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Muscle–Brain crosstalk in
cognitive impairment

Xiaowei Han, Muhammad Ashraf, Srinivas M. Tipparaju and

Wanling Xuan*

Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South

Florida, Tampa, FL, United States

Sarcopenia is an age-related, involuntary loss of skeletal muscle mass and

strength. Alzheimer’s disease (AD) is the most common cause of dementia in

elderly adults. To date, no e�ective cures for sarcopenia and AD are available.

Physical and cognitive impairments are two major causes of disability in the

elderly population, which severely decrease their quality of life and increase

their economic burden. Clinically, sarcopenia is strongly associated with AD.

However, the underlying factors for this association remain unknown. Mechanistic

studies on muscle–brain crosstalk during cognitive impairment might shed light

on new insights and novel therapeutic approaches for combating cognitive

decline and AD. In this review, we summarize the latest studies emphasizing

the association between sarcopenia and cognitive impairment. The underlying

mechanisms involved in muscle–brain crosstalk and the potential implications of

such crosstalk are discussed. Finally, future directions for drug development to

improve age-related cognitive impairment and AD-related cognitive dysfunction

are also explored.
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1. Introduction

Aging is often considered an inevitable progressive process along with deteriorating

functional decline. With increased longevity and decreased mortality, population aging has

been sweeping the world rapidly in recent years (Beard et al., 2016). In the United States,

there were more than 56 million individuals aged over 65 years in 2020, which accounts for

16.9% of the national population, and is estimated to be roughly 22% by 2050.1

Aging is often associated with decreased function in multiple key organs, including

the brain, skeletal muscle, and the heart (North and Sinclair, 2012; Hambright et al., 2019;

Hou et al., 2019). The strategy connecting this triple functional system could be a key to

Alzheimer’s disease (AD) prevention and rehabilitation. Physical and cognitive impairments

are two major causes of disability in the elderly. Sarcopenia, an age-related involuntary loss

of skeletal muscle mass and strength, is strongly associated with AD, a neurodegenerative

disease with a prevalence of over 47 million globally (DeTure and Dickson, 2019; Beeri

et al., 2021). Evidence from both clinical (Salinas-Rodriguez et al., 2021; Hu et al., 2022;

Ramoo et al., 2022) and animal studies (Nagase and Tohda, 2021; Lee and Lim, 2022)

demonstrates that skeletal muscle dysfunction may be a key factor that can contribute to

cognitive impairment. So far, there is no effective cure for sarcopenia or AD. Drugs approved

1 https://www.americashealthrankings.org/explore/senior/measure/pct_65plus/state/ALL
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for Alzheimer’s disease are classified into acetylcholinesterase

inhibitors and N-methyl-D-aspartate receptor antagonists (Lin

et al., 2021). However, AD patients cannot benefit much from

these treatments due to the biological restriction of the blood-brain

barrier (BBB), the low bioavailability, poor pharmacokinetics and

pharmacodynamics of these drugs (Nunes et al., 2022). Current

therapies or drugs available for AD focus on managing symptoms

and mostly target the acetylcholinesterase system, which so far

has turned out to generate mild effects with low clinical outcomes

(Marucci et al., 2021). In addition, currently, there are no drugs

approved by the Food and Drug Administration for the treatment

of sarcopenia (Cho et al., 2022).

Drug treatments provided for both Alzheimer’s Disease and

sarcopenia remain ineffective; however, exercise has been proven to

be highly effective in maintaining muscle mass and cognitive health

(Beckwee et al., 2019; Huang et al., 2022). A recent study showed

that exercise enhanced muscle-derived circulating factors release,

which increased synaptic plasticity and hippocampal neurogenesis

and thus improved cognitive function via muscle–brain crosstalk

(Rendeiro and Rhodes, 2018). Therefore, early diagnosis and

intervention for sarcopenia may benefit AD.

Based on earlier studies, in the present review, we

summarize the latest findings on the association between

sarcopenia and cognitive impairment. We also discuss

the underlying mechanisms responsible for muscle–brain

crosstalk. Finally, we will explore the potential strategies

for targeting such crosstalk and future directions for

drug development to improve cognitive function during

aging and AD.

