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Chronic cerebral ischemia (CCI), a condition that can result in headaches,

dizziness, cognitive decline, and stroke, is caused by a sustained decrease

in cerebral blood flow. Statistics show that 70% of patients with CCI are

aged > 80 years and approximately 30% are 45–50 years. The incidence of

CCI tends to be lower, and treatment for CCI is urgent. Studies have confirmed

that CCI can activate the corresponding mechanisms that lead to mitochondrial

dysfunction, which, in turn, can induce mitophagy to maintain mitochondrial

homeostasis. Simultaneously, mitochondrial dysfunction can aggravate the

insufficient energy supply to cells and various diseases caused by CCI. Regulation

of mitophagy has become a promising therapeutic target for the treatment of

CCI. This article reviews the latest progress in the important role of mitophagy

in CCI and discusses the induction pathways of mitophagy in CCI, including

ATP synthesis disorder, oxidative stress injury, induction of reactive oxygen

species, and Ca2+ homeostasis disorder, as well as the role of drugs in CCI by

regulating mitophagy.
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1. Introduction

Chronic cerebral ischemia (CCI) is considered low-efficiency functional congestion
caused by long-term vascular disease or circulatory disorders. It plays a crucial role in
cerebrovascular and neurodegenerative diseases and can lead to diseases such as vascular
dementia (VD) and Alzheimer’s disease (AD) (Gao, 2018; Ciacciarelli et al., 2020; Li et al.,
2022). Studies have shown that symptoms such as headache and dizziness caused by CCI
are reversible when cerebral blood supply insufficiency is relieved (Calabrese et al., 2016).
Active secondary prevention can reduce ischemic stroke recurrence by approximately 80%

Abbreviations: ERK, extracellular regulated protein kinases; CCI, chronic cerebral ischemia; VD,
vascular dementia; AD, Alzheimer’s disease; AMPK, AMP-activated protein kinase; MPTP, mitochondrial
permeability transition pore; ROS, reactive oxygen species; Cyt c, cytochrome c; mTOR, mammalian
target of rapamycin; NF-κB, nuclear factor-kappaB; JNK, jun-terminal kinase; mCU, mitochondrial
calcium uniporter; VDAC, voltage-dependent anion channel; PPAR, peroxisome proliferator-activated
receptor; PGC-1α, PPAR-γ coactivator 1α; NRF, nuclear respiratory factor; TFAM, mitochondrial
transcription factor A; NAD, nicotinamide adenine dinucleotide; GABAB, γ-aminobutyric acid B receptor;
mitoKATP, mitochondrial membrane ATP-sensitive potassium channel; CIHH, chronic intermittent
hypobaric hypoxia; DND, delay neuronal death; 2VO, bilateral common carotid arteries occlusion; FMT,
fecal microbiota transplantation; SCFAs, short-chain fatty acids; ETC, electron transport chain; BNIP3L,
BCL/adenovirus E1B interacting protein 3-like; SOD, superoxide dismutase; ECS, endocannabinoid
system; WIN, WIN55212-2.
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(Hankey, 2014). In contrast, the risk of acute stroke, vascular
cognitive impairment, and dementia increases if the ongoing
decline in cerebral blood flow is not corrected in a timely manner
(Liao et al., 2016; Rajeev et al., 2022). According to the Global
Burden of Disease (2020) statistical report, the incidence of
ischemic stroke worldwide accounted for 64.8%, with a prevalence
of 76.5%.

