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Background: It has been demonstrated that elderly people’s cognitive capacities

can be improved with exercise, and short sleep is linked to cognitive decline.

However, the impact of physical exercise on cognitive performance in seniors

who do not get enough sleep is largely unknown. This makes it an intriguing

subject to explore further.

Methods: This study consisted of elders (over 60 years old) who participated

throughout the National Health and Nutrition Examination Survey’s 2011–2014

cycle (NHANES). Weighted linear regression model and restricted cubic splines

analysis were performed to evaluate the association between physical exercise

and cognitive function. In the end, 1,615 samples were scrutinized and the total

number of weighted respondents was 28,607,569.

Results: Results showed that in the Animal Fluency test and the Digit Symbol

Substitution test, a positive association was found between physical exercise

volume and scores in the fully adjusted model. A two-piecewise linear regression

model was then applied to explore the threshold effect of exercise on cognitive

performance. Before 960 and 800 MET-minutes/week, there were consistent

positive relationship between exercise and scores of the Animal Fluency test [ß

(95% CI): 0.233 (0.154, 0.312), p < 0.001] and Digit Symbol Substitution test [β (95%

CI): 0.555 (0.332, 0.778), p < 0.001], respectively. However, there was a saturation

effect where physical exercise volume reached the two inflection points.

Conclusion: According to our research, the benefit of exercise did not

always expand with the exercise volume increment under the short-

sleep condition, which challenged existing knowledge. The short-sleep elder

group could maintain cognitive performance with no more than 800 MET-

minutes/week of physical exercise. Verification of these findings requires further

biological investigations.
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GRAPHICAL ABSTRACT

Study design and main findings.

1. Introduction

Aging leads to cognitive decline such as progressive impairment
in memory, judgment, language, and attention, among other
cognitive domains (Morley, 2018). In United States, there was an
increase in the prevalence of cognitive impairment among women
from 18.7% in 1996 to 21.2% in 2014 and among men from 17.6%
in 1996 to 21.0% in 2014 (Hale et al., 2020). It was determined
from results analyzing 160 studies in a meta-analysis that dementia
occurred at a pooled incidence of 17.2 per 1,000 person in a year in
elder population aged 60 years or older (Fiest et al., 2016). A decline
in cognitive abilities, especially cognitive impairments and their
associated diseases, can have a profound effect on an individual, his
or her family, and society in general (Wubker et al., 2015; Connors
et al., 2019). Sleep factors, with unusual sleep patterns (i.e., short-
sleep), poor sleep quality, and sleep disorder (e.g., insomnia) were
associated with occurrence of cognitive impairment in the elderly.

In modern society, short-sleep in the elder population has
become increasingly common. Sleeplessness and disturbed sleep
appear to increase as people age, along with a decrease in good
quality nocturnal sleep (Ohayon et al., 2004; Basner et al., 2007).
In addition, plentiful evidence has shown that inadequate sleep had
negative consequences on cognitive function (Hu et al., 2017; Xu
et al., 2021; You et al., 2023c). One cross-sectional study using the
UK Biobank data reported that short-sleep (<7 h) was associated
with a significant decline in cognitive abilities in the elderly (Kyle
et al., 2017). Over a 3-year follow-up, another population-based
analysis of adults over 50 found that individuals who complained
for sleep issues suffered accelerated cognitive deterioration than
those who didn’t (Jelicic et al., 2002). Given the significant breadth
and impact of insufficient sleep on cognition among elders, there
was an urgent need to find effective and practical solutions to these
problems.

