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Human glutaminyl cyclase (hQC) is drawing considerable attention and emerging

as a potential druggable target for Alzheimer’s disease (AD) due to its close

involvement in the pathology of AD via the post-translational pyroglutamate

modification of amyloid-β. A recent phase 2a study has shown promising

early evidence of e�cacy for AD with a competitive benzimidazole-based QC

inhibitor, PQ912, which also demonstrated favorable safety profiles. This finding

has sparked new hope for the treatment of AD. In this review, we briefly

summarize the discovery and evolution of hQC inhibitors, with a particular interest

in classic Zinc binding group (ZBG)-containing chemicals reported in recent

years. Additionally, we highlight several high-potency inhibitors and discuss new

trends and challenges in the development of QC inhibitors as an alternative and

promising disease-modifying therapy for AD.
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1. Introduction

Alzheimer’s disease (AD) is a complex neurodegenerative disease that is clinically

characterized by progressive and irreversible dysfunction of language, memory, and

cognition (Association, 2023). AD is the leading cause of dementia in the elderly,

representing 60–80% of dementia cases globally (Association, 2023). Projections indicate

that the number of people living with dementia around the world will sharply increase

from 55 million to 139 million by 2050 (Association, 2023). However, for more than a

century, only five drugs have been approved for the symptomatic treatment of AD, and

these drugs are incapable of retarding or reversing disease progression. China and the

United States have recently approved the mannan oligosaccharide GV-971 (Syed, 2020) and

the anti-Aβ antibody aducanumab (Aduhelm) (Dhillon, 2021) as novel disease-modifying

treatments for AD, respectively. Nevertheless, both treatments have been questioned for their

limited clinical efficacy in clinical trials. Therefore, it is still urgently needed to develop new

disease-modifying therapies for the early intervention of AD.
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The deposition of senile plaques, dominantly consisting of

β-amyloid proteins (Aβs), is one of the pathological hallmarks

of AD brains. Full-length Aβ1−40/42 is generated through the

amyloidogenic processing of the amyloid precursor protein (APP)

mediated by the β-site APP cleaving enzyme (BACE) and γ-

secretase complex (Chen et al., 2017). Compelling evidence showed

that the highly hydrophobic and aggregation-prone Aβ1−40/42

plays an upstream role in the pathological progression of AD

via inducing tau hyperphosphorylation, synaptic dysfunction, and

neuroinflammation (Selkoe and Hardy, 2016; Lee et al., 2017).

Hundreds of Aβ targeting or Aβ-related therapeutic strategies have

thus been proposed in the past three decades (van Bokhoven

et al., 2021), while unfortunately most of the interventions failed

in clinical trials due to limited effects on cognition recovery or

unfavorable safety profiles in AD patients.

Aβs in the senile plaques are highly diverse and heterogeneous

due to various post-translational modifications (PTMs) such

as truncations, oxidation, and pyroglutamation (Roher et al.,

2017). The continuous failures have prompted researchers to

reevaluate the role of PTMs of Aβ in the pathogenesis of AD

(Grochowska et al., 2017; Roher et al., 2017). Among the PTMs,

the pyroglutamation product pE3-Aβ has recently been shown to be

closely involved in AD (Figure 1) and is gradually presumed to be

a highly desirable biomarker and intervention target (Jawhar et al.,

2011a; Bayer, 2022). pE3-Aβ is formed through the dehydration and

cyclization of the Glu3 residue of the truncated Aβ3−40/42 under

the catalytic action of human glutaminyl cyclase (hQC) (Figure 1)

(Schilling et al., 2004; Cynis et al., 2008). It is noteworthy that the

release of truncated Aβ3−40/42 is independent of BACE and may

primarily relate to Meprins, members of the “astacin family” of

metalloproteinases, which are able to cleave APP after the Ala2 at

the N-terminus of the Aβ sequence (Stephan Schilling andDemuth,

2010).