In addition to serving, as a source of bioenergy, mitochondria
directly regulate programmed cell death (Kislin et al., 2017).
Mitochondrial damage has been reported as a pathological
mechanism leading to ischemic neuronal death (Anzell et al., 2018).
Autophagy, an intracellular lysosomal degradation pathway, can be
classified into canonical and non-canonical pathways. Autophagy
processes have been shown to include autophagosome induction
and formation and autophagic flux (Xie and Klionsky, 2007).
Autophagic flux consists of autophagosome trafficking and fusion
with lysosomes to form autophagolysosomes, in which autophagic
contents are broken down (Xie and Klionsky, 2007). Mitophagy is
the process of targeting damaged or dysfunctional mitochondria
and delivering them to lysosomes for degradation, complete self-
renewal, and maintaining homeostasis (Pickles et al., 2018). Several
CCI-induced neurodegenerative diseases, including VD and AD,
are significantly influenced by mitophagy (Arun et al., 2016).
Mitochondrial autophagy has a dual function. Its negative effect is
the induction of neuronal death (cytodestructive autophagy), while
its protective function is to prevent the accumulation of damaged
mitochondria (cytoprotective autophagy) (Zhang et al., 2021). If
its protective properties can be used effectively, the regulation of
mitochondrial autophagy may be a valuable therapeutic target.
However, compared to research on the mechanism of mitophagy
in acute cerebral ischemia, insufficient research has been conducted
on this mechanism in CCI nationally and internationally (Nguyen
et al., 2018; Wang et al., 2021; Li et al., 2023). In light of these
circumstances, this study aimed to explore the mechanism of
mitophagy and its function in CCI and to offer new suggestions for
clinical management.

2. Induction pathway of mitophagy
after chronic cerebral ischemia

The brain uses more oxygen than any other organ and is
highly metabolically active. Although it makes up only 2% of the
human body by weight, brain tissue delivers 25% of the glucose and
approximately 20% of the oxygen required by the body (Siwicka-
Gieroba et al., 2022). Brief periods of ischemia and hypoxia can
seriously harm the brain. Mitochondria play a crucial role in
cellular energy stations such as ATP production, reactive oxygen
species production, Ca2+ homeostasis, and apoptosis (Tang et al.,
2016). A detailed diagram of this mechanism is shown in Figure 1.
As a result, the normal physiological activities of brain cells are
closely related to the normal function of mitochondria.

2.1. ATP synthesis disorder

Metabolic disorders are believed to be the first causal factor
of CCI. Following cerebral ischemia, partial pressure of oxygen

in the brain decreases. Most aerobic oxidation pathways switch
to anaerobic glycolysis, and adenosine monophosphate-activated
protein kinase (AMPK) is activated. Active AMPK phosphorylates
multiple downstream substrate proteins, inhibits the biosynthetic
pathway of ATP consumption, and negatively regulates ATP
regeneration to restore cellular energy levels as much as possible
(Andjelkovic et al., 2019). However, as the duration of ischemia
increases, this negative feedback cannot compensate for the loss
of mitochondrial energy and downregulation of the expression of
proteases involved in oxidative phosphorylation complexes, such as
nicotinamide adenine dinucleotide dehydrogenase and cytochrome
oxidase, which reduce ATP synthesis (He et al., 2012).

2.2. Oxidative stress injury

Mitochondrial permeability transition pore (MPTP) is a non-
specific voltage-dependent special protein complex that crosses
the mitochondrial outer membrane and controls mitochondrial
permeability (Halestrap, 2009). In the physiological state, MPTP is
switched off. However, the MPTP is open during ischemia, which
is triggered by Ca2+ overload and elevated oxidative stress in
the mitochondrial matrix (Kushnareva and Sokolove, 2000; Zhao
et al., 2019). The opening of the MPTP leads to an increase in
mitochondrial permeability, which allows solutes such as water,
macromolecules, and ions to freely enter the mitochondrial matrix,
resulting in mitochondrial swelling, outer membrane rupture, and
the release of large amounts of reactive oxygen species (ROS)
(Krasnikov et al., 2005). In addition, increased mitochondrial
permeability also leads to the loss of membrane potential,
which in turn lowers cellular mitochondrial ATP levels, enhances
intracellular Ca2+ concentration, and activates the endogenous
apoptotic pathway, thereby inducing neuronal damage caused by
ischemia and hypoxia (Zorov et al., 2000; Broughton et al., 2009).

