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Introduction: Advanced age is a significant factor in changes to brain physiology 
and cognitive functions. Recent research has highlighted the critical role of the gut 
microbiome in modulating brain functions during aging, which can be influenced 
by various factors such as apolipoprotein E (APOE) genetic variance, body mass 
index (BMI), diabetes, and dietary intake. However, the associations between 
the gut microbiome and these factors, as well as brain structural, vascular, and 
metabolic imaging markers, have not been well explored.

Methods: We recruited 30 community dwelling older adults between age 55-85 
in Kentucky. We collected the medical history from the electronic health record 
as well as the Dietary Screener Questionnaire. We performed APOE genotyping 
with an oral swab, gut microbiome analysis using metagenomics sequencing, and 
brain structural, vascular, and metabolic imaging using MRI.

Results: Individuals with APOE e2 and APOE e4 genotypes had distinct microbiota 
composition, and higher level of pro-inflammatory microbiota were associated 
higher BMI and diabetes. In contrast, calcium- and vegetable-rich diets were 
associated with microbiota that produced short chain fatty acids leading to an 
anti-inflammatory state. We also found that important gut microbial butyrate 
producers were correlated with the volume of the thalamus and corpus callosum, 
which are regions of the brain responsible for relaying and processing information. 
Additionally, putative proinflammatory species were negatively correlated with 
GABA production, an inhibitory neurotransmitter. Furthermore, we observed 
that the relative abundance of bacteria from the family Eggerthellaceae, equol 
producers, was correlated with white matter integrity in tracts connecting the 
brain regions related to language, memory, and learning.

Discussion: These findings highlight the importance of gut microbiome 
association with brain health in aging population and could have important 
implications aimed at optimizing healthy brain aging through precision prebiotic, 
probiotic or dietary interventions.
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Introduction

Aging is associated with significant alterations in brain structure, 
blood flow, and metabolism, leading to declines in cognitive function 
and increased risk for neurodegenerative diseases. The most notable 
structural change is brain atrophy, particularly in the hippocampus and 
other regions associated with memory and cognitive processes (Raz 
and Rodrigue, 2006; Fjell and Walhovd, 2010). Aging also leads to a 
decline in white matter (WM) integrity through various processes, 
including myelin degradation, and the development of white matter 
lesions (Molloy et al., 2021). Cerebral blood flow (CBF) is another 
critical aspect of brain function that changes with age. Older adults 
typically exhibit reduced CBF, which can negatively impact cognition 
(Tarumi and Zhang, 2018). Aging also affects brain metabolism, with 
older individuals displaying reduced glucose and oxygen metabolic 
rates, and the production of essential brain metabolites (Lin et al., 2014; 
Brinton et al., 2015; Mattson and Arumugam, 2018; Turner et al., 2022).

Accumulating evidence has implicated the gut microbiome in 
brain health (Cox and Weiner, 2018). Gut dysbiosis is associated with 
many neurological disorders, including Alzheimer’s disease, stroke, 
and traumatic brain injury (Vogt et  al., 2017; Borsom et al., 2020; 
Yanckello et al., 2022a; Hammond et al., 2022b). Aging is associated 
with significant alterations in the gut microbiome (Hoffman et al., 
2017). One prominent age-related change is the decline of beneficial 
bacteria, such as Bifidobacteria, and an increase in opportunistic 
pathogens like bacteria from the phylum Proteobacteria (Biagi et al., 
2010). This shift may contribute to chronic low-grade inflammation, 
known as “inflammaging,” which has been linked to various age-related 
conditions, including cardiovascular diseases, cognitive decline, and 
metabolic disorders (Franceschi and Campisi, 2014). Additionally, 
older adults often experience reduced production of short-chain fatty 
acids (SCFAs) due to changes in the gut microbiota (Badal et al., 2020). 
SCFAs play essential roles in maintaining gut health, immune function, 
and metabolism. The decline in SCFAs production may contribute to 
age-related immune dysregulation and increases susceptibility to 
infections and chronic diseases (Buford, 2017).

There are other factors that may impact gut-brain interactions in 
aging, such as apolipoprotein E (APOE) variance, diet, body mass index 
(BMI), obesity, and diabetes. Individuals with APOE ε4 alleles (APOE4) 
display altered brain function, such as reduced amyloid-beta clearance 
(Castellano et al., 2011) and increased inflammation (Shi et al., 2017). 
Recent studies show connections between the APOE4 genotype and 
gut microbiome composition, with APOE4 carriers exhibiting 
increased pro-inflammatory microbes (Hoffman et al., 2019; Tran et al., 
2019; Parikh et  al., 2020; Yanckello et  al., 2022b). Diet, BMI, and 
diabetes all have significant impacts on brain function and the gut 
microbiome (Asadi et al., 2022; Wachsmuth et al., 2022). A diet high in 
sugar and saturated fat can contribute to inflammation in the brain, 
impairing cognitive function and increasing the risk of dementia 
(Gómez-Pinilla, 2008). Additionally, obesity and diabetes are associated 
with decreased cognitive performance, and an altered gut microbiome, 
which can contribute to inflammation and neurodegenerative diseases 
(Arnoldussen et al., 2014; Gomes et al., 2014).