pE3-Aβ constitutes a prominent fraction of the total Aβ

species in AD brains (Harigaya et al., 2000; Wu et al., 2014) and

the critical initiating role of pE3-Aβ in AD was supported by

several lines of evidence (Figure 1) (Gunn et al., 2010; Nussbaum

et al., 2012). First, pE3-Aβ has hundreds-fold higher aggregation

ability (Schilling et al., 2006) and is much easier to maintain the

neurotoxic oligomeric states compared with full-length Aβ (Lee

et al., 2014; Gunn et al., 2016; Wulff et al., 2016). It can also act

as seeds to accelerate Aβ assembly (Dammers et al., 2017b) and

subsequently form denser, more stable, and cytotoxic Aβ/pE-Aβ

copolymers than those of Aβ1−40/42 aggregates (Schilling et al.,

2006; Nussbaum et al., 2012). Second, pE3-Aβ is perhaps more

resistant to aminopeptidase due to the lactam ring in the N-

terminus of pE3-Aβ (Gontsarova et al., 2008), which contributes

to prolonged neurotoxicity in vivo. In addition, observations

revealed that pE3-Aβ acts upstream of the neurotoxic Aβ cascade

(Dammers et al., 2017a; Bayer, 2022). It progressively accumulates

in the brain at the early stage of AD, even before full-length

Aβ aggregation, and subsequently triggers neurodegeneration and

ultimately exacerbates the severity of AD pathology and cognition.

In a most recent study, donanemab, a pE3-Aβ-specific antibody

developed by Eli Lilly, significantly cleared amyloid plaques and

slowed down cognitive deterioration in patients with mild AD

in a phase II trial (Mintun et al., 2021) and met all the primary

and secondary endpoints in a phase III trial (TRAILBLAZER-ALZ

4), reducing brain amyloid plaque levels by 65.2% at 6 months

compared to baseline (data were shared on 30 November 2022

at the Clinical Trials on Alzheimer’s Disease conference). All this

evidence strongly supports pE3-Aβ as an effective therapeutic target

(Perez-Garmendia and Gevorkian, 2013).

QC is intimately associated with the pathology and severity of

AD by paralleling the generation of pE-Aβ in the brain (Figure 1)

(Morawski et al., 2014), and the deposition of pE-Aβ was found to

be restricted to APP/QC co-expression areas (Hartlage-Rübsamen

et al., 2018). Furthermore, the expression and enzymatic activity

of QC are significantly elevated and are positively correlated with

both the accumulation of pE-Aβ and cognition decline in the

brains of AD subjects compared with those of age-matched controls

(Valenti et al., 2013; Gunn et al., 2021). Besides, both QC knockout

and treatment with QC inhibitors (QCIs) significantly rescue the

behavioral phenotype and alleviate disease-like pathology in the AD

mouse model (Schilling et al., 2008; Jawhar et al., 2011b). Hence,

small molecule-based QCIs provide an alternative, promising, and

cost-effective therapeutic approach apart from immunotherapy for

early-stage AD treatment (Coimbra et al., 2019; Coimbra and

Salvador, 2021; Xu et al., 2021). Recently, PQ912 (varoglutamstat),

a QC competitive inhibitor developed by Probiodrug AG, passed

the clinical phase IIa trial (Scheltens et al., 2018) and is regarded as

the proof-of-concept validation of QC.

Over the past two decades, a number of QCIs, including both

synthetic and natural compounds, have been discovered. Several

reviews focusing on the function of QC and the development

of QCIs have been published (Coimbra et al., 2019; Vijayan

and Zhang, 2019; Coimbra and Salvador, 2021; Xu et al., 2021;

Zhang et al., 2022), while new design and screening strategies

have been applied in discovering new QCIs with unique structural

characteristics in recent years. Hence, we reexamine the discovery

and evolution of QC inhibitors, with a particular interest in classic

Zinc binding group (ZBG)-containing chemicals. In addition, we

highlight several representative high potent inhibitors as well as the

challenges of QCIs as potential disease-modifying therapies for AD.

