was 26.21 ± 3.16. Table 1 displayed the recoded MMSE
items.

3.2. MMSE total score model

To investigate the network relationships between the MMSE
total score and cerebrovascular disease, coronary heart disease,
hypertension, and diabetes in the elderly population, two network
model structures were constructed, as shown in Figure 1.
Figure 1A displayed a negative correlation between the MMSE
total score and the prevalence of the four vascular diseases
in the elderly population. Additionally, there was a positive
association among the four diseases. Figure 1B is based on
Figure 1A with the additional three covariates of sex, age,
and educational level. After adjusting for these covariates, the
association patterns and strengths between the MMSE total score
and the four diseases changed. This suggests that when analyzing
the relationship between cognitive function and cardiovascular
factors, potential confounders such as age, sex, and educational
level need to be considered. These factors may have an
impact on cognitive function or interact with the four disease
factors.

3.3. MMSE individual score items network
model

Next, two network models, as shown in Figure 2, were
constructed to evaluate the relationship between the 30 MMSE
items individually and the prevalence of the four diseases in
the entire population. Figure 2A presents a network model
without considering sex, age, and educational level. This model
showed extensive connections among different cognitive domains
and within individual cognitive domains, as well as connections
between the four diseases and various cognitive domains. In this
model, the strength centrality z scores for hypertension, diabetes,
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TABLE 1 Recoded mini-mental state examination items and frequencies (%).

Community Label Item description Failure to answer questions
or incomplete answers

Answer the question
correctly

I. Orientation (10 points) Temporal
orientation

OT1 What is the day? 312 (14%) 1,913 (86%)

OT2 What is the date? 328 (14.7%) 1,897 (85.3%)

OT3 What is the month? 89 (4%) 2,136 (96%)

OT4 What is the season? 49 (2.2%) 2,176 (97.8%)

OT5 What is the year? 101 (4.5%) 2,124 (95.5%)

Spatial
orientation

OS1 Where are we now?
Province?

13 (0.6%) 2,212 (99.4%)

OS2 What district do you live in? 31 (1.4%) 2,194 (98.6%)

OS3 What street do you live in? 118 (5.3%) 2,107 (94.7%)

OS4 Where is this place? 63 (2.8%) 2,162 (97.2%)

OS5 Where are we now?
Floor?

77 (3.5%) 2,148 (96.5%)

II. Registration (3 points) Immediate recall R1 Repeat the words: ball 97 (4.4%) 2,128 (95.6%)

R2 Repeat the words: National
Flag

103 (4.6%) 2,122 (95.4%)

R3 Repeat the words: tree 154 (6.9%) 2,071 (93.1%)

III. Attention and
calculation (5 points)

Attention and
calculation

A1 100 − 7 (93) 72 (3.2%) 2,153 (96.8%)

A2 −7 (86) 509 (22.9%) 1,716 (77.1%)

A3 −7 (79) 605 (27.2%) 1,620 (72.8%)

A4 −7 (72) 678 (30.5%) 1,547 (69.5%)

A5 −7 (65) 830 (37.3%) 1,395 (62.7%)

IV. Recall (3 points) Delayed recall D1 Recall: ball 535 (24.0%) 1,690 (76.0%)

D2 Recall: national flag 655 (29.4%) 1,570 (70.6%)

D3 Recall: tree 798 (35.9%) 1,427 (64.1%)

V. Language and visual
construction (9 points)

Naming LN1 Name shown object: watch 24 (1.1%) 2,201 (98.9%)

LN2 Name shown object: pencil 28 (1.3%) 2,197 (98.7%)

Repetition LP1 Repeat the phrase 309 (13.9%) 1,916 (86.1%)

Executive
function

LE1 Follow oral instructions.1 142 (6.4%) 2,083 (93.6%)

LE2 Follow oral instructions.2 108 (4.9%) 2,117 (95.1%)

LE3 Follow oral instructions.3 148 (6.7%) 2,077 (93.3%)

Reading LR1 Follow written instruction 242 (10.9%) 1,983 (89.1%)

Expression LEx1 Make up and write a sentence 604 (27.1%) 1,621 (72.9%)

Drawing LD1 Copy a picture (of two
figures)

659 (29.6%) 1,566 (70.4%)

cerebrovascular disease, and coronary heart disease were −1.696,
−0.478, −1.679, and −0.903, respectively, indicating their relative
importance in the network.