While there is growing evidence to support a link between the gut 
microbiome and brain health in aging, the specific associations between 
microbiome composition, brain imaging features, APOE genotype, 
BMI, diabetes, and dietary intake remain unclear. To shed light on these 
relationships, we  performed an analysis of 30 community-swelling 
older adults. Our study aims to establish a foundation for understanding 
how gut microbes are associated with brain health. These findings could 
have important implications for developing precision nutrition 
interventions to optimize healthy brain aging older adults.

Materials and methods

Participants

We recruited participants for this study in Kentucky, United States. 
The inclusion criteria for the study required that participants be between 
age 55–85. Exclusion criteria required that participants not have an acute 
disease of chronic, clinically significant (unresolved, requiring on-going 
medical management or medication) pulmonary, gastrointestinal, 
dermatologic, hepatic, or renal functional abnormality. Participants were 
required to not have had cancer or a positive test for HIV, HBV, or 
HCV. Participants were required to not be immunosuppressed or have 
had major surgery of the GI tract in the past 5 years. Participants also had 
to be MRI compatible. The sample size was determined based on the 
relative abundance comparisons of the gut microbiome with the highly 
specific species level resolution provided by whole genome sequencing 
technology. With alpha = 0.05, a sample size of 30 and continuous 
variables, we will have 80% power to detect Pearson correlation coefficient 
ρ of 50% or more. Although the pandemic has imposed challenges for 
recruitment and retention, especially for the aging population, we were 
able to complete the study with 30 participants by taking into consideration 
the population distribution of Kentucky – 85.08% White Non-Hispanic 
and 7.88% Black or African American Non-Hispanic (Source: US Census 
2017 5-Year American Community Survey). Participants were recruited 
through researchmatch.org and from advertisements posted by the Center 
for Clinical and Translational Science at the University of Kentucky. 
Table  1 describes the major demographic characteristics of our 
participants known to influence brain aging, with a mean age of 65.7 years, 
17.23 years of education, and BMI of 26.95 kg/m2. Our population was 
83.33% female, 90% white, 10% had diabetes, 43.33% had hypertension, 
and 30% had hyperlipidemia. 53% were genotype APOE ε3/ε3, 33% were 
ε4 carriers, and 13% were ε2 carriers. Participants were required to not all 
research activities were monitored by the Institutional Review Board at the 
University of Kentucky.

Study design

Each individual received a verbal and written explanation of the 
purposes, procedures, and potential hazards of the study, and written 
consent was obtained. Study personnel consented subjects using the 
University of California, San Diego Brief Assessment of Capacity to 
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Consent (UBACC) to ensure capacity. Signed consent was obtained 
before definite enrollment of the subject in this study. Following consent, 
we obtained past medical history from the electronic health record and 
questionnaires. These data were used solely for research purposes. 
Variables including age, gender, racial/ethnic background, education level, 
Body Mass Index, history of conventional vascular risk factors 
(hypertension, diabetes mellitus, atrial fibrillation, hyperlipoproteinemia, 
and smoking habit), pre-stroke therapy, and acute treatment (i.e., oral 
anticoagulants, antiplatelet agents, tPA, IV thrombolysis and/or 
mechanical thrombectomy, and/or antibiotics) were recorded and used 
as covariates for our analyses.

Stool sample collection and analysis

Stool samples were collected in Zymo DNA stabilization solution 
with Sarstedt feces tubes from feces catcher placed on toilet seat. 
Genomic DNA was extracted from 0.25 grams of stool using 
ZymoBIOMICS™ DNA Mini Kit and shipped to the Genomics and 
Microbiome Core Facility (GMCF) at Rush University. Shotgun 
metagenome libraries were constructed using an Illumina DNA prep kit 
according to the manufacturer’s instructions. Deep sequencing of 
libraries was performed on an Illumina NovaSeq6000 instrument, using 
paired end 2 × 150 base sequencing reads. Unassembled sequencing 
reads were analyzed by the Research Informatics Core at the University 
of Illinois Chicago for microbiome analysis. We  used MetaPhlAn 
(Metagenomic Phylogenetic Analysis) to profile the composition of 
microbial communities using unique clade-specific marker genes 
identified from ~17,000 reference genomes (~13,500 bacterial and 
archaeal, ~3,500 viral, and ~ 110 eukaryotic) (Beghini et al., 2021).