2. Brief functions and structural
features of hQC

N-terminal pyroglutamation of proteins is ubiquitously found

in a variety of organisms, including bacteria, plants, and animals,

and two types of QCs with distinctive structures and catalytic sites

have been identified and classified in these organisms so far. Type

I QCs are mainly found in plants and bacteria, as exemplified

by Papaya QC and Myxococcus xanthus QC, while type II QCs

are primarily present in animals (Taudte et al., 2021), such as

Drosophila melanogaster QC and human QC (hQC), which share

substantial sequence identity and structural similarity (Koch et al.,

2012b). Type I QC exhibits a five-bladed β-propeller structure

composed of β-sheets and antiparallel β-strands, together with

a Ca2+-binding motif in the active core (Carrillo et al., 2010),

which significantly differs from the α/β topology and Zn2+-binding

motif in the catalytic center of Type II hQCs (Taudte et al.,

2021).
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FIGURE 1

Generation and roles of pE3-Aβ in AD and schematic drawing of the QC inhibition approach.

hQC, known as human glutaminyl-peptide acyltransferase

(QPCT, EC2.3.2.5), belongs to the acyltransferase family and

is abundant in the human brain and neuronal tissues. hQC

is broadly expressed in various neurons, including urocortin-

1 and cholinergic Edinger-Westphal neurons, as well as locus

coeruleus and nucleus basalis Meynert neurons (Morawski et al.,

2010). Normally, hQC promotes the maturation of neuropeptides

or cytokines such as gonadotropin-releasing hormone (GnRH),

thyrotropin-releasing hormone (TRH), and chemokine CCL-2 via

catalyzing the cyclization of glutamine residue at the N-terminus

of proteins (Cynis et al., 2011; Becker et al., 2016; Vijayan and

Zhang, 2019). It was later revealed that QC only shows modest

specificity for cyclization of their primary glutaminyl substrates

(Seifert et al., 2009), it can also catalyze N-terminal glutamate

cyclization (Schilling S. H. et al., 2003; Schilling et al., 2004), which

thus provides a close link between QC and AD pathophysiology via

the formation of pE-Aβ. Nevertheless, the enzymatic conversion

has strikingly different condition preferences, with glutaminyl

conversion occurring with an optimumpHof 8.0, whereas glutamyl

conversion is favored at a pH of 6.0 (Schilling et al., 2004).

There are two isoforms of QC in humans, namely, the secretory

QC (sQC, 361aa, encoded by the QPCT gene located at 2p22.2) and

golgi-resident QC (gQC or isoQC, 382aa, encoded by the QPCTL

gene located at 19p13.32). sQC is a secreted protein that contains

a N-terminal secretion signal, while gQC contains a N-terminal

anchor responsible for the retention within the Golgi complex. sQC

and gQC share a sequence identity of >45%, have similar catalytic

domain sizes, and catalyze the same enzymatic reaction (Stephan

et al., 2009), making it uneasy to design iso-specific inhibitors. The

discrepancy distribution of sQC and gQC results in the conversion

of different substrates and even distinct physiological roles, which

was suggested to be beneficial to the complementary function

regulation of QC in a non-catalytic specificity manner (Coimbra

and Salvador, 2021). As pE-Aβ in humans is mainly catalyzed by

sQC rather than gQC in vivo, we will focus on the sQC inhibitors

for the treatment of AD in this review.

The catalytic domain of sQC contains Zn2+ and approximately

330 amino acid residues, exhibiting a globular α/β-fold open-

sandwich topology that comprises a central six-stranded β-sheet

(among which two were antiparallel) surrounded by two and six

α-helices on the opposite sides and flanked by two α-helices at

one edge of the β-sheet (Huang et al., 2005; Xu et al., 2021).