Nuclear respiratory factor 2 (Nrf2) is a key transcription factor
of antioxidants (Hannan et al., 2020). When cells undergo oxidative
stress, Nrf2 is activated, enters the nucleus, binds to promoters
of antioxidant response genes and promotes their transcription
and expression (Yen et al., 2016). These genes include superoxide
dismutase, glutathione peroxidase, and glutathione S-transferase,
which scavenge free radicals and other oxidative substances,
reducing damage from oxidative stress in cells (Yang et al., 2019).
URB597 alleviates ischemic cerebrovascular disease by activating
the Nrf2 pathway, reducing mitochondrial oxidative stress and
inflammation (Wang et al., 2022).

2.3. Induction of ROS

When entering equilibrium with the antioxidant system, ROS
cause minimal damage under typical circumstances (Takizawa
et al., 1998). However, after CCI, the activity of the respiratory
chain enzyme complex is inhibited, mitochondrial respiratory
dysfunction occurs, and excessive ROS (Yu et al., 2014).
Excessive ROS damage to proteins, mtDNA, and lipids leads
to apoptosis, neuroinflammation, and destruction of the blood-
brain barrier in the ischemic brain (Shirley et al., 2014). Excess
ROS levels induce apoptosis through lipid peroxidation. In
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FIGURE 1

Molecules causing mitochondrial autophagy after CCI and regulatory protective targets.

rats with cerebral ischemia, 4-hydroxyacetone, a by-product of
lipid peroxidation, increases and induces axonal damage and
oligodendrocyte apoptosis (Mccracken et al., 2000; Matsuda et al.,
2009). ROS can also lead to cell apoptosis by releasing cytochrome
c (Cyt c), improving mitochondrial permeability and activating
the NF-κB/MAPK/JNK pathway (Kim et al., 2006, 2010). In
particular, Cyt c is a soluble protein anchored to the inner
mitochondrial membrane, and upon release from mitochondria,

it triggers a cascade of apoptotic signaling, which typically peaks
after ischemia in Cyt c release (Hüttemann et al., 2011; Tajiri
et al., 2016). Mammalian target of rapamycin (mTOR) is an
important cell signal transduction pathway, which is involved
in the regulation of cell growth, metabolism and autophagy
(Saxton and Sabatini, 2017). Activation of mTOR signaling pathway
can inhibit ROS production. Ethidium bromide, for example,
induces mitochondrial clearance through the autophagy pathway
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(Luo et al., 2013). However, inhibition of mTOR with rapamycin
preserved mitochondrial membrane potential and reduced the
production of ROS (Nacarelli et al., 2014). In addition, sertraline is a
selective serotonin reuptake inhibitor (SSRI) that regulates AMPK-
mTOR signal-mediated autophagy by targeting the mitochondrial
voltage-dependent anion channels 1 protein (VDAC1) (Hwang
et al., 2021). To sum up, there is a complex interaction between
mTOR, ROS and mitophagy. Most importantly, Autophagy
is regulated in the nervous system by activating ROS and
mediating the Akt-mTOR signaling pathway (Gao et al., 2019;
Liu et al., 2019a,b).

2.4. Ca2+ homeostasis and
post-apoptotic induction

After CCI, cells are unable to maintain a negative membrane
potential due to the lack of ATP, and neuronal depolarization results
in an influx of calcium ions into the cell (Gouriou et al., 2011).
An excessive increase in calcium ion concentration activates the
mitochondrial calcium uniporter (mCU) in cells, which changes
mitochondrial permeability, impairs its ability to generate ATP, and
leads to the release of proapoptotic factors (Gouriou et al., 2011).
Preclinical research is currently being conducted on medications
that block mCU, such as Ru360 (García-Rivas et al., 2006).
Even partial inhibition of calcium uptake prevents mitochondrial
depolarization, the opening of large mitochondrial channels, and
cytochrome c release.

Hexokinase is a six-carbon sugar phosphorylase involved in
glycolysis, from which ATP is produced (Tan and Miyamoto,
2015). Furthermore, after CCI, the levels of VDAC, especially
VDAC1, have been found to decrease and the interaction between
VDAC1 and hexokinase has been reduced. These changes may
result in a reduction in ATP/ADP exchange and affect the
transport of small-molecule metabolites required for oxidative
phosphorylation to mitochondria, thus inhibiting respiration
and affecting mitochondrial energy supply and mitochondrial-
mediated apoptosis (He et al., 2012).