Studies have found that regular exercise and physical activity
was an effective strategy to mitigate the cognitive decline in the
elder group (Espeland et al., 2017; Dominguez et al., 2021). Physical

exercise can improve memory, focus, and concentration (Chirles
et al., 2017), as well as reduce the risk of neurological diseases
(Rolland et al., 2008), cardiovascular diseases (Fletcher et al., 2005),
diabetes (Sampath Kumar et al., 2019), and osteoarthritis (You
et al., 2021b), which were all common among senior citizens.
Furthermore, regular exercise has been demonstrated to improve
overall mental health (Deslandes et al., 2009; You et al., 2021c),
reduce stress (Stubbs et al., 2017), and improve sleep disturbance
(You et al., 2023a), which can all have a positive effect on cognitive
function. Hence, regular exercise is a simple and effective way
to maintain cognitive health, decrease the prevalence of certain
diseases, and elevate living standards for elderly people.

However, the effects of physical exercise on cognition in
the elderly were not consistent. An epidemiological study
showed that neither global nor domain-specific cognitive function
improved with moderate-intensity physical exercise programs after
24 months (Sink et al., 2015). Contrarily, a single exercise session
had no impact on cognition and even raised perceptions of
stress (Hopkins et al., 2012). It is possible that these inconsistent
findings are due to different study designs and confounding
factors, particularly when the impact of sleep on elderly people
is considered. Elderly people’s cognitive abilities can be improved
through exercise, while short sleep is associated with cognitive
decline. To sum up, it is not only crucial but also interesting to
explore the relationship between physical exercise and cognitive
function under short-sleep conditions. Additionally, the evidence
from large population-based studies is limited.

To the best of our knowledge, there was limited prior evidence
that specifically examined whether physical exercise affected
cognitive function in the community of elder groups with short-
sleep conditions. In this study, by using a general sample from the
National Health and Nutrition Examination Survey (NHANES), we
aimed to: (1) examine the relationship between physical exercise
and cognitive function in the short-sleep elder population; and (2)
quantify its dose-response form and further assess the relationship
by threshold analysis.
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2. Materials and methods

2.1. Design and participants

Study data were from the National Health and Nutrition
Examination Survey (NHANES), a comprehensive population-
based survey intended to gather information about civilians in
the United States (US). A multistage probability sampling design
was applied to derive a typical selection of non-institutionalized
households through the NHANES, which has been collected on
approximately 10,000 people every two years since 1999. A research
procedure of NHANES was approved by the Institutional Review
Board (IRB) of the National Center for Health Statistics (NCHS),
with written informed consent obtained.

Based on two cycles of "continuous NHANES" (2011/2012,
2013/2014), a total of 3,632 participants were initially included after
excluding those less than 60 years old (n = 16,198). In addition,
participants who slept less than 7 h were included in this study,
leaving 2,126 samples for finally analysis. Subsequently, eligible
participants needed to have complete data on cognitive tests.
This resulted in an analytical sample of 1,833 survey participants.
Finally, participants without covariates data were excluded from the
analysis, leaving 1,615 samples for finally analysis (see Figure 1).

2.2. Exposure measurement

Self-reported sleep length was collected on usual weekdays or
workdays. In NHANES year cycle 2011–2014, participants were
asked about their routine sleep hours: “How much sleep do you get
(hours)?” Referring to previous literature (Su et al., 2021), short-
sleep duration was defined as ≤7 h per night. The Physical Activity
Questionnaire was used to gather data on the exposure variable,
physical exercise, during home interviews. Physical exercise was
defined as leisure time physical activity (including sports, fitness,
and other recreational activities), as opposed to work-related
physical activities (which included paid and unpaid jobs, household
chores, and yard work).

The metabolic equivalent of task (MET) for the specified
activity was multiplied by the participants’ reported weekly exercise
time. To determine the MET-minutes per week, we used moderate
and vigorous physical exercise (MVPE) measures. The Physical
Activity Guidelines for Americans (PAGA) weighting mechanism
was employed in the MVPE approach, where 2 min of moderate
activity equated to 1 min of vigorous exercise (Ainsworth et al.,
2000). Subsequently, the standard MET value of each activity was
then multiplied by the overall amount of MVPE minutes per
week to determine the MET-minutes per week. This method of
quantifying physical exercise volume was also employed in earlier
papers (You et al., 2022). Each level of exercise corresponded
to a predetermined MET score, depending on whether reported
as moderate (4 MET) or vigorous intensity (8 MET). Since the
cumulative effects of a single exercise event may not be accurately
reflected by a shift of 1 MET, exercise volume was described
in terms of 100 MET as a unit of measurement (100∗MET-
min/week) in this study. In view of the fact that there was limited
recommended physical activity guide for the elderly with short-
sleep, the physical exercise volume was then categorized into three