Figure 2B incorporated sex, age, and educational level as
covariates into the cognitive network model. This led to a
change and reorganization of the cognitive function network
structure. After adding these covariates, the nodes representing
the four diseases occupied more central positions in the network,
and the connections with various cognitive domains were
strengthened. In this adjusted model, the strength centrality

z scores for hypertension, diabetes, cerebrovascular disease,
and coronary heart disease were −1.533, −0.403, −1.152, and
−0.355, respectively. After considering the three covariates of
sex, age, and educational level, the importance of the four
diseases in the cognitive function network increased. This
implies that the impact of the four vascular factors on the
cognitive function structure may be modulated by age, sex, and
educational level. Subsequent network model construction and
comparison will adjust for the influence of these three confounding
factors.
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FIGURE 1

Networks showing the mini-mental state examination (MMSE) total score model (A) and the model after controlling for covariates (B). The
thicknesses of lines represent the strength of the correlation. Blue lines represent positive correlations, whereas red lines represent negative
correlations.

FIGURE 2

Networks showing the mini-mental state examination (MMSE) individual score model (A) and the model after controlling for covariates (B). Circles
indicate nodes (MMSE item) and lines indicate edges (association between two symptoms). The thicknesses of lines represent the strength of the
correlation. Nodes with the same color belong to the same community. Green lines represent positive correlations, whereas red lines represent
negative correlations.

3.4. Comparison of network models
divided by vascular factors

Next, we divided the population into eight subsets within four
subgroups according to the presence or absence of hypertension,
diabetes, cerebrovascular disease, and coronary heart disease.

3.4.1. Hypertension group
Figures 3A, B showed the cognitive network structures of the

two groups of people with hypertension (n = 921) and without
hypertension (n = 1,304), respectively. Figure 3C displayed the
centrality indices of each node in the network analysis. In the
group with hypertension, the three items in spatial orientation were
the three nodes with the highest centrality (OS1, z = 1.698; OS3,
z = 1.553; OS2, z = 1.304). In the group without hypertension, the
nodes with the highest centrality were memory (R3, z = 1.566),
time orientation (OT3, z = 1.496), and spatial orientation (OS3,
z = 1.280).

In the hypertension group, the internal connections of
cognitive functions were mostly positive, with 446 positive
connections and a sum of non-standardized partial correlation
coefficients of 231.48. The most heavily weighted edges occurred
in the naming ability module (LN1–LN2, edge weight = 4.113),
followed by the spatial orientation module (OS1–OS2, edge
weight = 2.816; OS2–OS3, edge weight = 2.210). In the group
without hypertension, there were 425 positive connections, with
a sum of partial correlation coefficients of 300.152. The most
heavily weighted edges occurred in the naming ability module,
followed by the attention and calculation module (A4–A5, edge
weight = 2.816) and the connection between reading ability
and writing ability modules (LR1-LEx1, edge weight = 2.703).
Edge weights with 95% confidence intervals are available in the
Supplementary information.1

1 https://osf.io/vh825/?view_only=e18be553d28047788e5dfbc9303a2817

Frontiers in Aging Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1229559
https://osf.io/vh825/?view_only=e18be553d28047788e5dfbc9303a2817
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1229559 August 1, 2023 Time: 12:58 # 7

Wang et al. 10.3389/fnagi.2023.1229559

FIGURE 3

Cognitive network structures in participants with and without hypertension, and centrality indices of each node. (A) Shows the cognitive network
structure for participants with hypertension, and (B) presents the structure for those without hypertension. (C) Displays the centrality indices
(Z-scores) of each node in the network analysis. Nodes with the same color belong to the same community. Edges indicate the strength and
direction of associations between nodes: green lines represent positive correlations, and red lines represent negative correlations. The thickness of
the edges corresponds to the magnitude of the correlations, with thicker lines indicating stronger associations. The centrality Z-score reflects the
importance of a node in the network; the higher the centrality, the greater its influence within the network.