3. The role of mitophagy in CCI

The regulation of mitophagy has a wide range of potential
applications for the treatment of CCI and the defense of injured
brain tissue, as mitophagy mediates a number of signaling
pathways that play an important role in the disease. Reviewing
prior regulation of mitophagy signaling pathways and regulatory
variables has provided information on the study and development
of new medications. The mitochondrial autophagy pathway in CCI
is shown in Figure 2.

3.1. Parkin pathway

Mitophagy is initiated during neuronal apoptosis following CCI
through the BNIP3-Cyt c-related pathway and parkin-mediated
signaling (Su et al., 2018). After CCI induction, Parkin and BNIP3
expression increased, and Cyt c was released from the mitochondria

into the cytoplasm; however, the first two phenomena were
significantly attenuated after treatment with the autophagy
inhibitor 3-MA. Similarly, URB597 (an orally biocompatible
inhibitor of fatty acid amide hydrolase) treatment significantly
reversed the increase in Beclin-1, parkin, and BNIP3 protein
expression and the decrease in autophagy-related proteins after
CCI (Su et al., 2018). Autophagy consists of three major sequential
steps: sequestration, transport, and degradation (Mizushima, 2007).
During degradation, autophagosomes and their cargo are degraded
by lysosomal hydrolases, and lysosomal dysfunction can lead to
accumulation of autophagosomes (Mizushima et al., 2008). Some
researchers have argued that this accumulation should be treated
as an abnormally excessive form of autophagy (Su et al., 2018).
Further, the beneficial effects of URB597 on chronic ischemic brain
injury occur by inhibiting impaired autophagic degradation and
disruption of the Beclin-1/Bcl-2 complex, followed by severing
BNIP3-Cyt c and parkin-mediated mitophagy; this ultimately
prevents abnormal excessive autophagy and mitophagy (Su et al.,
2018).

3.2. Peroxisome proliferator-activated
receptor (PPAR) signaling pathway

The biological function of PPAR depends on the coactivation of
PPAR-γ coactivator 1α (PGC-1α) (Haemmerle et al., 2011). PGC-
1α is a master transcription factor in the regulation of antioxidant
enzymes, clearance systems, and mitochondrial biogenesis
(Kaarniranta et al., 2020). Once activated by phosphorylation or
deacetylation, PGC-1α activates the transcription of NRF 1 and
2, which regulates mitochondrial transcription factor A (TFAM)
(Li et al., 2017). TFAM then translocates to the mitochondrial
matrix and stimulates mtDNA replication and mitochondrial gene
expression (Tang, 2016). The upstream transcription factor Sirt1
regulates PGC-1α by increasing its expression and decreasing its
acetylation (Iwabu et al., 2010). Nicotinamide adenine dinucleotide
(NAD), a substrate of Sirt1 that regulates Sirt1 expression, improves
cognitive function and reduces neuroinflammation in in vivo and
in vitro CCI models (Mouchiroud et al., 2013). Furthermore, these
therapeutic effects were associated with mitochondrial protection
and inhibition of ROS by activating the Sirt1/PGC-1α pathway
(Zhao et al., 2021).

3.3. Akt/ERK-Bcl2-Beclin-1 signaling
pathway

Akt activation enhanced GSK-3β phosphorylation, leading to
mTOR activation, and the autophagic protein Beclin-1 expression
was significantly downregulated, inhibiting cell cytodestructive
autophagy (Wang R. C. et al., 2012; Liu et al., 2015). Akt
phosphorylation prevents Bax translocation to mitochondria and
inhibits Cyt c release as well as destructive autophagy, attenuating
CCI-induced neuronal injury (Sadidi et al., 2009; Castillo et al.,
2011). Meanwhile, ERK activation upregulates Bcl-2 expression,
which negatively regulates destructive autophagy through a
combination of Beclin-1 and Bax (Subramanian and Shaha, 2007).
Activation of the γ-aminobutyric acid B receptor (GABAB) can
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FIGURE 2

Mitochondrial autophagy pathway in CCI.

attenuate CCI-induced increases in atg5 and atg7 expression
and inhibit cytodestructive autophagy and neuronal apoptosis
(Lindqvist et al., 2014). Baclofen-induced ERK1/2 phosphorylation

can accelerate cytoprotective autophagy by moderately increasing
the expression of Beclin-1. Activation of GABAB receptors
improves the surface expression of the GABAA receptor α1
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subunit, leading to the downregulation of astrocytes and neurons
surface and mitochondrial expression, which in turn enhances
cytoprotective autophagy (Liu et al., 2015).