quantiles, none (<1 MET-min/week), low (from 1 to 360 MET-
min/week), and moderate to vigorous (≥360 MET-min/week) for
further analysis.

2.3. Cognitive function modules

The Animal Fluency test and the Digit Symbol Substitution test
(DSST) were used to measure cognitive function in the NHANES.
These assessments were conducted in a household interview or
at a Mobile Examination Center (MEC). In the Animal Fluency
test, which measured categorical verbal fluency and executive
function, participants were instructed to name as many animals
as they could in a minute. Processing speed, sustained attention,
and working memory were evaluated using the Wechsler Adult
Intelligence Scale (WAIS III) performance module called the DSST.
This examination was administered using a paper form with a
key located on top containing nine symbols and digits. A total of
133 symbols were displayed followed by numbers, and participants
were asked to determine what each symbol represented in 2 min.
Higher scores indicated greater cognitive function across all tests.
The score was calculated as the total number of accurate matches.
Detailed information about paradigm of the two cognitive tests was
described in the Supplementary material.

2.4. Covariate assessment

Referring to the previous literature (Huang et al., 2021; You
et al., 2023b), age, gender, race (non-Hispanic white, non-Hispanic
black, Mexican American, and other races), marital status (never
married, married or living with partner, widowed, divorced, or
separated), family poverty income ratio [low income (<1), middle
income (1,3), and high income (>3)], and educational attainment
(below high school, high school, and college or above) were all
extracted from the demographic questionnaire. Additionally, the
questionnaires for smoking cigarettes and drinking alcohol were
used to gather information about smoking status and alcohol
intake status. According to the questionnaire replies, the status
of alcohol use was divided into three categories: non-drinker,
moderate alcohol use, and heavy alcohol use. Smoking status was
classified as never, former, and current. Moreover, we evaluated
the individuals’ chronic diseases (Wang et al., 2023). Participants
were deemed to have diabetes mellitus (DM) if they met the
following criteria: (1) A doctor has diagnosed you with diabetes;
(2) HbA1c (%) > 6.5; (3) fasting glucose (mmol/l) ≥ 7.0; and
(4) random blood glucose (mmol/l) ≥ 11.1; (5) 2-h OGTT Blood
Glucose (mmol/l) ≥ 11.1; (6) use of insulin or diabetes drugs. Self-
reported congestive heart failure, coronary heart disease, angina,
heart attack, or stroke were attributed to cardiovascular disease
(CVD). Detailed covariate information was available at http://www.
cdc.gov/nchs/nhanes/.

2.5. Statistical analyses

To comply with the NHANES protocol, all data were combined
into a single dataset and analyzed using the masked variance
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FIGURE 1

Flowchart depicting the selection strategy.

and weighting procedure. Using the weights from the Mobile
Examination Center interviews, 4 years’ worth of survey data from
NHANES 2011 to 2014 were combined to address non-response,
non-coverage, and unequal probabilities of selection. This strategy
was consistent with the weight method of prior researches (Shen
et al., 2019; You et al., 2022). The merged weights were calculated as
WT11−14 = (1/2) ∗WTMEC2YR11−12 + (1/2) ∗WTMEC2YR13−14,
where WTMEC2YRs were variables from NHANES 2011–2014. In
this study, we employed both multivariate adjusted and unadjusted
models: Model 0 was adjusted for no covariates; Model 1 was
adjusted for age, sex, race; Model 2 was adjusted for age, sex, race,
marital status, education, poverty status, body mass index, smokers,
alcohol drinkers, diabetes mellitus, and cardiovascular diseases.