Diet analysis

We assessed diet history using the Dietary Screener 
Questionnaire in the National Health and Nutrition Examination 
Survey (DSQ) (NHANES 2009-10). DSQ was used to measure 
dietary intake over the last month to include estimated intake of 
fiber, calcium, whole grains, sugar, dairy, fruits and vegetables, 
and sugar sweetened beverages.

APOE genotyping

We collected oral swabs from all participants and placed them in 
Zymo DNA stabilization solution. We  sent the oral swabs to the 
Research Informatics Core at the University of Illinois Chicago for 
DNA extraction and amplification. The Core performed PCR to 
amplify and measure SNPs rs429358 and rs7412 that define the 
common allelic variants of Apolipoprotein E.

Imaging acquisition

MRI images were collected from all participants on a 3 T Prisma 
MR scanner (Siemens, Germany) at UK’s Magnetic Resonance 
Imaging & Spectroscopy Center.

Structural imaging
High-resolution, 3D anatomic images were acquired using an 

MP-RAGE sequence [repetition time (TR) = 2,530 ms, echo time 
(TE) = 2.26 ms, flip angle (FA) = 7°, 1 mm isotropic voxels, 6:19 min]. 
We  used the FreeSurfer Software Suite to segment and quantify 
brain volumes.

Magnetic resonance spectroscopy
Brain metabolites were measured with a chemical shift imaging 

(CSI) sequence that incorporates localization by adiabatic selective 
refocusing (LASER) for FOV-reduction (McNab and Bartha, 2006). 
Semi-laser sequence [TR = 1700 ms and TE = 40 ms]. All MRS slices 
were placed parallel to the anterior commissure-posterior commissure 
line. The volume of interest was centered to the medial to posterior 
part of the corpus callosum, with VOI = 80 (l-r) × 80 (a-p) and field of 
view (FOV) = 160 × 160 mm3. The acquired matrix size was 
10 × 10 × 15 mm. Two voxels that contained pure white matter were 
selected from each participant and averaged for analysis. Spectra were 
calculated using LCModel Software (Provencher, 1993) to determine 
the concentration of brain metabolites.

Arterial spin labeling
Quantitative CBF (with units of mL/g per minute) was measured 

using a pulsed arterial spin labeling (PASL) PICORE Q2T sequence 
with a TR = 4,400 ms and a TE = 20.8 ms. We used FreeSurfer software 
to process relative cerebral blood flow (relCBF) data produced by the 
Siemens scanner.1 The automated software provides relCBF averages 
over the FreeSurferColorLUT.txt set of ROIs.

Diffusion tensor imaging
White matter integrity was measured using an axial double 

refocused spin echo, echo planar imaging (Yang et al., 2015) Diffusion 
Tensor Imaging (DTI) sequence with the following parameters: 
TR = 3,400 ms, TE = 71 ms, field of view = 232 mm, 81 slices, 2 mm 
isotropic resolution. The DTI images were acquired with 128 
noncollinear encoding directions (b  =  2000 s/mm2) and 6 images 
without diffusion weighting (b = 0 s/mm2, b0). DTI data were analyzed 
with FSL (Functional MRI of the Brain software library, FMRIB) to 
calculate fractional anisotropy (FA) values.

1 https://surfer.nmr.mgh.harvard.edu/fswiki/RcbfProc

TABLE 1 Participant characteristics.

Participants N =  30

Age 65.7 ± 5.79

Sex (% Female) 83.33%

Race (% White) 90.00%

 (% Black) 6.67%

 (% Asian) 3.33%

Genotype (% APOE ε3/ε3) 53.33%

 (% APOE ε3/ε4) 30.00%

 (% APOE ε4/ε4) 3.33%

 (% APOE ε2/ε3) 13.33%

Education 17.23 ± 1.80

BMI 26.95 ± 5.36

Diabetes 10.00%

Hypertension 43.33%

Hyperlipidemia 30.00%
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FIGURE 1

Microbial taxa associated with demographic features. The Apolipoprotein E (APOE) ε2 genotype was associated with lower (A) Eubacterium eligens, 
(B) the genus Oscillibacter, and (C) Faecalibacterium prausnitzii and higher (D) genus Lachnoclostridium. The APOE ε4 genotype was associated with 
lower (E) genus Roseburia and (F) Holdemania filiformis. Obesity was associated with higher (G) Bacteroides dorei and lower (H) Akkermansia 
muciniphila. Diabetes was associated with higher (I) Escherichia coli (E. coli). Hypertension was associated with lower (J) genus Phascolarctobacterium.

