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Editorial on the Research Topic

Systemic implications of Alzheimer’s disease

In the past decade, it has become increasingly evident that Alzheimer’s disease (AD) risk

can bemodulated bymultiple systemic factors. For example, diabetes, cardiovascular disease,

and low cardiorespiratory fitness are associated with increased risk for AD, highlighting

the previously undescribed role for whole body metabolism in AD pathogenesis (Kopf and

Frolich, 2009; Baker et al., 2010; Morris et al., 2014, 2017, 2020; Vidoni et al., 2015; Gaitan

et al., 2019; Nho et al., 2019; Tini et al., 2020). Growing evidence supports metabolic changes

are observed within the brain and systemic tissues in AD, including from blood, skin, muscle,

and adipose tissue (Parker et al., 1990; Parker, 1991; Kish et al., 1992; Curti et al., 1997; Bosetti

et al., 2002; Cardoso et al., 2004; Arbones-Mainar et al., 2010; Mosconi et al., 2011; Fisar

et al., 2016, 2019; Morris et al., 2021; Kim et al., 2022). Furthermore, recent work describes

both liver and kidney function correlate with cognition and AD pathological biomarkers

(Nho et al., 2019; Stocker et al., 2023). Overall, these findings highlight the role of systemic

physiology in AD.

Our goal for this Research Topic was to highlight the role of systemic changes in

AD. Although further studies are needed to understand if systemic changes are a cause

or a consequence of AD, understanding systemic contributions to AD can provide novel

targets to modify risk through lifestyle changes. Promoting studies which provide integral

discussion on systemic physiology in AD is imperative to understand disease etiology and

mitigate risk.

A seminal study in 2019 highlighted the association of elevated plasma liver enzyme

biomarkers with poor cognition, increased AD risk, elevated brain Aβ burden, and reduced

brain glucose metabolism (Nho et al., 2019). As a follow up to this study, in this issue

Wu et al. examined the association of liver function with cognitive impairment using the

Shenzhen aging-related disorder cohort. The study leveraged a cohort of 7,201 people over

the age of 60 years old to examine cognition and blood liver enzyme biomarkers, alanine

aminotransferase (ALT) and aspartate aminotransferase (AST). Wu et al. reported higher

AST to ALT ratio in the cognitive impairment group compared to the non-impaired group.

The cognitive impairment group also had significantly increased age, lower education level,

and more female participants. Overall, this study highlights an association of reduced liver
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function with cognition, a new area of research for the field.

Further studies are warranted to understand the role systemic liver

physiology contributes to brain aging, cognition, and AD risk.

Renal function is associated with cognitive impairment,

however the relationship between renal function and AD

biomarkers is currently poorly understood. The cross-sectional

study by Zhang et al. examined associations of estimated

glomerular filtration rate (eGFR) with plasma biomarkers for AD.

While plasma Aβ biomarkers did not associate with renal function

measured by eGFR, plasma Tau and neurofilament light (NfL)

biomarkers did. These data suggest that reduced renal function

is associated with increased markers of neurodegeneration. Renal

and hepatic function are directly associated with whole body

metabolism, and these studies directly support a role for systemic

metabolism in regulating brain aging.

The role of energy metabolism in AD is highly cited. Energy

disruption is noted across multiple tissues including brain, muscle,

skin, and blood. Multiple studies suggest that AD pathologies

like Aβ and Tau can disrupt mitochondrial function and energy

metabolism (Hansson Petersen et al., 2008; Swerdlow et al., 2014,

2017; Reddy and Oliver, 2019; Weidling et al., 2020; Wilkins et al.,

2022; Zysk et al., 2023). Systemic mitochondrial dysfunction and

disrupted energy metabolism are noted in AD subjects, even in

tissues where AD pathologies are lacking. This suggests disrupted

energy metabolism is upstream of AD pathologies, as proposed

in the mitochondrial cascade hypothesis of AD (Swerdlow et al.,

2014). Modulating energy metabolism and mitochondrial has

become a major target for AD therapeutics. Pre-clinical studies

FIGURE 1

Systemic implications for AD. Normal cognition with aging is associated with increased physical activity, healthy liver and kidney function, normal

thyroid function, and good oral health. AD/dementia risk is increased with physical inactivity, abnormal liver and kidney function, hyperthyroidism,

and poor oral health. Created with BioRender.com.

and clinical studies support the principle that aerobic capacity and

fitness can modulate energy metabolism.

Aerobic capacity and fitness (or the lack there-of) are

risk factors for not only systemic diseases, like diabetes and

cardiovascular disease, but also for cognitive decline and AD. To

study the effects of intrinsic aerobic capacity, rat models were

selectively bred for their capacity for voluntary wheel running (Kerr

et al.). This breeding scheme yielded low voluntary wheel runner

rats with low aerobic capacity and high voluntary wheel runner

rats with high aerobic capacity. Kerr et al. examined cognition,

hippocampal neurogenesis, andmitochondrial function in these rat

models selectively bred for intrinsic aerobic capacity and physical

activity. High aerobic capacity and physical activity benefited

neurogenesis, hippocampal size, brain glucose metabolism, and

brain mitochondrial respiration in female rats. These effects were

not observed in male rats. Physical inactivity and aerobic capacity

have heritable effects on brain health and aging, with increased

susceptibility in females.

Thyroid function has been implicated in AD risk, especially in

women. The thyroid is an essential organ that secretes hormones

critical for energy metabolism homeostasis. Based on prior findings

associating thyroid function with AD, Ma et al. described an

association of dementia risk and cognitive impairment with

thyroid disease using ameta-analysis systemic review (PROSPERO:

CRD42021290105). Fifteen studies were included in the meta-

analysis which suggested that hyperthyroidism and subclinical

hyperthyroidism are associated with increased dementia risk,

while hypothyroidism was not associated with dementia risk.
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This meta-analysis highlights a potential role of hyperthyroidism

in dementia risk and the need to understand the relevance to

disease pathogenesis.

Beyond changes in energy metabolism, systemic inflammation

is also implicated in AD. Oral hygiene is an important

factor in systemic inflammation. Furthermore, oral health is

an important indicator for cardiorespiratory health and can

directly impact risk for infections (Kotronia et al., 2021).

Occlusal support is an indicator of dental health including

tooth loss. Occlusal support allows mastication (chewing), food

mixing with salivary and gastric enzymes facilitating digestion

and nutrient absorption. Da et al. assessed cognitive function

and occlusal support in community dwelling adults aged over

60 years using a cross-sectional study design. Individuals

with poor occlusal support had an increased odds ratio for

cognitive impairment when compared to those with good

occlusal support. Data were adjusted for age, sex, education

level, cigarette smoking, alcohol drinking, cardiovascular disease,

and diabetes. Age mediated most of the association of occlusal

support and cognitive impairment. Further studies are needed

to understand the association of age, occlusal support, and

cognitive impairment.

Collectively, the articles in this Research Topic emphasize

the importance of understanding systemic contributions to AD

(Figure 1). Understanding how systemic risk factors over lifespan

can impact brain aging and cognition is critical to the field of AD.

Systemic risk factors, such as diabetes, cardiovascular disease, and

physical activity are modifiable and could greatly impact the impact

of AD on the aging population.
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