Weighted linear regression model was used to investigate
the association between physical exercise and test results for
cognitive function. To explore the threshold impact and take into
account any confounders, we constructed a model of two-piecewise
linear regression. The threshold level of physical exercise (100 ∗

MET-minutes/week) was determined using a recurrence method,
which includes identifying the inflection point along a predefined
interval and selecting the most likely inflection point. Using
the log-likelihood ratio test, the two-piecewise linear regression
model was compared to the one-line linear regression model.
Simultaneously, the non-linear relationship was further evaluated
using the restricted cubic spline (optimal knots = 3). Stratified
analyses were conducted to explore the influence of covariates on
the relationship between physical exercise and cognitive function.
The R Foundation’s software1 was used for all statistical analyses,
and a p value of 0.05 or less was regarded as statistically significant.

3. Results

In the final analysis, 1,615 participants aged 60 or older were
included, and represented for a weighted population of 28,607,569.
Table 1 displays the sociodemographic data of the study subjects.
Study participants were an average of 68.79 years old, 47.17% of
whom were male. The mean sleep length of all participants was

1 http://www.R-project.org

6.29 h per day. In addition, the average physical activity among
total participants was 595 MET-minutes/week. For the cognitive
function assessment, the mean score of the Animal Fluency test
(reflecting verbal fluency and executive function) and the score
of the Digit Symbol Substitution test (reflecting processing speed,
sustained attention, and working memory) was 18.54 and 53.55,
respectively.

Physical exercise and cognitive function test results were
analyzed using a weighted linear regression model. As for the
Animal Fluency test, when physical exercise was assessed as a
continuous variable, Table 2 reveals that higher exercise volume
was associated with better performance [Model 0, β (95% CI): 0.115
(0.085,0.144), p < 0.001; Model 1, β (95% CI): 0.099 (0.071, 0.128),
p < 0.001; Model 2, β (95% CI): 0.077 (0.048, 0.106), p < 0.001].
Exercise was also associated with this outcome when assessed as a
category variable. In the fully adjusted Model 2, taking the none
exercise group as the reference, moderate to vigorous volume was
positively associated with the Animal Fluency test scores [β (95%
CI): 1.946 (1.126, 2.765), p < 0.001]. However, no significant
association was identified in the low level physical exercise group.
According to Supplementary Table 1, stratified analysis revealed
that these associations were consistent across subgroups.

When it comes to the Digit Symbol Substitution test, similar
findings are also identified in Table 2. Results showed that higher
exercise volume was associated with higher scores of the Digit
Symbol Substitution test when exercise volume was assessed as a
continuous variable [Model 0, β (95% CI): 0.263 (0.152, 0.375),
p < 0.001; Model 1, β (95% CI): 0.224 (0.119, 0.328), p < 0.001;
Model 2, β (95% CI): 0.077 (0.048, 0.106), p = 0.038]. Also, this
association persisted when exercise was assessed as a category
variable. In the fully adjusted Model 2, using the reference
group of those with no exercise, moderate to vigorous volume
was positively associated with the Digit Symbol Substitution
test performance [β (95% CI): 3.707 (1.325, 6.090), p = 0.006]
in the Model 2. Additionally, a stratified analysis showed that
these associations were consistent for subgroups with different
demographic characteristics, as detailed in Supplementary Table 2.

An analysis of the log-likelihood ratio was performed to
compare the one-line (non-segmented) model to the segmented
regression model, and our results indicated a threshold existed. As
for the Animal Fluency test (Table 3), based on a two-piecewise
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linear regression model, we calculated that the inflection point
was 960 MET-minutes/week. As seen on the left side of the
inflection point, the β (95% CI) and p-value were 0.233 (0.154,
0.312) and < 0.001, respectively. On the right side of the inflection
point, we found no significant association between physical exercise
and cognitive test’s score, with β (95% CI) and p-value of 0.013
(−0.027, 0.053) and 0.522. Similar results are also found in the
Digit Symbol Substitution test (Table 4). The score of the test

TABLE 1 Demographic characteristics of study participants in NHANES.