Statistical analyses

All statistical analyses were completed using JMP Statistical Software 
(SAS, Cary, NC, USA) and R Statistical Software (R Core Team, 2020). 
Relative abundance comparisons were utilized to provide detailed 
analyses of the samples concordant with the highly specific species level 
resolution provided by whole genome sequencing technology. Shapiro-
Wilks testing revealed that there were no significant departures from 
normality. For all comparisons, Two-sample t-test and two-way ANOVA 
were used to determine differences between groups with a continuous 
response. The MaAsLin2 R Package was used to normalize all variables 
and employ linear regression analysis to associate various variables with 
microbiome measures (Mallick et al., 2021). A false discovery rate (FDR) 
of q < 0.25 was used as part of our exploratory approach of identifying 
differentially abundant microbial features due to a small dataset. With 
alpha = 0.05, a sample size of 30 and continuous variables, we will have 
80% power to detect Pearson correlation coefficient ρ of 50% or more.

Results

Gut microbiome associations with APOE 
genotype, BMI, diabetes, and hypertension

We detected significant associations between gut microbial 
community structure with APOE genotype, BMI, diabetes, and 
hypertension in our community dwelling older adult cohort. The relative 
abundance of bacterial species from the phylum Firmicutes, including 

Eubacterium eligens (Figure  1A), Oscillibacter (Figure  1B), and 
Faecalibacterium prausnitzii (Figure 1C), were all lower in the APOE ε2/
ε3 (APOE2 carriers) genotype and that of the genus Lachnoclostridium 
was higher (Figure 1D). In the APOE ε3/ε4 (APOE4 carriers) genotype, 
the relative abundance of Roseburia (Figure 1E) and Holdemania filiformis 
(Figure 1F), both from the phylum Firmicutes, was lower. The relative 
abundance of Bacteroides dorei (phylum Bacteroidetes) was higher 
(Figure  1G), while that of Akkermansia muciniphila (phylum 
Verrucomicrobia) was lower in obesity (Figure  1H). The relative 
abundance of Escherichia coli (E. coli; phylum Proteobacteria) was higher 
in participants with diabetes (Figure  1I). The relative abundance of 
Phascolarctobacterium (phylum Firmicutes) was lower in participants with 
hypertension (Figure 1J).

Gut microbiome associations with calcium 
and vegetable intake

We measured dietary intake over the previous month using the 
Dietary Screener Questionnaires (DSQ) in the National Health and 
Nutrition Examination Survey (NHANES) 2009-10. While there were 
no significant associations with fiber, whole grain, added sugar, dairy, 
significant associations existed with calcium intake and fruit and 
vegetable intake. An increased intake of calcium was associated a 
higher relative abundance of Bifidobacterium adolescentis, Eubacterium 
eligens, the family Acidaminococcaceae, and Haemophilus 
parainfluenzae (Figures 2A–D) and a lower abundance of Clostridium 
asparagiforme, Eubacterium ventriosum, and Sellimonas intestinalis 
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(Figures  2E–G). An increased intake of vegetable was positively 
associated Agathobaculum butyriciproducens (Figure  2H), and 
negatively associated with Eggerthella lenta (Figure 2I).

Gut microbiome associations with brain 
volume

The relative abundance of Bacteroides ovatus was positively 
associated with the thalamus volume (Figure  3A) and that of 
Bacteroides uniformis was negatively associated with white matter 
hypointensities (Figure 3B). The relative abundance of bacteria from 
the family Acidaminococcaceae was positively associated the volume 
of the mid posterior portion of the corpus callosum (Figure 3C).

Gut microbiome associations with brain 
metabolites in white matter

The relative abundance Collinsella aerofaciens (q  < 0.05) was 
negatively associated with gamma-aminobutyric acid (GABA) 

(Figure 3D) and that of Parasutterella excrementihominis was positively 
correlated with GABA (Figure 3E). The relative abundance of Alistipes 
putredinis and that of the family Acidaminococcaceae were positively 
correlated with glycerophosphocholine (GPC) (Figures  3F,G). The 
relative abundance of Ruminococcus lactaris was positively correlated 
with N-acetylaspartate and N-acetylaspartylglutamate (NAA + NAAG) 
(Figure 3H).