2. Association between sarcopenia
and cognitive impairment

Skeletal muscle is the largest organ in the human body by

weight and is responsible for maintaining body posture and

performing voluntary movements (Tieland et al., 2018). Normal

physiological functioning of skeletal muscle allows both physical

activity and metabolic regulation. Thus, changes in skeletal muscle

function and mass may significantly affect metabolism due to

its sensitivity to insulin (Stump et al., 2006). Interestingly, the

brain is also an insulin-sensitive metabolic organ that consumes

25% of the glucose in the body (Rossi et al., 2001). Therefore,

there is potential endocrine crosstalk between skeletal muscle and

the brain. Both animal studies and clinical trials have shown a

strong association between sarcopenia and cognitive impairment.

It has been demonstrated that skeletal muscle atrophy may

have detrimental effects on cognitive function in multiple animal

models. For instance, in 5XFAD transgenic mice (an Alzheimer’s

disease mouse model), muscle atrophy accelerated the onset of

cognitive impairment, and the underlying mechanism may be

mediated by hemopexin secreted from the atrophy muscle (Nagase

and Tohda, 2021). Myokines released by atrophying muscles

caused aberrant energy metabolism and thus impaired cognition

in a type 2 diabetes mellitus mouse model (Lee and Lim, 2022).

Consistent with these animal studies, clinical studies and meta-

analyses revealed that sarcopenia is implicated in increased risk

for cognitive impairment (Wu et al., 2021; Hu et al., 2022;

Li et al., 2022). A meta-analysis including 18,788 participants

based on 26 cohort, cross-sectional, and case-control studies

found that participants with sarcopenia showed a higher risk of

developing cognitive impairment [OR = 1.75; 95% CI = 1.57,

1.95; P < 0.00001]. Additionally, the MMSE score was lower in

the sarcopenia group than that in the non-sarcopenia group [OR

= −2.23; 95% CI = −2.48, −1.99; P < 0.00001] (Chen et al.,

2022). Similarly, other meta-analyses demonstrated that sarcopenia

is an independent risk factor for cognitive impairment (Chang

et al., 2016; Cipolli et al., 2019; Peng et al., 2020). Two recent

clinical studies further demonstrated the higher prevalence of

cognitive impairment in older adults with sarcopenia. Longitudinal

associations between sarcopenia and mild cognitive impairment

(OR = 1.74; 95% CI 1.02, 2.96; P = 0.04), decreased cognitive

function (β = −0.57; 95% CI−0.93, −0.21; P < 0.01), immediate

verbal recall (β = −0.14; 95% CI−0.28, −0.01; P = 0.04),

delayed verbal recall (β = −0.12; 95% CI−0.23, −0.01; P =

0.03), and semantic verbal fluency (β = −0.17; 95% CI−0.28,

−0.05; P = 0.01) have been found in a study including 496 older

Mexican adults. Sarcopenic elderly adults showed a 0.7% higher

annual rate of mild cognitive impairment (Salinas-Rodriguez et al.,

2021). Another cohort study including 1,946 respondents in rural

Malaysia showed similar results. Sarcopenic elderly adults have

an 80% higher risk of cognitive impairment compared with

those without sarcopenia (RR 1.80; 95% CI 1.18–2.75) (Ramoo

et al., 2022). Taken together, these studies support a strong link

between muscle atrophy and cognitive impairment. Early diagnosis

and intervention for sarcopenia may impede the progression of

cognitive impairment.

3. Potential mechanisms of skeletal
muscle–brain crosstalk in cognitive
function regulation

Clinical studies support a potential association between skeletal

muscle and cognitive function, but the underlying mechanisms

remain unknown. In this review, we have focused on the association

between sarcopenia and cognitive function during aging and

AD. It is very likely that the aging brain could have an impact

on skeletal muscle function, and it is a challenge to identify

all the connecting dots. People with cognitive dysfunction or

AD may have less physical activity, causing a decline in muscle

function. Skeletal muscle could release different cytokines and

other muscle fiber-derived peptides or myokines under distinct

conditions (So et al., 2014). However, here, we emphasize the

myokines signal within the muscle, which potentially leads to

crosstalk between skeletal muscle and the brain, involving age

as a common denominator between cognitive dysfunction and

AD-related cognitive impairment. Thus, skeletal muscle could

act as an active endocrine organ and regulate the function of

distant organs or tissues. These cytokines and myokines serve as

messengers for communication between skeletal muscle and the

brain (Kim et al., 2019). In the present review, we summarize

potential beneficial factors and detrimental factors in muscle–brain

crosstalk during aging.
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3.1. Beneficial factors governing muscle
and cognitive function

3.1.1. IGF-1
Insulin-like growth factor-1 (IGF-1) is a 70-amino acid

polypeptide and is synthesized by hepatocytes and other organs,

including skeletal muscle (Yakar et al., 2018; Li et al., 2019). IGF-

1 is essential to skeletal myogenesis, which plays a critical role

in maintaining muscle mass and function (Vitale et al., 2019).