Variable (%/Mean)*

Age

<65 36.42

[65, 72) 32.34

≥72 31.24

Sex

Male 47.17

Female 52.83

Race/ethnicity

Non-hispanic white 76.99

Non-hispanic black 9.32

Mexican American 3.68

Other race/ethnicity 10.01

Marital status

Never married 4.63

Married/living with partner 64.90

Widowed/divorced 30.47

Education

Below high school 5.65

High school 30.62

College or above 63.72

Poverty income ratio

<1 9.47

[1,3) 37.11

≥3 53.42

BMI (kg/m2)

<25 26.77

[25, 30) 34.41

≥30 38.82

Smokers

Never smoker 50.96

Former smoker 37.24

Current smoker 11.80

Alcohol drinkers

Non-drinker 36.11

Moderate alcohol use 57.68

High alcohol use 6.21

(Continued)

TABLE 1 (Continued)

Variable (%/Mean)*

Diabetes mellitus

No 68.81

Yes 31.19

Cardiovascular diseases

No 79.42

Yes 20.58

Physical exercise (100*MET-minutes/week) 5.95± 0.48

Sleep duration (hours/day) 6.29± 0.03

Score of the Animal Fluency test 18.54± 0.26

Score of the Digit Symbol Substitution test 53.55± 0.67

*Weighted percentage for category variables and weighted Mean ± SE for continuous
variables.
NHANES, National Health and Nutrition Examination Survey; BMI, body mass index; MET,
metabolic equivalent of task.

was positively correlated with physical exercise until it bottomed
out at 800 MET-minutes/week [β (95% CI): 0.555 (0.332, 0.778),
p < 0.001]. However, when the physical exercise volume was higher
than 800, such association seemed to saturate [β (95% CI): −0.044
(−0.136, 0.048), p = 0.349]. In Figure 2, using restricted cubic
splines, we flexibly modeled and visualized the relationship between
cognitive performance and physical exercise volume among short-
sleep elders. When exercise volume reached 9.6 and 8 (100∗MET-
minutes/week), there was a saturation effect where the effects of
physical exercise on the Animal Fluency test and Digit Symbol
Substitution test plateaued.

4. Discussion

In this population-based study, physical exercise volume was
found to be positively associated with the cognitive function
in the short-sleep elders. Additionally, exercise and cognitive
performance were found to be non-linearly correlated. The
relationship was stated as follows: the scores of cognitive tests rose
substantially with the expanded level of exercise, but reached a
plateau after exercise volume at 960 MET-minutes/week for the
Animal Fluency test and 800 MET-minutes/week for the Digit
Symbol Substitution test. Our study detected that physical exercise
had a threshold effect on cognitive function in short-sleep elders.

Our study identified a positive association between physical
exercise volume and cognitive function in elderly individuals
who get short amounts of sleep, which was consistent with a
prior meta-analytic study in the aging population (Colcombe and
Kramer, 2003; Lam et al., 2018). In several population studies
(Spirduso and Clifford, 1978; Emery and Gatz, 1990), it was also
verified that older high-fit individuals performed cognitive tests
better than older low-fit individuals. While the mechanism of this
association was not yet understood, it was clear that, in addition to
improving cognitive function, exercise has been linked to increased
expression of brain chemicals such as molecular mediators and
growth factors represented by brain-derived neurotrophic factor
(BDNF). Animal studies showed that exercise induces BDNF in
the brain, most robustly in the hippocampal region (Cotman et al.,

Frontiers in Aging Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1214748
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1214748 June 16, 2023 Time: 15:21 # 6

You et al. 10.3389/fnagi.2023.1214748

TABLE 2 Associations between physical exercise and cognitive function in the short-sleep elder population.