Equol producers associated with white 
matter integrity (WMI)

Several taxa from the Actinobacteria were correlated with white 
matter integrity. These included the family Eggerthellaceae (Figure 4A), 
which was positively correlated with white matter tracts in the middle 
cerebellar peduncle and the left external capsule, which contains 
corticocortical association fibers. Specifically, the relative abundance 
of Gordonibacter pamelaeae (Figures 4B–E), Asaccharobacter celatus 
(Figure  4F), and Adlercreutzia equolifaciens (Figures  4G–I), were 
positively correlated with several tracts that connects brain regions 
responsible for language function and the limbic system. In the 

FIGURE 2

Microbial taxa associations with dietary calcium and vegetable intakes. Calcium intake is positively associated with (A) Bifidobacterium adolescentis, 
(B) Eubacterium eligens, (C) family Acidaminococcaceae, and (D) Haemophilus parainfluenzae, but negatively associated with (E) Clostridium 
asparagiforme, (F) Eubacterium ventriosum, and (G) Sellimonas intestinalis. Vegetable intake is positively associated with (H) Agathobaculum 
butyriciproducens, but negatively associated with (I) Eggerthella lenta.
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FIGURE 3

Microbial taxa associations with structural imaging and brain metabolites in the white matter of the corpus callosum. (A) The thalamus volume is 
positively associated with Bacteroides ovatus abundance. (B) White Matter (WM) hypointensities are positively associated with Bacteroides uniformis 
abundance. (C) The volume of the mid-posterior portion of the corpus callosum (CC_Mid_Posterior) is positively associated with the family 
Acidaminococcaceae abundance. (D) Gamma-aminobutyric acid (GABA) is negatively associated with the genus Collinsella and (E) positively 
associated with Parasutterella excrementihominis. (F) Glycerophosphorylcholine (GPC) is positively associated with Alistipes putredinis and (G) the 
family Acidaminococcaceae. (H) N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) are positively associated with Ruminococcus lactaris.

Bacteroidetes phylum, the relative abundance of Coprobacter 
fastidiosus was negatively correlated with the superior longitudinal 
fasciculus and that of Bacteroides uniformis was positively correlated 
with the tapetum. The Firmicutes phylum has several taxa that were 
positively correlated with white matter tracts, including Clostridium 
innocuum (Figure  5A), the genus Lactobacillus (Figure  5B), 
Lachnospira pectinoschiza (Figure  5C), Roseburia hominis 
(Figures 5D,E).

Gut microbiome association with cerebral 
blood flow (CBF)

Table 2 shows the microbial taxa that were associated with CBF in 
various brain regions. The relative abundance of Collinsella stercoris, 
a bile-acid conjugator (Doden et al., 2021), was positively correlated 
with brain regions related language function and the limbic system, 
such as temporal cortex. The relative abundance of bacteria from the 
genus, part of the Bacteroidetes phylum and related to altered 
dopamine signaling through its synthetization of GABA (Strandwitz 
et al., 2019; Kramer et al., 2020), were negatively correlated with CBF 
in the basal ganglia regions and hippocampal regions, both implicated 
in learning and memory. In addition, the relative abundance of 
sulfate-reducing bacteria from the family Desulfovibrionaceae, known 
for inducing inflammatory responses and promoting atherosclerotic 
plaque formation, were negatively correlated with CBF in memory 
and learning areas.

Discussion

We conducted a study on the gut microbiome of 30 older adults 
who reside in the community. Figure 6 presents a summary of our 
findings, which indicate a strong association between microbiome 

composition in this group and several factors including APOE 
genotype, BMI, obesity, and diabetes, as well as brain imaging markers 
obtained from brain volume, CBF, metabolites, and WMI. Our 
analysis reveals that APOE2 and APOE4 carriers had a very distinctive 
microbiota composition are consistent with a number of studies 
examining gut microbiome in murine models (Weng et  al., 2019; 
Parikh et al., 2020; Zajac et al., 2022). Specifically, the APOE4 genotype 
had relatively lower abundance of Roseburia, but higher in 
Eubacterium eligens and Faecalibacterium prausnitzii. On the other 
hand, the APOE2 genotype had higher levels of Lachnoclostridium 
species and lower levels of Eubacterium eligens, Oscillibacter, and 
Faecalibacterium prausnitzii (Chung et al., 2017). Roseburia, a well-
known butyrate producer that is associated with a decreased risk of 
cognitive decline, was found to be decreased in the APOE4 genotype 
(Jin et al., 2021). This is an interesting finding as APOE2 is protective 
against Alzheimer’s disease (AD) while APOE4 increase the risk 
(Yamazaki et al., 2019).