Decreased IGF-1 was observed in muscle atrophy (Grounds, 2002)

and was also noted to be essential for brain function. Previous

studies demonstrated that IGF-1 deficiency induced cognitive

impairment during aging both in human and rodent models

(Deak and Sonntag, 2012; Toth et al., 2022). The level of IGF-1

is significantly decreased in sarcopenia patients, which might be

due to physical inactivity (Widajanti et al., 2022). Skeletal muscle

release of IGF-1 was also decreased in aged mice. However, no

specific effects on muscle recovery were observed when IGF-1

alone was replenished; the combination of IGF-1 and exercise

was demonstrated to reduce skeletal muscle wasting to some

extent (McMahon et al., 2014). This study indicates the specific

role of skeletal muscle-secreted IGF-1 in improving muscle loss

and cognitive function. So far, no direct evidence shows that

exogenous IGF-1 could improve cognitive function during aging.

But exogenous supplementation of IGF-1 showed improvement in

cognitive function. The beneficial effect is likely due to inhibition of

inflammation and oxidative stress (Wang et al., 2020).

3.1.2. Brain-derived neurotrophic factor
Brain-derived neurotrophic factor (BDNF), which is classified

into the neurotrophin family, was initially found to be essential

for brain development and the nervous system (Chao et al.,

2006). BDNF is extensively expressed in the nervous system, but

recent studies show that skeletal muscle can also release BDNF,

which supports the myokine role of BDNF (Lebrun et al., 2006;

Raschke et al., 2013). BDNF also promotesmyoblast differentiation,

maintains the survival of motor neurons (Sakuma et al., 2015),

and functions as a contractile-inducible protein (Moreira-Pais

et al., 2022). Therefore, deterioration of skeletal muscle mass in

sarcopenia, along with limited physical activity or a sedentary

lifestyle in the elderly, may contribute to decreased levels of BDNF.

Low BDNF levels were closely related to cognitive impairment,

which may increase the incidence of AD (Bathina and Das, 2015;

Siuda et al., 2017). Taken together, these findings support the

idea that dysregulated BDNF could be the potential link between

sarcopenia and AD.

3.1.3. Irisin
In recent years, Irisin has emerged as a key factor secreted

mostly from the skeletal muscle that provides beneficial effects to

both the skeletal muscle and the brain. At the molecular level,

Irisin is a pro-myogenic factor that is a cleaved form of fibronectin

type III domain-containing protein 5 (FNDC5) (Moreno-Navarrete

et al., 2013). Irisin has been proven to enhance insulin sensitivity

and boost glucose and lipid metabolism in skeletal muscle

(Shen et al., 2022). Irisin has been demonstrated to ameliorate

muscle wasting by accelerating myoblast fusion and protein

synthesis (Huh et al., 2014). A recent study found that the level

of irisin decreased during aging, and chronic administration of

irisin can improve metabolic dysfunction and ameliorate skeletal

muscle atrophy in aged mice (Guo et al., 2023). Regarding brain

function, the genetic deletion of irisin impaired cognitive function

(Islam et al., 2021). As a mediator of muscle-brain crosstalk, irisin

improved cognitive function with an increase in BDNF expression

(Peng and Wu, 2022). Loss of irisin is involved in cognitive

impairment during aging, and exogenous administration of irisin

improved cognitive function in the AD preclinical model (Madhu

et al., 2022). Hence, irisin may be a promising cure for aging-related

sarcopenia and cognitive impairment (Gao et al., 2013).

3.1.4. Secreted protein acidic and rich in cysteine
Secreted protein acidic and rich in cysteine (SPARC) is a novel

secretory matricellular glycoprotein, defined as a myokine, which

is released by skeletal muscle contraction during exercise (Aoi

et al., 2013). SPARC is involved in skeletal muscle biology, which

is upregulated during muscle regeneration (Petersson et al., 2013).

It could counteract the abnormal deposition and accumulation of

adipose tissue in aged skeletal muscle (Ko et al., 2016). In addition,

during aging, the level of SPARC is decreased and SPARC knockout

mice showed the sarcopenia phenotype (Ghanemi et al., 2022).