Model 0a Model 1b Model 2c

β (95% CI) p-value β (95% CI) p-value β (95% CI) p-value

Score of the Animal Fluency test

Physical exercise (100*MET-minutes/week) 0.115 (0.085,0.144) <0.001 0.099 (0.071, 0.128) <0.001 0.077 (0.048, 0.106) <0.001

Physical exercise (as category)

None Reference Reference Reference

Low 0.503 (−1.247,2.253) 0.561 0.294 (−1.227, 1.815) 0.694 0.160 (−1.308, 1.629) 0.813

Moderate to vigorous 2.746 (1.847,3.645) <0.001 2.445 (1.596, 3.295) <0.001 1.946 (1.126, 2.765) <0.001

Score of the Digit Symbol Substitution test

Physical exercise (100*MET-minutes/week) 0.263 (0.152, 0.375) <0.001 0.224 (0.119, 0.328) <0.001 0.077 (0.048, 0.106) 0.038

Physical exercise (as category)

None Reference Reference Reference

Low 3.478 (−1.368, 8.325) 0.153 3.191 (−0.880, 7.262) 0.119 1.249 (−2.238, 4.736) 0.443

Moderate to vigorous 7.979 (4.952,11.007) <0.001 6.684 (4.244, 9.123) <0.001 3.707 (1.325, 6.090) 0.006

CI, confidence interval.
aModel 0, no covariates were adjusted.
bModel 1, age, sex, race were adjusted.
cModel 2, age, sex, race, marital status, education, poverty status, body mass index, smokers, alcohol drinkers, diabetes mellitus, and cardiovascular diseases were adjusted.

TABLE 3 Threshold effect analysis of the relationship between physical
exercise and score of the Animal Fluency test in the short-sleep elders
(based on Model 2).

β (95% CI)

One-line linear regression model 0.077 (0.051, 0.103)

Two-piecewise linear regression model

Exercise < 9.6 (100*MET-minutes/week) 0.233 (0.154, 0.312)

Exercise ≥ 9.6 (100*MET-minutes/week) 0.013 (−0.027, 0.053)

Log-likelihood ratio test

Age, sex, race, marital status, education, poverty status, body mass index, smokers, alcohol
drinkers, diabetes mellitus, and cardiovascular diseases were adjusted.

2007). Neuronal cells’ survival, differentiation, migration, dendritic
arborization, synaptogenesis, and plasticity were all influenced by
BDNF (Greenberg et al., 2009). This neurotrophin’s molecular
mechanism has been explored in a recent study that FNDC5, which
was previously identified as a muscle protein induced by exercise,
was elevated in the brain and might lead to better cognitive ability
(Wrann et al., 2013). There was also a study that explored these
effects from the molecular perspective that the benefits of exercise
were attributed to the control of communications between BDNF,
p-CREB, and NMDAR signaling, which was closely related to the
brain function of spatial learning and memory (Wu et al., 2020).

From the dose-response investigation of the relation between
exercise and cognitive function in short-sleep elders was performed,
our study found that there was a threshold effect of exercise in
this special group. The 2018 Physical Activity Guidelines indicated
that there was still much to learn regarding how much physical
exercise is necessary to enhance cognitive abilities (Erickson et al.,
2019), and there lacked strong evidence that whether physical
activity was always effective in improving the cognition, especially
in short-sleep aged adults. Physical exercise appeared to have
a threshold effect (no more than 800 MET-minutes/week) on

TABLE 4 Threshold effect analysis of the relationship between physical
exercise and score of the Digit Symbol Substitution test in the
short-sleep elders (based on Model 2).