3.4. Mitochondrial membrane
ATP-sensitive potassium channel
(mitoKATP)

The opening of mitoKATP channels is related to potassium
uptake from the mitochondrial matrix and maintains the volume
of the mitochondrial matrix by reducing the Ca2+ load. Reduced
mitochondrial Ca2+ load can inhibit MPTP opening, prevent
ROS production in the mitochondria, and inhibit excitatory
oxidative stress and cell death (Fornazari et al., 2008). mitoKATP
consists of two subunits, Kir6.1, 6.2, and SUR1 or SUR2 (Zhou
et al., 2010). Chronic intermittent hypobaric hypoxia (CIHH)
can upregulate the protein expression of Kir6.2 and SUR1 in the
mitochondria of the hippocampal CA1 region induced by ischemia,
thus improving learning and memory dysfunction induced by
ischemia in the hippocampal CA1 region. Additionally, CIHH
alleviates delay neuronal death (DND) by maintaining mitoKATP
activity, thus inhibiting Cyt c-induced apoptosis (Zhang et al.,
2016).

4. Role of mitophagy regulating
drugs in CCI

Bilateral common carotid artery occlusion (2VO) has been
used to create a CCI animal model in most trials to investigate
the underlying mechanism (Du et al., 2017). The pathogenic role
of cerebral hypoperfusion in neurodegenerative diseases can be
understood from data collected using a rat 2VO model (Farkas
et al., 2007). The 2VO model has shown that neuronal function
is directly affected by mitochondrial bioenergetic abnormalities,
which may trigger the onset of VD (Du et al., 2013). CCI
is difficult to diagnose because it rarely occurs by itself and
frequently cooccurs with other brain lesions (Zhao and Gong,
2015). A summary of drug treatment mechanisms is presented in
Table 1.

4.1. Fecal microbiota transplantation
(FMT) and short-chain fatty acids (SCFAs)

Short-chain fatty acids (SCFAs) produced by bacteria include
acetate, propionate, and butyrate. These SCFAs can penetrate the
blood-brain barrier and have a considerable impact on the brain
due to their effects on numerous neuronal functions and gut-
brain signaling pathways. FMT and SCFAs significantly altered
Ndufb2 and Atp5mc1 levels, indicating that electron transport
chain (ETC) complexes I and V are the main sites for the
regulation of oxidative phosphorylation. FMT and SCFAs alleviate
mitochondrial dysfunction by increasing acetate, acetyl-CoA, and
ATP contents, as well as the activities of complexes I and V of
mitochondrial ETC (Su et al., 2022).

4.2. Carfilzomib

Carfilzomib is a proteasome inhibitor that is used to treat
multiple myeloma. It forms a covalent irreversible bond with
the LMP2 and LMP7 catalytic subunits of the 20S proteasome,
which are two intracellular receptors (Sin et al., 1999). Carfilzomib
prevents defects in BCL/adenovirus E1B interacting protein 3-like
(BNIP3L) degradation and mitophagy deficiency (Wu et al., 2021).
Defective mitophagy caused by BNIP3L deletion has significant
implications for ischemic neuronal injury. This is because restored
BNIP3L has been observed to reduce cerebellar infarct volume,
alleviating ischemic brain injury (Wu et al., 2021).