The catalytic domain has a hydrophobic entrance and a relatively

narrow binding pocket. The essential Zn2+ is located at the bottom

of the active pocket, coordinating with three conservative residues

(Asp159, Glu202, and His330) and a water molecule to form a

tetrahedral structure, which is necessary for catalysis (Huang et al.,

2005). The loop domains near the active center of sQC have

certain conformational variabilities that might be affected by N-

linked glycosylation (Ruiz-Carrillo et al., 2011); meanwhile, the

glycosylation has a limited impact on the overall structure and

catalytic activity of sQC but may influence its solubility (Schilling

et al., 2002; Ruiz-Carrillo et al., 2011). The crystal structure of hQC

also revealed a unique hydrogen-bond network in the active site,

formed by five highly conserved residues (Ser160, Glu201, Asp248,

Asp305, and His319), within which Glu201 and Asp248 participate

in binding to the substrate. When natural substrates or inhibitors

enter the catalytic center, the carbonyl of glutamine, glutamate,

or other metal binding groups can replace water molecules to

coordinate with Zn2+ (Huang et al., 2008; Coimbra and Salvador,
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2021), thereby catalyzing or inhibiting the cyclization of glutamine

and glutamate of the substrates. The structural features, especially

the mono-Zn2+ binding model, offer the most valuable guidance

for the design and discovery of QCIs.

3. Development and evolution of QCIs

3.1. Rational design and experiment-based
QCIs

A metal-chelating group has been initially considered an

essential functional component for the construction of QCIs since

the identification of hQC as a Zn2+-dependent metalloenzyme and

the discovery that chelators such as imidazole and its analogs have

weak QC inhibitory activity (Schilling S. et al., 2003; Schilling S.

H. et al., 2003; Demuth et al., 2004a,b). Probiodrug AG (currently

Vivoryon Therapeutics N.V.) was a pioneer in developing high-

activity QCIs (Demuth et al., 2004a,b; Buchholz et al., 2008), and as

early as 2006, the company contributed the foundational literature

for the design and discovery of the first high potent imidazole-

containing QC inhibitor via mimicking a tripeptide (Gln-Phe-

Ala-NH2) substrate (Buchholz et al., 2006). The strategy has been

proven to be highly efficient in generating a library of QCIs with Ki

ranging from nanomolar tomicromolar. In particular, the strongest

inhibitor 1 (Table 1A), known as PBD150 or PQ50, had an excellent

Ki of 60 nM (Buchholz et al., 2006). It was unexpected that PBD150

was approximately 19-fold more effective toward sQC than gQC,

whereas the co-crystallization of PBD150-sQC complex revealed

an almost identical binding mode as observed in PBD150-gQC

complex, except for the slightly stronger hydrophobic interaction

with Ile303 compared with that of Val324 in gQC (Huang et al.,

2011). The binding properties of PBD150 to sQC in solution

provide additional evidence that the conformation of PBD150

is susceptible to disruption through protein-protein interactions

(Koch et al., 2012a). Surprisedly, replacing imidazole in PBD150

with 5-methyl imidazole leads to a stronger inhibitor 2 (Table 1A),

with almost a 10-fold increase in the activity compared with

PBD150 (Buchholz et al., 2009). However, the inhibitory activity

of 3 (Table 1A) decreased to basal level when connecting with

the two methoxy groups on the benzene ring (Tran et al., 2013).

Subsequent studies regularly employed comparable substrate-

mimicking approaches utilizing an alternative Aβ3−5 (Glu-Phe-

Arg) or used PBD150 and 2 as lead compounds, leading to the

identification of inhibitors with shared pharmacophores and an

increasingly elucidated structure-activity relationship (SAR).