While the functions of some species identified between 
APOE2 and APOE4 carriers in this study still need to be explored, 
our results align with existing literature, suggesting that APOE 
variants may shape the structure of the gut microbiome (Weng 
et al., 2019; Parikh et al., 2020; Zajac et al., 2022). In earlier work, 
we demonstrated that asymptomatic APOE4 carriers experience 
more pronounced gut dysbiosis than non-carriers, including those 
with APOE e3 alleles (APOE3), and prebiotic diet may mitigate 
the risk for AD by reducing the gut dysbiosis in the APOE4 mice 
(Hoffman et al., 2019; Yanckello et al., 2021). Other research has 
shown associations between APOE genotype differences and 
significant variations in the relative abundance of families like 
Prevotellaceae and Ruminococcaceae, as well as several butyrate-
producing genera (Tran et al., 2019). A recent investigation even 
revealed that disruptions in gut microbiome composition can 
modify immune pathways, leading to the tauopathy underlying 
Alzheimer’s disease in an APOE genotype-dependent manner 
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(Seo et  al., 2023). These insights suggest that microbiome 
composition and diversity may play a substantial role in AD 
development, influenced by variations in APOE genetics. Moving 
forward, future studies should delve deeper into the differential 
effects of APOE-genotype dependent variations in the microbiome.

We found that obesity was inversely associated with Akkermansia 
muciniphila, which has previously been found to be  decreased in 
obesity and is believed to be protective against metabolic disorders 
through its excretion of endocannabinoids that control inflammation, 
gut barrier function, and gut peptide secretion (Everard et al., 2013). 
Further, proinflammatory state was associated with higher BMI and 
diabetes. Diabetes was associated with increased levels of E. coli and 
Parabacteroides goldsteinii. While E. coli is a normal commensal gut 
bacteria, it has many pathologic variants that can cause disease 
(Leimbach et  al., 2013), and increases in infectious E. coli have 
previously been reported in diabetes (Suri et al., 2009) and diabetes-
related neurological disorders, such as stroke (Hammond et  al., 
2022a,b).

Our findings suggest that a healthy diet is strongly associated 
with a microbiota that produces SCFAs, leading to an anti-
inflammatory state. We used the Dietary Screener Questionnaire 
from the National Health and Nutrition Examination Survey to 
measure effects of the diet on the microbiome. Interestingly, 
we observed an inverse relationship between calcium and Clostridium 

asparagiforme, a species that has been found to be reduced in smokers 
with hypertension (Wang et al., 2021). Conversely, we found that 
calcium was positively associated with Acidaminococcaceae, 
Phascolarctobacterium and Eubacterium eligens. The former two taxa 
are known to produce SCFAs (Wu et al., 2017), while Eubacterium 
eligens has anti-inflammatory effects on the host (Chung et al., 2017). 
Although the precise mechanisms underlying the effects of calcium 
on these microbial taxa remain unknown, previous research has 
shown that a high calcium diet increases Firmicutes species and levels 
of lactic, acetic, and butyric acid (Fuhren et  al., 2021). We  also 
observed a positive relationship between vegetable intake and 
Agathobaculum butyriciproducens, a butyrate producer, which has 
been shown to improve performance in behavioral tests, decrease Aβ 
plaque deposition and microglial activation APP/PS1 transgenic 
mice (Go et al., 2021). A negative effect with Eggerthella lenta, an 
infectious species, was found in our data (Gardiner et al., 2015; Go 
et al., 2021). It is interesting that fiber, whole grains, added sugars, 
dairy, and fruit intake did not have any significant associations with 
the microbial taxa in our data. Many studies have highlighted the 
beneficial effects of a vegetarian diet on the microbiome by limiting 
the abundance of inflammatory species and promoting SCFA-
producing species (Tang et  al., 2019; Sakkas et  al., 2020). Other 
studies have investigated the effects of Western, Mediterranean, 
vegetarian, high carbohydrate, high fat, whole food, ultra-processed, 

FIGURE 4

Species from the Eggerthellaceae family are positively correlated with white matter integrity (WMI) in language, memory, and limbic brain circuits. 
Eggerthellaceae spp. are positively associated with WMI in (A) the external capsule, (B) the middle cerebellar peduncle, (C) the corticospinal tract, 
(D) the tapetum, (E) the pontine crossing tract, (F,G) corticospinal tracts, (H) the fornix, and (I) the inferior fronto-occipital fasciculus.
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and low-calorie sweetener diets on the microbiome (Dahl et  al., 
2020). Specific Dietary effects on the microbiome should be explored 
in future studies.