The NCT results showed that there were no significant
differences in the overall network structure between the two groups
(hypertension group vs. non-hypertension group: M = 2.783,
p = 0.415). In terms of global connectivity strength, there was also
no significant difference between the two groups (hypertension
group vs. non-hypertension group: S = 10.86, p = 0.275).

3.4.2. Diabetes group
Figures 4A, B showed the cognitive network structures of the

two groups of people with diabetes (n = 381) and without diabetes
(n = 1,844), respectively. Figure 4C displayed the centrality indices
of each node in the network analysis. In the group with diabetes, the
node with the highest centrality was OS1 (z = 2.608), followed by
OT5 (z = 1.802) and OS2 (z = 1.738). In the group without diabetes,
the node with the highest centrality was OS3 (z = 2.629), followed
by R1 (z = 1.731) and R2 (z = 1.112).

In the diabetes group, there were 389 positive connections,
with a sum of partial correlation coefficients of 379.84. The most
heavily weighted edges occurred between the time orientation
module and the memory module (OT5-R1, edge weight = 4.122),
followed by within the time orientation module (OT4–OT5, edge
weight = 3.861) and the executive function module (LE2–LE3, edge
weight = 3.018). In the group without diabetes, there were 442

positive connections, with a sum of partial correlation coefficients
of 291.04. The most heavily weighted edges occurred in the naming
ability module (LN1–LN2, edge weight = 4.847), followed by the
attention and calculation module (A4–A5, edge weight = 2.575)
and the connection between the reading ability module and the
writing ability module (LR1-LEx1, edge weight = 2.453). Edge
weights with 95% confidence intervals can be found in the
Supplementary information.

The NCT results showed that there were no significant
differences in the overall network structure between the two groups
(diabetes group vs. non-diabetes group: M = 4.730, p = 0.267). In
terms of global connectivity strength, there was also no significant
difference between the two groups (diabetes group vs. non-diabetes
group: S = 32.24, p = 0.467).

3.4.3. Cerebrovascular disease group
Figures 5A, B showed the cognitive network structures of

the two groups of people with cerebrovascular disease (n = 732)
and without cerebrovascular disease (n = 1,493), respectively.
Figure 5C displayed the centrality indices of each node in the
network analysis. In the group with cerebrovascular disease, the
node with the highest centrality was LN1 (z = 2.804), followed
by D1 (z = 1.192) and A3 (z = 1.126). In the group without
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FIGURE 4

Cognitive network structures in participants with and without diabetes, and centrality indices of each node. (A) Shows the cognitive network
structure for participants with diabetes, and (B) presents the structure for those without diabetes. (C) Displays the centrality indices (Z-scores) of
each node in the network analysis. Nodes with the same color belong to the same community. Edges indicate the strength and direction of
associations between nodes: green lines represent positive correlations, and red lines represent negative correlations. The thickness of the edges
corresponds to the magnitude of the correlations, with thicker lines indicating stronger associations. The centrality Z-score reflects the importance
of a node in the network; the higher the centrality, the greater its influence within the network.

cerebrovascular disease, the node with the highest centrality was
R1 (z = 2.189), followed by LN1 (z = 1.755) and OT5 (z = 1.423).

In the cerebrovascular disease group, there were 419 positive
connections, with a sum of partial correlation coefficients of
232.07. The most heavily weighted edges occurred in the naming
ability module (LN1–LN2, edge weight = 2.09), followed by the
attention and calculation module (A4–A5, edge weight = 2.082)
and the time orientation module (OT2–OT3, edge weight = 2.009).
In the group without cerebrovascular disease, there were 432
positive connections, with a sum of partial correlation coefficients
of 292.15. The most heavily weighted edges occurred in
the naming ability module (LN1–LN2, edge weight = 4.917),
followed by the attention and calculation module (A4–A5,
edge weight = 2.752) and the connection between the reading
ability module and the writing ability module (LR1-LEx1, edge
weight = 2.549). Edge weights with 95% confidence intervals
can be found in Supplementary information. The NCT results
showed that there were no significant differences in the overall
network structure between the two groups (cerebrovascular
disease group vs. non-cerebrovascular disease group: M = 2.178,
p = 0.835). However, there was a significant difference in global
connectivity strength between the two groups (cerebrovascular

disease group vs. non-cerebrovascular disease group: S = 27.218,
p = 0.045).