Overall, there are potential beneficial roles for SPARC in skeletal

muscle, and studies demonstrate that SPARC can be a potential new

therapeutic target via muscle–brain crosstalk.

3.2. Mediators with dual roles

3.2.1. IL-15
Interleukin-15 (IL-15) is a pleiotropic myokine released by

skeletal muscle during exercise. IL-15 is widely involved in skeletal

muscle metabolism (Quinn et al., 1995) and protects proteins from

degradation while improving insulin sensitivity and promoting

myogenesis (O’Leary et al., 2017; Nadeau and Aguer, 2019). During

aging, the level of IL-15 in skeletal muscle decreases (Quinn et al.,

2010) as shown in a cross-sectional study with 160 outpatient

elderly people which demonstrated the inverse correlation between

plasma IL-15 levels and sarcopenia (Yalcin et al., 2018). The human

data correlate well with the animal data, in which it was noted that

IL-15 was decreased in gastrocnemius muscle in aged rats (Marzetti

et al., 2009). Another study identified that IL-15 could also serve

as a detrimental pro-inflammatory factor in the brain and showed

increased serum IL-15 levels, which can be utilized as a biomarker

for Alzheimer’s disease since IL-15 has been extensively studied in

AD pathophysiology (Rentzos et al., 2006; Bishnoi et al., 2015). The

contradictory roles of IL-15 in the skeletal muscle and in the brain

may be due to an aging-related inflammation environment and

different sources of IL-15. Low-grade inflammation during aging

increases the release of the pro-inflammatory IL-15 from reticular

stromal cells and other myeloid cell types, while it decreases the

release of IL-15 from skeletal muscle (Naismith and Pangrazzi,

2019). The level of IL-15 could be a potential contributor to exercise
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benefits in sarcopenia and cognitive function improvement (Tsai

et al., 2019; Pahlavani, 2022).

3.2.2. LIF
Leukemia inhibitory factor (LIF) is an important member of the

IL-6 type cytokine family with 180 amino acid residues (Nicola and

Babon, 2015). Skeletal muscle produces and releases LIF (Broholm

and Pedersen, 2010), which is associated with the skeletal muscle

homeostasis. Previous reports showed that LIF increased muscle

glucose uptake via the PI3K-Akt signaling pathway (Brandt et al.,

2015). Additionally, LIF stimulates the proliferation of satellite cells

and muscle regeneration, which is a promising therapy for muscle

atrophy (Kurek et al., 1998; Broholm et al., 2011). The level of

LIF has been found to decline in sarcopenic obesity (Pahlavani,

2022). Importantly, LIF could cross the blood-spinal cord barrier

and behave as a neuropoietic cytokine in the central nervous

system. LIF is essential for the recovery of the nervous system

from injury. Furthermore, LIF mediates inflammatory reactions

in AD (Lemke et al., 1996). In AD patients, a higher expression

of LIF was observed in degenerating human brains compared

with normal brains (Soilu-Hanninen et al., 2010). However, the

specific mechanism by which LIF could influence the AD brain

remains unknown.

3.2.3. IL-6
Interleukin-6 (IL-6), a member of the cytokine family, has both

inflammatory and anti-inflammatory effects. The proinflammatory

function of IL-6 is involved in aging-related diseases. Studies in the

elderly have found that an increased level of IL-6 is associated with

the occurrence of sarcopenia (Bian et al., 2017; Rong et al., 2018).

However, enhanced release of IL-6 during muscle contraction

also induced myogenic differentiation (Steyn et al., 2019). A

combination of recombinant IL-6 and treadmill training in old

mice could enhance their endurance training adaptation together

with functional capacity improvement (Leuchtmann et al., 2022).

However, due to the sedentary lifestyle of sarcopenia patients, the

beneficial role of IL-6 may decrease, and the inflammatory effects

may overwhelm the anti-inflammatory roles. As an inflammatory

factor, IL-6 can cross the BBB and impair brain function (Banks

et al., 1994). Inflammatory IL-6 is involved in cognitive impairment

during AD. An increase in IL-6 levels in AD brains was observed,

and its neutralization or inhibition of the IL-6 signaling pathway

alleviated cognition decline (Silva et al., 2021). Based on the above

evidence, it is likely that during aging, the release of muscle-derived

anti-inflammatory IL-6 decreases, accelerating the progression

of AD.