The classic framework of these inhibitors consists of three

crucial motifs A, B, and C (Figure 2). The motif A contains a

zinc-binding group (ZBG) or general metal-binding group (MBG),

with imidazole, benzimidazole, and triazole as the most common

structure entities. The imidazole-based ZBG, particularly the 5-

methyl imidazole, is commonly the first choice (Kumar et al., 2013),

leading to the fact that the imidazole-based inhibitors constitute

the vast majority of the total QCIs. Recently, hydrazides were

identified as the most potent ZBG compared with other classic

Zn-binders (Kupski et al., 2020), which offer another option for

designing novel inhibitors. The motif B contains at least a hydrogen

bond donor (HBD) or a hydrogen bond acceptor (HBA); it is

usually peptide amide analogs such as urea, thiourea, and their

derivatives. Both urea and thiourea contributed not only more

than one HBD and HBA but also flexible bonding (Tran et al.,

2019). The motif C is normally an aromatic ring opposite or

close to the ZBG, mimicking the Phe2 residue of Aβ3−5, which

participates in the π-π interaction with the benzyl side chain

of the essential Phe325 of QC. Among these classic inhibitors,

PBD150 (Buchholz et al., 2006), 5 (PQ912) (Lues et al., 2015), and 6

(SEN177) (Jimenez-Sanchez et al., 2015) were the most outstanding

representatives of imidazole, benzimidazole, and triazole-based

QCIs, respectively (Table 1A). These inhibitors exhibit favorable

pharmacodynamic profiles and are widely used as positive controls

in numerous studies. However, only PQ912 is undergoing clinical

trials until now.

The Phe2 and Arg3 residues of Aβ3−5 both are deeply involved

in the interaction with QC. Nevertheless, the significant role of the

guanidine side chain of Arg3 was underestimated earlier. To further

mimic the feature of the guanidine group and to improve the QC

inhibitory activity, Jeewoo Lee et al. added a nitrogen-containing

heterocyclic group as an extended motif D based on the scaffold of

2 (Hoang et al., 2017). The newly developed inhibitors displayed

5- to 40-fold activity increase compared with 2 (IC50 =29.2 nM in

this assay). Though 7 (IC50 =0.7 nM for hQC, Table 1B) was the

most potent candidate even among previously reported inhibitors,

it was found to be inactive in an acute ICR mice model to study

the in vivo pE3-Aβ40 lowering efficacy. Whereas compound 8 (IC50

= 4.5 nM for hQC, Table 1B) exhibited a prominent efficacy of

lowing pE3-Aβ40 by 54.7%, significantly reducing the brain pE3-

Aβ42 level of APP/PS1 mice, and restoring the cognitive function

of 5×FAD mice. Based on these encouraging results, the authors

then systematically studied the SAR of 7 and 8 by modifying the

Arg-mimetic motif, leading to the discovery of 9 (IC50 = 6.2 nM,

Table 1B) (Ngo et al., 2018a) and 10 (IC50 = 8.8 nM, Table 1B) (Ngo

et al., 2018b). Molecular modeling studies demonstrated that all

these inhibitors formed extra strong salt bridge interactions with

the carboxylate residue of Glu327, supporting the necessity of the

extended motif D in high potent QC inhibitor design.

The X-ray structure showed that the PBD150 resided in the

active site of hQCwith a bent Z-E conformation (Huang et al., 2011;

Hoang et al., 2019), while the 2-aminopyridine of extended D in 8

can freely rotate in the active site as revealed bymolecular modeling

(Hoang et al., 2017), suggesting the possibility of improving binding

potency and inhibitory activity by a conformational restriction.

Jeewoo Lee et al. creatively incorporated a conformational blocker

into the urea or thiourea nitrogen of motif B to induce the

formation of bent Z-E conformers (Hoang et al., 2019). The strategy

was proven to be effective as well. 24 inhibitors with various

rigid blocks showed a significant activity enhancement with in

vitro IC50 below 10 nM compared with PBD150 (evaluated IC50

= 29.2 nM in this assay). The 11, 12, and 13 have a remarkably

low IC50 value of 2.8 nM, 1.3 nM, and 1.6 nM, respectively, while

the in vivo QC inhibition efficacy of these compounds was much

weaker than that of 14 (IC50 = 8.7 nM), 15 (IC50 =3.6 nM), and

16 (IC50 = 6.1 nM) (Table 1C), which suppressed the generation

of pE3-Aβ40 by more than 20% in an acute mouse model

compared with a negative control. Among the selected inhibitors,
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TABLE 1 Representative design and experiment-based QCIs.