3.4.4. Coronary heart disease group
Figures 6A, B showed the cognitive network structures of the

two groups of people with coronary heart disease (n = 484) and
without coronary heart disease (n = 1,741), respectively. Figure 6C
displayed the centrality indices of each node in the network
analysis. In the group with coronary heart disease, the node with the
highest centrality was A3 (z = 2.183), followed by OS3 (z = 1.952)
and OT3 (z = 1.914). In the group without coronary heart disease,
the node with the highest centrality was OS3 (z = 1.678), followed
by OT5 (z = 1.672) and D1 (z = 1.438).

In the coronary heart disease group, there were 405 positive
connections, with a sum of partial correlation coefficients of 213.07.
The most heavily weighted edges occurred in the naming ability
module (LN1–LN2, edge weight = 2.09), followed by the attention
and calculation module (A4–A5, edge weight = 2.082) and the
time orientation module (OT2–OT3, edge weight = 2.009). In
the group without coronary heart disease, there were 421 positive
connections, with a sum of partial correlation coefficients of
299.39. The most heavily weighted edges occurred in the naming
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FIGURE 5

Cognitive network structures in participants with and without cerebrovascular disease, and centrality indices of each node. (A) Shows the cognitive
network structure for participants with cerebrovascular disease, and (B) presents the structure for those without cerebrovascular disease.
(C) Displays the centrality indices (Z-scores) of each node in the network analysis. Nodes with the same color belong to the same community. Edges
indicate the strength and direction of associations between nodes: green lines represent positive correlations, and red lines represent negative
correlations. The thickness of the edges corresponds to the magnitude of the correlations, with thicker lines indicating stronger associations. The
centrality Z-score reflects the importance of a node in the network; the higher the centrality, the greater its influence within the network.

ability module (LN1–LN2, edge weight = 4.731), followed by the
attention and calculation module (A4–A5, edge weight = 2.753)
and the connection between the reading ability module and
the writing ability module (LR1-LEx1, edge weight = 2.127).
Edge weights with 95% confidence intervals can be found in
Supplementary information.

The NCT results showed that there were significant differences
in the overall network structure between the two groups (coronary
heart disease group vs. non-coronary heart disease group:
M = 4.608, p = 0.05). Furthermore, there was a significant
difference in global connectivity strength between the two groups
(coronary heart disease group vs. non-coronary heart disease
group: S = 45.386, p < 0.001).

4. Discussion

To the best of our knowledge, this is the first study to employ
network analysis to explore the association between cognitive
functioning and cardiovascular health. We presented the structure
of the MMSE scale in the form of a network. By dividing the
population into four subgroups according to the presence or
absence of hypertension, diabetes, cerebrovascular disease, and

coronary heart disease and controlling for potential confounding
factors, we compared the differences between cognitive network
structures to examine the potential impact of these risk factors
on cognitive function. Furthermore, by identifying the core nodes
of the cognitive networks in each subgroup, we highlight their
importance for future disease identification and intervention.

In the first part of this study, we employed network models
to estimate the relationship between the total MMSE scores
of elderly individuals and cerebrovascular disease, coronary
heart disease, hypertension, and diabetes. The results showed a
negative correlation between cognitive functioning scores and the
prevalence of these four vascular-related diseases, indicating that
cognitive functioning might be impaired as these diseases develop
and progress. The interrelatedness of the disease prevalence
suggests that they may share some similar pathological mechanisms
and risk factors (Iadecola, 2010; Gorelick et al., 2011).