4.3. Butylphthalide

Butylphthalide is a chemical component of celery oil.
Superoxide dismutase (SOD) activity increased, malondialdehyde
levels decreased, and ATPase activity increased in the hippocampal
mitochondria of CCI rats after therapy, significantly improving
learning and memory. Pathological results provided additional
evidence that injection reduced mitochondrial ultrastructural
destruction. Butylphthalide injection has a protective effect on the
structure and function of mitochondria in brain tissue, which may
be related to its influence on mitochondrial oxidative damage and
energy metabolism dysfunction (Gao, 2009).

4.4. Pinocembrin

Pinocembrin is a flavonoid found in propolis that can
potentially strengthen the central nervous system. A decrease
in transmembrane potential during hypoxia greatly affects
mitochondrial function, producing excessive ROS (Nohl et al.,
2005). In animal experiments, the expression of Cyt c oxidase
in the hippocampus of rats in the 2VO group decreased
significantly; meanwhile, mitochondrial membrane potential levels
decreased. Pinocembrin significantly reversed these phenomena
(Guang and Du, 2006). Cyt c oxidase is a metabolic indicator
of neuronal oxidative activity; therefore, this raises the possibility
that pinocembrin shields the rat’s brain mitochondria. In addition,
pinocembrin can greatly reduce the degree of mitochondrial
swelling, increase the mitochondrial membrane potential, and
protect the mitochondrial structure and ROS production, which
may explain why pinocembrin protects mitochondria from
oxidative stress (Guang and Du, 2006).

4.5. Rapamycin

Rapamycin is a popular allosteric mTOR inhibitor that binds
directly to the mTOR complex and promotes autophagy in several
eukaryotes. PINK1, Parkin, and LC3B expression levels have been
reported to increase after rapamycin treatment in animal studies,
stimulating mitophagy and preventing mitochondrial dysfunction
and neuronal apoptosis. Together with experimental treatment
control of MHY1485 (an mTOR activator) and the initial notion
that the mTOR pathway increases autophagy, it also affects the
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TABLE 1 Specific performance of CCI therapeutic drugs.

Treatment The
target/pathway

Mechanism Results References

URB597 BNIP3,
Beclin-1/Bcl-2
complex

Inhibition of impaired autophagic
degradation and disruption of the
Beclin-1/Bcl-2 complex, thereby severing
mitophagy required for BNIP3-Cyt c- and
parkin.

It prevents abnormal hyperautophagy and
mitophagy.

Su et al., 2018

NAD Sirt1/PGC-1α

pathway
Mitochondrial protection is associated
with ROS inhibition via activation of the
Sirt1/PGC-1α pathway.

It improved cognitive function and reduced
neuroinflammation in CCI model in vivo and
in vitro.

Zhao et al., 2021

Baclofen Akt/ERK-Bcl2-
Beclin-1 signaling
pathway

The induced phosphorylation of ERK1/2
moderately increased the expression of
Beclin-1. Activation of GABAA receptors
improves GABAB receptor α1 subunit
surface expression, leading to
downregulation of CX43 and CX36
surface and mitochondrial expression.

Enhancing cytoprotective autophagy can improve
neuronal damage and cognitive impairment
induced by CCI.

Liu et al., 2015

CIHH
pretreatment

mitoKATP It can up-regulate the expression of Kir6.2
and SUR1 protein in mitochondria of
hippocampal CA1 region and inhibit Cyt
c-induced apoptosis.

It can improve the learning and memory
dysfunction and DND in hippocampal CA1 region
induced by ischemia.

Zhang et al., 2016

FMT and SCFAs Histone
demethylation
acetylase (HDACs)

Normalization of mitochondrial
membrane potential, reduction of ROS
accumulation, and enhancement of
mitochondrial ETC and oxidative
phosphorylation.

Restore hippocampal mitochondrial function to
improve cognitive dysfunction and treat colonic
dysfunction.

Su et al., 2022

Carfilzomib BNIP3L BNIP3L degradation is prevented by
inhibition of the ubiquitin-proteasome
pathway.

Rescue the defect of mitophagy to prevent and
reduce ischemic brain injury.

Wu et al., 2021

Butylphthalide / The activity of SOD in hippocampal
mitochondria of rats increased, the
content of malondialdehyde decreased,
and the activity of ATPase increased.