The results also imply that strengthening the immune barriers of 
the gut were associated with the volume of brain structures related to 
processing high levels of information. Bacteroides ovatus is related to 
the thalamus volume. The thalamus is an important relay station in 
the brain that communicates information from the spinal cord and 
cerebellum to the cerebral cortex (Sherman, 2007). Bacteroides ovatus 
is a commensal microbe that uses various carbohydrates and proteins 
as its fuel source (Fultz et al., 2021), is a prominent inducer of IgA 
(Yang et  al., 2020), and promotes the reparative cytokine IL-22 
(Ihekweazu et  al., 2021), thereby stimulating epithelial recovery 
(Ihekweazu et al., 2019). The family Acidaminococcaceae is related to 
the volume of the mid posterior portion of the corpus callosum. The 
region is responsible for connecting portions of the parietal and 
temporal cortices on each side of the brain. This is consistent with a 
previous finding that Acidaminococcaceae is associated with memory 
performance (Khine et al., 2020).

Our results also indicated that microbiota associated with SCFAs 
production are highly associated with less vascular disease in the 
brain. Bacteroides uniformis correlates inversely with white matter 
hypointensities (WMH), which are a marker of vascular disease in the 
brain (Graff-Radford et  al., 2019) and are often associated with 
cognitive impairment (Hu et al., 2021). Bacteroides uniformis prefers 
wheat bran extract as a fuel source and is a butyrate producer; it 
strengthens the first line of immune defense against unhealthy diets 
(Lopez-Almela et al., 2021) and improves glucose tolerance (Fabersani 
et al., 2021). This microbe has also been associated with increased 
dopamine transporters (Hartstra et al., 2020) and normalizing the 
brain reward response to reduce anxiety in rats (Agusti et al., 2021). 
Interestingly, the microbiota-derived phenylacetylglutamine has 
previously been associated with the amount of WMH in the brain (Yu 
et al., 2021).

Our data also suggests that gut microbiota that produce GABA, 
the main inhibitory neurotransmitter in the brain (Petroff, 2002), are 
highly associated with the amount of GABA present in the corpus 
callosum. Collinsella aerofaciens is negatively associated with GABA 

FIGURE 5

Notable microbial taxa associations with white matter integrity (WMI) in limbic and memory regions. (A) Clostridium innocuum is positively associated 
with WMI in the corticospinal tract. (B) The genus Lactobacillus is positively associated with WMI in the medial lemniscus. (C) Lachnospira 
pectinoschiza is positively associated with WMI in the medial lemniscus. Roseburia hominis is positively associated with WMI in (D) the cingulum and 
(E) the inferior fronto-occipital fasciculus.

TABLE 2 Microbial taxa associated with Cerebral Blood Flow (CBF).

Microbial taxa Taxa key characteristics Perfusion imaging feature Coef Q value

Collinsella stercoris Bile-acid conjugator

Right banks of superior temporal sulcus 0.460 0.00409

Total middle temporal cortex 0.340 0.1678

Left pars triangularis 0.327 0.09401

Left transverse temporal 0.339 0.2098

Genus Parabacteroides Alter dopamine signaling Right hippocampus −0.753 0.00210

Family Desulfovibrionaceae Inflammation inducer Right entorhinal cortex −0.449 0.1875
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production, and Parasutterella excrementihominis is positively 
associated with GABA production. Collinsella aerofaciens is an 
obligate anaerobe (Bag et  al., 2017; Qin et  al., 2019) and a 
proinflammatory species associated with Crohn’s disease (Joossens 
et  al., 2011; Kalinkovich and Livshits, 2019). Parasutterella 
excrementihominis is strictly anaerobic (Nagai et al., 2009) and has 
been associated with impaired GI health (Fart et al., 2020). While 
Collinsella aerofaciens and Parasutterella excrementihominis have not 
previously been identified as GABA producers or consumers, 
Bacteroides has been identified as a dominant GABA producer and 
Pseudomonas as a prominent GABA consumer (Strandwitz 
et al., 2019).

It was observed that microbial species Ruminococcus lactaris, a 
producer of SCFAs, is associated with the brain metabolites related to 
mitochondrial function and cognition. NAA correlates with neuronal 
mitochondrial function and survival (Paslakis et al., 2014), and NAAG 
has procognitive properties (Neale and Olszewski, 2019). 
Ruminococcus lactaris is a butyrate producer (Sato et al., 2021) and is 
negatively correlated with the inflammatory cytokine IL-8 (Shintouo 
et al., 2020). A previous group found a link between Ruminococcus 
and NAA thought to be  mediated by Ruminococcus decreasing 
cortisol, which impacts brain NAA (Mudd et al., 2017).

