AUTHOR=Ruan Zhao , Sun Dong , Zhou Xiaoli , Yu Minhua , Li Sirui , Sun Wenbo , Li Yidan , Gao Lei , Xu Haibo TITLE=Altered neurovascular coupling in patients with vascular cognitive impairment: a combined ASL-fMRI analysis JOURNAL=Frontiers in Aging Neuroscience VOLUME=15 YEAR=2023 URL=https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2023.1224525 DOI=10.3389/fnagi.2023.1224525 ISSN=1663-4365 ABSTRACT=Background and objective

This study aims to examine the role of neurovascular coupling (NVC) in vascular cognitive impairment (VCI) by investigating the relationship between white matter lesion (WML) burden, NVC, and cognitive deficits. Additionally, we aim to explore the potential of NVC as a tool for understanding the neural mechanisms underlying VCI.

Methods

This study included thirty-eight small vessel disease cognitive impairment (SVCI) patients, 34 post-stroke cognitive impairment (PSCI) patients, and 43 healthy controls (HC). Comprehensive assessments, including neuroimaging and neuropsychological testing, were conducted to evaluate cognitive function. WML burden was measured and correlated with NVC coefficients to examine the relationship between white matter pathology and NVC. Mediation analysis was employed to explore the link relationship between NVC, WML burden, and cognitive function.

Results

The present study showed that NVC was significantly reduced in the SVCI and PSCI groups compared with HCs at both whole-brain and brain region level. The analysis revealed notable findings regarding NVC in relation to WML burden and cognitive function in VCI patients. Specifically, reduced NVC coefficients were observed within higher order brain systems responsible for cognitive control and emotion regulation. Mediation analysis demonstrated that NVC played a mediating role in the relationship between WML burden and cognitive impairment.

Conclusion

This study reveals the mediating role of NVC in the relationship between WML burden and cognitive function in VCI patients. The results demonstrate the potential of the NVC as an accurate measure of cognitive impairment and its ability to identify specific neural circuits affected by WML burden.