The ability of learning and memory was
significantly improved, and the degree of
mitochondrial ultrastructure damage was further
confirmed by pathology.

Gao, 2009

Pinocembrin / Its protective effects on components of the
mitochondrial respiratory chain/oxidative
phosphorylation system involve complex I
activity, cytochrome oxidase expression,
and the source of reactive oxygen species.

Long-term administration can improve cognitive
dysfunction induced by cerebral hypoperfusion in
rats.

Guang and Du, 2006

Rapamycin PI3K/AKT/mTOR The expression of mitophagy-related
proteins was up-regulated, which could
inhibit the overexpression of PI3K, AKT
and mTOR.

Activation of mitophagia, in turn, prevents
mitochondrial dysfunction and neuronal
apoptosis, and ultimately improves brain injury
and cognitive impairment.

Zheng et al., 2021

Endocannabinoid
system

JNK Enhanced the selective JNK inhibitor
SP60012 and blocked JNK-dependent
Bcl-2 signaling-induced neuronal
apoptosis.

It improves mitochondrial membrane dysfunction
and regulates neuronal survival.

Su et al., 2015

FTY720 Sirt3-independent
pathway

The levels of pro-inflammatory cytokines
and Iba-1 positive cells were decreased;
after treatment, malondialdehyde level
was decreased, ATP content was
increased, and ATP synthase activity in
hippocampus was up-regulated.

Improved memory performance, reduced
neuroinflammation, and alleviated mitochondrial
dysfunction, but had no effect on the reduction in
Sirtuin-3 activity after CCI induction.

Zhang et al., 2020

Zuogui pill / Improved mitochondrial respiratory chain
enzyme complex IV (COX) enzyme
activity levels.

It can improve mitochondrial respiratory function,
protect cell function and reduce ROS
accumulation, thereby alleviating oxidative stress
injury after CCI.

Yu et al., 2014

Naoxin’an
capsule

CREB/PGC-1α

signaling pathway
It significantly increased the activities of
complex I, III and IV of mitochondrial
respiratory chain and the activities of
pyruvate dehydrogenase and
α-ketoglutarate dehydrogenase in rats.

It can improve mitochondrial structure and
function, increase mitochondrial membrane
potential in brain tissue, and reduce oxidative
damage caused by excessive ROS release.

Feng et al., 2022

(Continued)
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TABLE 1 (Continued)

Treatment The
target/pathway

Mechanism Results References

Xiaoxuming
decoction

/ Oxidative phosphorylation was increased,
mitochondrial membrane potential was
increased, and mitochondrial membrane
swelling was reduced.

It alleviates mitochondrial dysfunction and
structural damage caused by ischemia and hypoxia.

Wang Y. H. et al.,
2012

Baicalein / There were improvements in membrane
potential levels, oxidative phosphorylation
processes, degree of mitochondrial
swelling, Bcl-2/Bax ratio, and cytochrome
c release.

It alleviates cognitive and motor impairment and
reduces the production of mitochondrial reactive
oxygen species.

He et al., 2009

Shenma Yizhi
decoction

AMPK/PPARα/PGC-
1α/UCP2 signaling
pathway

The activities of SOD, GSH-Px and
glutathione in serum were increased, and
the content of malondialdehyde was
decreased. In addition, the mRNA and
protein expression levels of AMPK,
PPARα, PGC-1α, UCP2 and ATP5A were
reversed.

To improve mitochondrial structure and energy
metabolism, thereby alleviating vascular cognitive
impairment.

Sun et al., 2021

Bushen-Yizhi
formula

/ It also reduces the occurrence of apoptosis
and abnormal amyloid deposition and
accumulation, and inhibits oxidative stress
damage activated by abnormal and
excessive mitochondrial autophagy in the
hippocampus.

It can improve the cognition and memory ability
of 2VO rats.

Xiao et al., 2023

expression of PI3K, AKT, and mTOR (Bartolomé et al., 2017). These
findings suggest that rapamycin exerts its neuroprotective effects
by suppressing the PI3K/AKT/mTOR signaling pathway, which
increases autophagy (Zheng et al., 2021).