β (95% CI)

One-line linear regression model 0.099 (0.037, 0.163)

Two-piecewise linear regression model

Exercise < 8.0 (100*MET-minutes/week) 0.555 (0.332, 0.778)

Exercise ≥ 8.0 (100*MET-minutes/week) −0.044 (−0.136, 0.048)

Log-likelihood ratio test

Age, sex, race, marital status, education, poverty status, body mass index, smokers, alcohol
drinkers, diabetes mellitus, and cardiovascular diseases were adjusted.

cognitive function in short-sleep elders, with an increase in
cognitive function observed when exercise volume was kept within
such a level (800 MET-minutes/week volume exercise was equal
to perform 200-min moderate intensity exercise or 100-minutes
vigorous intensity exercise per week). This was a novel finding,
considering that WHO Guidelines 2020 recommended elders to
exercise for 150–300 min each week at a moderate level (WHO,
2020).

Consistent with our results, researchers using cohort data
from the China Health and Retirement Longitudinal Study also
discovered that moderate and mild physical exercise was linked to
higher cognitive functioning, as opposed to vigorous exercise (Wu
et al., 2021). Obviously, sleep plays an important role in cognitive
function and lacking sleep may induce disorders of brain hormones
and chemicals during daily executive activities. Moderate level
exercise has been proposed to activate the reticulum system’s
arousal mechanism, thus improving various cognitive functions
(Dietrich and Audiffren, 2011). Excessive exercise might, however,
result in the prefrontal cortex being disengaged from higher-order
functions due to greater activation of the premotor cortex and
supplementary motor area. It was also found that vigorous exercise
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FIGURE 2

The dose-response relationship between exercise volume with the score of the Animal Fluency test (A) and score of the Digit Symbol Substitution
test (B) in the short-sleep elders.

might be difficult for beginners and elders with concomitant
diseases, and could lead to feelings of incompetence, failure, and
low self-esteem (You et al., 2021a). Hence, exercise should be
regulated, taking into account the individual’s sleep habits and
duration, to ensure the most beneficial effect on cognitive function.

The strengths of this study included that we used the study
samples from a nationwide population. To our awareness, this
was the initial research to examine the dose-response relationship
between physical exercise and cognitive function in the specific
short-sleep aged population. Exercise volume and cognitive
performance associations were analyzed using adjusted weighted
regression in consideration of the complex multistage sampling
design of NHANES. In addition, threshold analysis was performed
in order to quantify the dose-response form of the association. We
also used the stratified analysis to further verify these results in
consideration of confounding factors, including sociodemographic
characteristics, BMI, smoking and alcohol drinking status, as well
as chronic diseases.

It was also important to note that this study had the following
limitations. Firstly, due to the NHANES’ cross-sectional design,
the causal or temporal relationship among these associations was
still questionable in the elderly short-sleep population. There
was also an assumption that elders with cognitive decline or
impairment would unable to perform high volume of exercise
activities. Secondly, in spite of the fact that we adjusted for
possible confounders, residual confounding effects (i.e., biological
and genetic factors) could still bias our results. Thirdly, the
measurement of physical exercise was assessed by self-report
questionnaires in NHANES design, which tended to be imprecise
compared with objectively measured test such as the accelerometer
(Barros et al., 2021). Moreover, the results of this study were
only applicable to elderly people with short sleep, and additional
research is needed in order to better understand sleep patterns
and the effects of age. Lastly, it is unknown whether the pandemic
or other public health emergencies will alter these associations.
Research on the biological mechanisms of exercise and COVID-19
is therefore necessary to shed light on this population’s cognition
(Gonzales et al., 2022).

5. Conclusion

Utilizing the NHANES data, we assessed short-sleep older
adults’ physical exercise and cognitive function in this study.
Physical exercise showed positive associations with performance on
a test of Animal Fluency and a test of Digit Symbol Substitution.
In addition, a dose-response-based analysis detected the threshold
effect in the short-sleep elders, and performing no more than
800 MET-minutes/week exercise was positively associated with
cognitive abilities. However, the underlying molecular mechanisms
of such association remain unknown. Future research is needed
to better understand the relationship between physical exercise
and cognitive function in this population, as well as the
potential mechanisms.
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