3.2.4. Lactate
Lactate is a metabolic substrate, secreted from skeletal muscle

during mechanical muscle contractile stimulation. A previous

study showed that lactate promoted myoblast differentiation in

vitro via myogenic determination protein-dependent signaling

pathway, and moreover, lactate could cross the BBB, facilitating

the expression of BDNF in the brain (El Hayek et al., 2019).

The role of lactate in cognitive function is not clear, and

additional studies are necessary for understanding its role in

the brain. A cross-sectional study including 2,523 participants

showed that a higher plasma lactate level was associated with

systemic inflammation and an increased probability of mild

cognitive impairment (Pan et al., 2019). However, another

study evaluating the cerebrospinal fluid (CSF) lactate in 267

outpatients reported the opposite results, and the level of lactate

in CSF was decreased in patients with AD (Bonomi et al.,

2021). Therefore, additional studies are needed to explain these

contradictory observations.

3.3. Detrimental factors governing muscle
and cognitive function

3.3.1. Cathepsin B
Cathepsin B is a typical member of the cysteine lysosomal

protease family. It is recognized as a myokine released from

skeletal muscle following exercise (Kim et al., 2019). An in

vitro study showed that cathepsin B participated in myotube

formation (Jane et al., 2002). During aging, cathepsin B levels

were upregulated in microglia, which contributed to the generation

of mitochondrial-derived reactive oxygen species (ROS), causing

increased inflammation and thereby impaired memory (Ni

et al., 2019). Similarly, enhanced translocation of cathepsin B

reduced sirtuins and promoted proinflammatory reactions in

senescent microglia, resulting in cognitive impairment (Meng

et al., 2020). On the other hand, cathepsin B could cross the

BBB and promote BDNF expression in the hippocampal area

and improve memory function (Moon et al., 2016). It is obvious

from the above reports that additional studies are needed to

determine the function of cathepsin B in muscle–brain crosstalk in

elderly adults.

3.3.2. Myostatin
Myostatin, which is known as growth and differentiation factor

8, is secreted by skeletal muscle. It is a negative mediator in skeletal

muscle growth (Gao et al., 2013), which decreases muscle size

and mass. Myostatin deficiency is beneficial to skeletal muscle

metabolism (Cleasby et al., 2016). Myostatin inhibits the expression

of myogenic differentiation-related genes, such as Myod and Myf5,

in a smad3-dependent manner (Langley et al., 2002). Myostatin

could accelerate proteolysis in the soleus and impede protein

turnover in vivo and in C2C12 cells. The potential mechanism may

be mediated by the phosphorylation of Smad3 (Manfredi et al.,

2017). Interestingly, the level of myostatin in 12-month-old double

transgenic amyloid precursor protein and presenilin 1 (APP/PS1)

mice was elevated, which may trigger skeletal muscle atrophy and

cognitive deficits. Knockdown of myostatin with shRNA in these

mice attenuated skeletal muscle degradation and memory loss (Lin

et al., 2019). Importantly, increased release of myostatin by skeletal

muscle in sarcopenia patients promoted cognition decline in the

elderly population, thus increasing the risk of AD (Siriett et al.,

2006; Bergen et al., 2015).
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3.3.3. Growth di�erentiation factor-15
Growth differentiation factor-15 (GDF-15) belongs to the

transforming growth factor β (TGF-β) superfamily. Stress enhances

its release. GDF-15 has been reported as a biomarker for sarcopenia.

An elevated level of GDF-15 during aging was found, which

was related to the decline of skeletal muscle mass and function

(Kim et al., 2020). Cross-sectional and 2 year prospective analyses

involving 788 participants supported the finding that an increased

level of GDF-15 was associated with the prevalent sarcopenia (Kim

et al., 2022). GDF-15 has also been recognized as a biomarker

for aging-related cognitive decline (Jiang et al., 2016). A cohort

study with 1,603 participants demonstrated an association between

elevated plasma GDF-15 and an increased risk of dementia

(McGrath et al., 2020). Another longitudinal Sydney Memory and

Aging Study, consisting of 1,037 participants, also reached similar

conclusions (Fuchs et al., 2013). Hence, GDF-15 is a detrimental

mediator for muscle–brain crosstalk and a potential target for the

treatment of sarcopenia and cognitive dysfunction.