In the second part of this study, we assessed the network models
for the 30 items of the MMSE and the prevalence of the four
diseases for the entire population. The results revealed that the
prevalence of the four diseases was associated with network nodes
across various cognitive domains, indicating that the presence
of these diseases has a certain degree of impact on individual
cognitive domains as well as overall cognitive functioning. This
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FIGURE 6

Cognitive network structures in participants with and without coronary heart disease, and centrality indices of each node. (A) Shows the cognitive
network structure for participants with coronary heart disease, and (B) presents the structure for those without coronary heart disease. (C) Displays
the centrality indices (Z-scores) of each node in the network analysis. Nodes with the same color belong to the same community. Edges indicate the
strength and direction of associations between nodes: green lines represent positive correlations, and red lines represent negative correlations. The
thickness of the edges corresponds to the magnitude of the correlations, with thicker lines indicating stronger associations. The centrality Z-score
reflects the importance of a node in the network; the higher the centrality, the greater its influence within the network.

finding aligns with the studies by Manschot et al. (2006) and
Debette et al. (2010), who found that vascular changes might
affect multiple cognitive domains, such as memory, executive
function, and attention. Vascular factors may influence cognitive
functioning through various pathways, such as ischemia, hypoxia,
neuroinflammation, and alterations in cerebrovascular reactivity
(Kivipelto et al., 2001; Gorelick et al., 2011).

In the third part of this study, we constructed eight network
models within the four disease subgroups to explore the potential
impact of these diseases on cognitive functioning. We found that,
patients in the hypertension group showed reduced centrality in
time orientation, delayed recall, repetition, and reading abilities.
However, a compensatory increase in the centrality of spatial
orientation was observed. These results provide insights into the
differential impact of hypertension on specific cognitive domains.
Our findings are consistent with some previous studies that
identified an association between hypertension and cognitive
decline. For example, a study by Elias et al. (2012) and Sun et al.
(2020) suggested that hypertension is related to declines in several
cognitive domains, including memory, attention, and executive
function. Similarly, Iadecola and colleagues (Iadecola et al., 2016)

found that hypertension could lead to cognitive impairments by
altering cerebral blood flow and inducing microvascular damage.
The compensatory increase in spatial orientation centrality
observed in our study is an intriguing finding, suggesting that
hypertensive patients may rely more on their spatial orientation
abilities to counteract declines in other cognitive functions. This
phenomenon has been described as cognitive control, where the
brain develops alternative neural pathways to maintain cognitive
performance in the face of brain injury or disease (Hillary,
2008). The potential mechanisms underlying the cognitive changes
observed in the hypertension group may be related to the adverse
effects of hypertension on cerebral blood flow regulation and
the blood–brain barrier (Iadecola, 2013). Additionally, chronic
hypertension is associated with white matter lesions and cerebral
microbleeds, which can disrupt neural connections and lead to
cognitive decline (Debette and Markus, 2010). The NCT revealed
no statistically significant differences, indicating that the cognitive
impairments caused by hypertension may be in their early stages
and that the differences have not yet reached significance.

In the diabetes group, patients showed reduced centrality
in repetition and naming abilities. Our findings are consistent
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with some previous studies, such as the study by Biessels
et al. (2006), which demonstrated that diabetic patients have an
increased risk of cognitive dysfunction, particularly in memory,
attention, and executive function domains. Another study by
Cukierman et al. (2005) reported that diabetes is associated with a
moderate decline in cognitive function, with a greater decline for
individuals with poor glycemic control. Other confounding factors,
such as glycemic control, duration of diabetes, or the presence of
diabetes complications, may also influence the relationship between
diabetes and cognitive function (Umegaki, 2014). The potential
mechanisms underlying the cognitive changes observed in diabetic
patients may be related to the adverse effects of hyperglycemia
on the cerebrovascular system and neuronal function (Biessels
et al., 2008; Grabenhenrich and Roll, 2014). Additionally, insulin
resistance and chronic inflammation, which are common in
diabetic patients, are associated with the development of cognitive
impairments (Brownlee, 2001; Yaffe et al., 2004). The NCT revealed
no statistically significant differences, suggesting that cognitive
impairments may be in their early stages.