Our analysis indicates a positive correlation between Collinsella 
stercoris, a producer for conjugated bile acid, with CBF. Previous 
research has shown that the conjugated bile acid Tauroursodeoxycholic 
acid (TUDCA) can alleviate early brain injury by reversing 
cerebrovascular dysfunction and ER-stress-mediated apoptosis (Chen 
et al., 2020). TUDCA was found to enhance neurological function and 
treated SAH-related cerebrovascular dysfunction by increasing 
cerebral cortical perfusion and decreasing blood–brain barrier 
permeability. These reports are in line with our findings that presence 
of Collinsella stercoris may be  beneficial for maintaining 
CBF. We further showed that microbiota related to equol producers 
are highly associated with WMI that connecting brain regions 
associated with language and memory. The superior temporal sulcus 
is commonly referred to as Wernicke’s area and is a central area for 
speech recognition and processing (Nourski et al., 2021). The left pars 
triangularis is commonly referred to as Broca’s area and is a central 
area for speech production (Foundas et al., 1996) Members of the 
family Eggerthellaceae are able to convert the isoflavone daidzein (a 
soy product) into equol, an estrogen (Soukup et al., 2021). Specific 
members of this family, including Adlercreutzia equolifaciens, 
Asaccharobacter celatus, and Gordonibacter pamelaeae all have 
negative associations with these same areas responsible for language 

FIGURE 6

The relationship of gut microorganisms to various disease variables and brain function: Microbiome in aging is associated with (Left) APOE genotype, 
calcium intake, vegetable intake, diabetes, and obesity, as well as with (Right) brain imaging makers, including brain volume, brain metabolites, cerebral 
blood flow, and white matter integrity.
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circuits, in addition to areas of the brain responsible for memory, 
learning, and reward processing. Equol supplementation has been 
shown to improve long and short-term memory in rats by increasing 
brain antioxidant activity and improving blood pressure (Liu and Tsai, 
2016; Caliskan et al., 2021).

Collectively, the findings in the present study indicated that 
microbiome composition in aging may play an important role in 
determining brain metabolism and integrity, and APOE status 
could also be a key player. This is in line with studies showing that 
metabolism may play a more critical role in driving 
neurodegeneration than amyloid beta plaques and tau tangles in 
the progression of Alzheimer’s disease (AD) (Hammond et  al., 
2020; Hammond and Lin, 2022), and that APOE4 carriers and 
non-carriers develop AD through different metabolic pathways 
(Hammond et al., 2021). Therefore, it will be critical for to identify 
interventions that can promote healthy microbiome in aging, 
taking into consideration of APOE genotype, to protect brain 
function in aging and potentially mitigate AD risk for APOE4 
carriers. This is in good agreement with our recent studies showing 
that supplementing a diet with the prebiotic inulin, a fermentable 
prebiotic fiber, can positively impact gut microbiome composition, 
boost the production of SCFAs, enhance mitochondrial function, 
and decrease neuroinflammation in young, asymptomatic APOE4 
mice (Hoffman et  al., 2019). Our results also demonstrate that 
these effects of dietary inulin supplementation revealed an APOE 
genotype-dependent response (Yanckello et  al., 2021). These 
findings are also consistent with what we observed in the current 
study that higher fiber (vegetable) intake can improve microbiome 
in aging. Our study further provides other potential interventions 
in the future, such as equol or butyrate supplementation, as well as 
probiotic interventions with butyrate and equol producers like 
Roseburia, which have shown promise as easily implemented, 
inexpensive tools to optimize healthy brain aging.

While this study provides further understanding between gut 
microbiome and brain health in the aging population, it has many 
limitations. The observational nature of this study helps us to make 
many associations between gut bacteria and markers of brain health 
on imaging, but we are unable to determine causation. Additionally, 
due to the pandemic, we were only able to recruit 30 participants for 
the study. The relatively small sample size for a human study with a 
heterogeneous population potentially leaves the study underpowered 
to detect smaller associations and changes in the microbiome. Future 
work should utilize a larger sample size to allow adjusting for potential 
confounders and to identify which demographic factors (e.g., BMI, 
gender, age, APOE genotype) most strongly associate with the 
composition of the microbiome. Future work should investigate the 
long-term nature of the gut microbiome in this population. Future 
studies can also further include other more advanced MRI methods 
to measure brain oxygen metabolism or perivascular space, which will 
provide further insight for brain metabolism and inflammation, 
respectively (Lin et  al., 2008, 2010; Feldman et  al., 2018; Langan 
et al., 2022).

In summary, we  demonstrated the significant correlations of 
microbiome in older adults with their brain imaging markers, APOE 
genotypes, calcium intake, vegetable intakes, diabetes, and obesity. The 
findings could have important implications in the future for promoting 
brain health through microbiome modulation and developing 
precision nutrition interventions to optimize healthy brain aging 
older adults.
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