4.6. Endocannabinoid system

The cannabinoid receptor agonist WIN55212-2 (WIN) and the
fatty acid amide hydrolase inhibitor URB597 were administered to
counteract the effects of CCI on JNK phosphorylation, lowering the
Bcl-2/Bax ratio and caspase-3 activation, all of which are involved
in controlling neuronal survival. Moreover, WIN and URB597
inhibit neuronal death induced by JNK-dependent Bcl-2 signaling
and improve mitochondrial membrane dysfunction by increasing
the selective JNK inhibitor SP600125 (Su et al., 2015).

4.7. FTY720

In 2010, the US Food and Drug Administration approved
FTY720, a sphingosine-1-phosphate receptor agonist with potent
anti-inflammatory properties, as the first oral medication for the
treatment of multiple sclerosis (Wang et al., 2020). Moreover,
recent studies have shown that it effectively reduces mitochondrial
dysfunction and spatial memory impairment (Wang et al., 2020).
FTY720 protects the brain from damage by lowering oxidative
stress and neuroinflammation and enhancing synaptic function.
According to a study in 2VO animals, FTY720 can improve
hippocampal mitochondrial function and enhance ATP synthase
activity. ATP levels and ATP synthase activity in the hippocampus
are increased, suggesting that FTY720 could reduce CCI-induced
mitochondrial dysfunction (Zhang et al., 2020). However, p62
expression, which is crucial for the transfer of ubiquitylated

substrates to autophagosomes, and SIRT3, the primary regulator of
mitochondrial activity, did not show an effect after the intervention
(Zhang et al., 2020).

4.8. Traditional Chinese medicine

Traditional Chinese medicine has been reported to improve the
activity of the ETC complex, decrease calcium overload following
excitability toxicity, and restore the self-regulation function
of mitochondria by focusing on mitochondrial dysfunction.
This preserves the integrity of mitochondrial structure and
function, promotes the reconstruction of energy metabolism,
and ultimately improves brain injury and cognitive impairment
(Wang et al., 2023). For example, the Zuogui pill and Naoxin
capsule improve mitochondrial structure and function and reduce
ROS accumulation by improving mitochondrial respiratory chain
enzyme complexes (Yu et al., 2014; Feng et al., 2022). Xiaoxuming
decoction and baicalein have significantly improved oxidative
phosphorylation and mitochondrial membrane potential (He et al.,
2009; Wang Y. H. et al., 2012). The Shenma Yizhi decoction and
Bushen-Yizhi formula can improve mitochondrial dysfunction by
regulating the expression levels of various proteins (Sun et al., 2021;
Xiao et al., 2023).

5. Prospects

The pathogenesis of persistent cerebral ischemia is complex.
One of the main reasons for brain injury and aberrant
alterations in brain function caused by prolonged cerebral
ischemia is the impairment of brain energy metabolism. Increased
free radical production, oxidative stress damage, and altered
mitochondrial structure and function contribute significantly to
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the pathophysiology of CCI (Zhou et al., 2021). Therefore, the
significance of mitochondrial dysfunction in CCI has received
considerable attention, and it is crucial to investigate changes in
mitochondrial structure and function to better understand the
effect of medications on chronic cerebral ischemia.

Few clinical studies on pharmacological therapy for CCI are
currently available, with the majority focusing on the development
of new medications to treat cerebral ischemia-reperfusion injury.
Most medications play a limited clinical role in the management
of persistent cerebral ischemia (Lana et al., 2014; Kim et al.,
2016; Yan et al., 2022). According to recent studies, URB597
blocks the Parkin route to restrict mitophagy, NAD stimulates
the PPAR pathway to prevent ROS release, and Baclofen-induced
ERK1/2 phosphorylation can accelerate cytoprotective autophagy.
Whether there are any further pathways for the treatment of
CCI remains unknown. Therefore, it is important to understand
the mechanisms, identify newer and more potent therapeutic
targets, introduce pharmaceuticals into trials in humans for clinical
evaluation, and improve the efficacy and safety of medications.
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