In the cerebrovascular disease group, patients exhibited weaker
centrality in memory and spatial orientation. Moreover, the
cognitive network structure became sparser, and the connections
within cognitive domains were weaker. The NCT revealed
significant differences in the overall strength of the intergroup
network connections, indicating that cerebrovascular disease,
a more advanced disease state, may have a more substantial
impact on cognitive function than hypertension and diabetes.
Cerebrovascular disease may disrupt the integrity of brain
functional networks. Our findings are consistent with previous
studies, showing that cerebrovascular disease is associated with a
decline in cognitive abilities, particularly in memory and spatial
orientation domains. A study by Jokinen et al. (2006) found that
memory and executive functions were significantly impaired in
patients with subcortical ischemic vascular disease. Similarly, a
meta-analysis by Debette et al. (2011) reported that cerebrovascular
disease is associated with a decline in cognitive abilities and an
increased risk of dementia. The potential mechanisms underlying
these observations may involve white matter lesions and cerebral
small vessel disease, which are common in cerebrovascular disease
patients and are associated with a decline in cognitive abilities
(Pantoni, 2010; Prins and Scheltens, 2015). Additionally, impaired
cerebral blood flow and the presence of cerebral microbleeds may
contribute to the cognitive changes observed in cerebrovascular
disease patients (Iadecola, 2013). Reduced cerebral blood flow
could result in an insufficient oxygen and nutrient supply to the
brain, ultimately leading to neuronal dysfunction and cognitive
impairments (Iadecola, 2010).

In the coronary heart disease group, patients exhibited
weaker centrality in memory, repetition, executive function, recall,
attention, and calculation. In addition, the cognitive network
structure became sparser, and connections within each cognitive
domain were further weakened. The NCT revealed significant
differences in the overall network structure and overall connection
strength. Coronary heart disease may have a more substantial
impact on cognitive function. Our findings are consistent with
previous research, showing a relationship between coronary heart
disease and cognitive decline in multiple domains. A study by Kure
et al. (2016) found that coronary heart disease patients exhibited
impairments in memory, attention, and executive function. Kresge
et al. (2018) found that in subclinical cardiac disease, patients had

poorer visual-spatial immediate recall, visual-spatial delayed recall,
and verbal delayed recall. Similarly, a meta-analysis by Yang et al.
(2020) reported that coronary heart disease is associated with a
decline in cognitive abilities and an increased risk of dementia.
The changes in centrality and sparse cognitive network structure
observed in our study may be attributed to several underlying
mechanisms. One possibility is that coronary heart disease can lead
to chronic cerebral hypoperfusion, which in turn may result in
neuronal dysfunction and cognitive impairments (Gorelick et al.,
2011; Abete et al., 2014). Additionally, microvascular dysfunction
and endothelial dysfunction, which are common in coronary heart
disease, are associated with cognitive decline (Corona et al., 2012;
Shabir et al., 2018).

5. Limitations

The current study has several limitations that should be
considered when interpreting the results. First, given that this
is an exploratory study using cross-sectional data, we could
only identify possible associations between the four diseases
and cognitive function, but causal inferences cannot be made.
Second, the study estimated the networks based on group-level
data. Inferring individual patients’ neurocognitive function from
group-level data may be problematic, as the average situation
of a population might not necessarily be relevant to individual
patients. Future network studies could utilize longitudinal data
to investigate individual differences and population patterns in
neurocognitive function. Another advantage of using longitudinal
data is the opportunity to statistically model the temporal
dynamics of neurocognitive function, which may help elucidate
patterns of cognitive impairment. Third, although we corrected
for co-occurrence between diseases and the influence of factors
such as gender, age, and education, there may still be other
potential confounding factors that have not been accounted
for in our analysis. Finally, we studied only four common
cardiovascular-related chronic diseases of elderly individuals:
hypertension, diabetes, cerebrovascular disease and coronary
heart disease. Future studies could explore other potential
risk factors and their relationship with cognitive function to
gain a more comprehensive understanding of the influencing
factors and protective mechanisms for cognitive function in the
elderly population.

6. Conclusion

In summary, our exploratory analysis identified potential
associations between four diseases and impairments in different
cognitive domains. Our findings suggest that when screening
for cognitive function in specific populations, greater attention
should be given to the scores in particular cognitive domains to
improve the accuracy and sensitivity of the screening. This may
also provide useful insights for developing personalized cognitive
intervention strategies for patients with cardiovascular diseases.
Future research should further explore the potential mechanisms
and intervention measures to prevent or mitigate cognitive decline
in this population.
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