3.3.4. IL-8
Interleukin 8 (IL-8) is a CXC member of the chemokine

family, which is a myokine released by skeletal muscle during

exercise (Akerstrom et al., 2005). IL-8 acts as a pro-inflammatory

factor in sarcopenia (da Costa Teixeira et al., 2023). A UK cohort

study including 336 community-dwelling elderly men and women

demonstrated that an elevated IL-8 level was associated with an

increased risk of sarcopenia (Oflazoglu et al., 2020). Consistent

with this, several clinical studies have shown that sarcopenia in the

elderly had higher levels of IL-8 compared with the non-sarcopenia

group (Fan et al., 2022; Teixeira et al., 2022). Interestingly, IL-8 is

also identified as a biomarker during AD progression (Swardfager

et al., 2010; Alsadany et al., 2013). In addition, a higher level of IL-

8 in the elderly was associated with poorer cognitive performance

(Baune et al., 2008). The potential mechanism may be related to

its role in microglia migration toward Aβ deposits associated with

senile plaques and activation of microglial cells (Li et al., 2009).

However, besides skeletal muscle cells, other cell types, including

macrophages and endothelial cells, also release IL-8 (Nielsen and

Pedersen, 2007; Luo et al., 2022). Therefore, the cellular sources of

IL-8 and its biological role in sarcopenia andADneed further study.

4. Targeting the skeletal muscle to
combat cognitive decline

4.1. Exercise

Different studies support the fact that exercises benefit the

skeletal muscle system and improve memory function. Here, we

summarize aerobic exercise and resistance exercise, which are two

major types of exercise, along with their effects on skeletal muscle

and cognitive function during aging.

4.1.1. Aerobic exercise
Multiple animal studies demonstrate the beneficial effects

of AE on sarcopenia. These studies show that AE improved

skeletal muscle atrophy in sarcopenia mice and reversed chronic

inflammation and dysfunctional mitochondria via sestrin2

in an AMPK alpha-2-dependent manner (Liu et al., 2021).

Lifelong aerobic exercise activates autophagy and inhibits protein

degradation via AMPK/PGC-1α signaling, thereby improving

aging-related muscle atrophy (Liang et al., 2021). Similar findings

showed the therapeutic effects of habitual aerobic exercise on

sarcopenia in a senescence-accelerated mice prone8 model

via enhanced mitochondrial maintenance and muscle protein

synthesis (Aoki et al., 2020). Despite promising results in

animal experiments, so far limited clinical studies regarding

AE and its beneficial effects in humans are inconclusive. A

cross-sectional study including older women treated with aerobic

training, secondary lifestyle, and resistance training showed

that AE could not decrease the prevalence of sarcopenia, but

resistance training was effective (Supriya et al., 2022). AE showed

beneficial effects on cognitive impairment as well. A meta-

analysis involving 1,364 mild cognitive impairment participants

demonstrated that AE could improve the cognitive function

of older adults with mild cognitive impairment (Yong et al.,

2021). The underlying mechanism of such beneficial effects

might be due to activation of the NF-κB/miR-503/BDNF pathway

(Niu et al., 2018), increased myokines (BDNF and IGF-1),

and reduction of inflammatory cytokines (Tsai et al., 2018,

2019).

4.1.2. Resistance exercise
Resistance exercise (RE) is a form of exercise intended to

increase muscular strength and endurance. Consistent evidence

from clinical trials supports the benefits of RE in sarcopenia.

RE improves muscle strength, muscle quality, and muscle

performance in elderly adults with sarcopenia (Chen et al., 2021;

Mende et al., 2022; Zhao et al., 2022). Potential mechanisms

include the rejuvenation of satellite cells (Hsu et al., 2022) and

the improvement of mitochondrial and autophagic function in

skeletal muscle (White et al., 2016). Furthermore, a number

of multilevel meta-analyses were used to demonstrate that RE

enhances cognitive function regardless of cognitive status and age

(Northey et al., 2018; Wilke et al., 2019; Landrigan et al., 2020;

Zhang et al., 2020). It is believed that myokines are the key

factors in RE that contribute to cognitive function improvement.

However, it was demonstrated that RE could either increase or

demonstrate no effect on the IGF-1 level (Titus et al., 2021).

Furthermore, compared with traditional resistance exercise, the

combination of RE and cognitive tasks improved brain function

and BDNF level (Castano et al., 2022). The effect of RE on

myokine release was also sex-dependent, and previous studies

showed that mixed low-resistance training only increased plasma

levels of BDNF in male participants, but no changes in female

participants were noted. RE could be beneficial to counteract

sarcopenia and memory loss in elderly adults. However, RE

might be suitable only for early intervention. Patients suffering

from dementia, AD, or sarcopenia are significantly associated

with a low level of physical activity, higher disability, and poor

quality of life. Thus, physical exercise is not a good option

for these patients. In either case, a better understanding of the
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FIGURE 1

Muscle–brain crosstalk in cognitive dysfunction. Myokines or cytokines released from skeletal muscle a�ect neurons and inflammation in the brain:

(1) detrimental factors: cathepsin B, myostatin, and GDF-15; (2) dual roles: IL-15, IL-6, LIF, and lactate; (3) beneficial factors: FNDC5, BDNF, IGF-1, and

SPARC. Exercise-enhancing release of beneficial factors and specific overexpression of neprilysin and scFv59 in the skeletal muscle could be

promising strategies against cognitive dysfunction. GDF15, Growth di�erentiation factor-15; IL-8, interleukin 8; IL-15, interleukin-15; IL-6,

interleukin-6; LIF, leukemia inhibitory factor; FNDC5, fibronectin type III domain containing protein 5; BDNF, brain-derived neurotrophic factor;

IGF-1, insulin-like growth factor-1; SPARC, secreted protein acidic and rich in cysteine.

molecular and cellular mechanisms that mediate the benefits

of physical activity will help in the development of potential

therapeutic approaches.

4.1.3. Muscle-targeted strategies for cognitive
function improvement

Compared with the brain, muscles have more accessibility

for intervention, especially using invasive strategies. Preclinical

studies have shown that several muscle-targeted treatments

enhance cognitive function. Muscle-specific overexpression

of neprilysin and scFv59 or knockdown of myostatin

using genetic approaches showed favorable effects on the

brain. Overexpression of neprilysin in the muscle reduces

Aβ amyloid deposits in the brain (Li et al., 2020), while

increased scFv59 expression in the muscle reduces Aβ amyloid

levels in the cerebrospinal fluid (Yang et al., 2013). Cell-

based therapy is another promising strategy. For example,

intramuscular injection of stem cells releasing regenerative

factors enhanced neurogenesis and astrogliogenesis in the aged

mouse hippocampus (Huntsman et al., 2018). These muscle-

targeted strategies have translational potential in cognitive

impairment therapy.

5. Limitations and perspectives

Sarcopenia and dementia are common geriatric diseases. AD is

the most common cause of dementia and the fifth leading cause of

death in elderly adults. Importantly, the estimated total healthcare

costs for the treatment of AD in 2020 were estimated at US $305

billion, which is expected to increase to more than US $1 trillion as

the population ages (Wong, 2020). To date, no effective cures for

AD have been reported. Therefore, drug development for cognitive

dysfunction and AD is important. Clinical observations and

pre-clinical studies revealed muscle–brain crosstalk on cognitive

function (Figure 1). In pre-clinical studies, it seems that myokines

are the key mediators in muscle–brain crosstalk during cognitive

dysfunction, but currently, no clinical trials on the effects of these

myokines have been conducted. Exercise seems to be a promising

intervention for sarcopenia and cognitive impairment. Due to

physical inactivity in patients with sarcopenia or AD, exercisemight

not be the first-line intervention for patients in the late stages of the

disease. However, exercise could be used as a platform to discover

potential beneficial factors contributing to a favorable outcome.

In addition, muscle-specific conditional knockout animals and

AD preclinical models are useful for studying the underlying

mechanisms. A few muscle-targeted approaches via the regulation
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of muscle gene expression, extrinsic supplementation, and stem

cell transplantation showed promising results to improve cognitive

function or promote neurogenesis. However, for future clinical

applications, dose-dependent efficacy, pharmacokinetics, and

delivery routes need to be taken into consideration.

6. Conclusion

Evidence from pre-clinical studies and clinical observations

supports the idea that muscle–brain crosstalk plays a critical role in

cognitive function. Muscle-targeted intervention is promising for

improving aging or AD-related cognitive decline. In the present

review, we outlined three principal areas for skeletal muscle and

brain crosstalk, namely, (a) beneficial strategies, (b) mediators

that play dual roles (i.e., protective and damaging roles), and (c)

strategies that may cause increased risk and advance the disease

condition during aging.
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