(A) QCIs with classic motifs A, B, and C

1 (Buchholz et al.,

2006); 2 (Buchholz

et al., 2009); 3 (Tran

et al., 2013); 4

(Ramsbeck et al.,

2013); 5 (Lues et al.,

2015); 6 (Pozzi

et al., 2018)

(B) QCIs with extended motif D

7, 8 (Hoang et al.,

2017); 9 (Ngo et al.,

2018a); 10 (Ngo

et al., 2018b)

(C) QCIs with restricted conformation

11–16 (Hoang et al.,

2019)

17, 18 (Van Manh

et al., 2022)

(Continued)
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TABLE 1 (Continued)

(D) QCIs with conformational blockers and extended motif D

19, 20 (Van Manh

et al., 2021)

FIGURE 2

Essential pharmacophores of the classic QC inhibitor and its representative building blocks.

16 exhibited the most promising in vivo efficacy and druggable

profiles, such as liver microsomal stability and up to 50-fold

inhibitory selectivity against gQC. The molecular docking further

demonstrated that 16 displayed a Z-E conformation at the active

site of QC, as anticipated. The N-substituted piperidinyl blocker

of 16 not only restricted the conformation but also formed

additional hydrophobic interactions with Tyr299, Val302, and

Ile303, which may be highly correlated with the high inhibitory

activity and QC selectivity. Remarkably, the SAR indicates that

the effect of conformational restriction was more marked in the

urea series than that of thiourea. In their recent study, the 3,4-

dimethoxyphenyl group of the urea series scaffold was replaced by

indazole bio-isosteres, which were regarded as more metabolically

stable. The representative 17 and 18 (Table 1D), both containing

an N-cyclohexylurea blocker, displayed remarkable inhibitory IC50

values of 3.2 and 2.3 nM, respectively (Van Manh et al., 2022).

Inspired by the encouraging results of both mimetic-Arg motif

D and conformational restriction strategies on the classic QC

scaffold. A combination of the two approaches was rationally

performed, leading to the discovery of 19 (Table 1D), the most

potent QC inhibitor reported even to date, with a sub-nanomolar

IC50 value of 0.1 nM and up to 290-fold inhibitory enhancement

compared with PQ912. While similar to the denouement of

12, another weaker benzimidazole inhibitor 20 (IC50 = 9.9 nM,

Table 1D) showed the most promising in vivo efficacy and

selective profile with respect to its 21.5-fold sQC selectivity index

toward gQC. Besides, 20 also has low toxicity and favorable

pharmacokinetic properties, and it significantly improved the

alternation behavior of mice in Y-maze tests as well.

Among these QCIs with high scaffold similarity, the common

large polar groups such as urea and thiourea reduce the blood-

brain barrier (BBB) permeability of the compounds, which may

be the most likely reasons for the moderate or even inactive

in vivo efficacy of the high potent inhibitors PBD150 (Brooks

et al., 2015), 7, 11, 12, 19, etc. To ameliorate BBB permeability,

Wu et al. tried to introduce a more hydrophobic biphenyl group

in motif C to enhance molecular lipo-solubility as well as π-

π stacking interaction and abandon the urea group in motif B

(Li et al., 2017). The obtained 21 (Table 2A) exhibited potent

inhibitory activity and significantly improved BBB permeability.

Further assessments corroborated that 21 dramatically reduced

the pE-Aβs level in cultured cells and in vivo and improved

the behavior of B6C3-Tg AD mice. Interestingly, contrary to the

commonly reported relationship, the SAR of DPCIs showed that 4-

methyl substitution was better than that of 5-methyl substitution in

imidazole. Although the activity of 21 was significantly decreased

compared with the lead compound PBD150 due to the loss of the

classic urea motif, the acquisition of SAR and the simple synthesis

route of DPCIs still made it an ideal lead scaffold for further

structural optimization.
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TABLE 2 Other representative QCIs.

(A) QCIs designed for improving BBB permeability

21 (Li et al., 2017)

(B) QCIs designed for non-hsQC with potent hsQC inhibitory activity

22–24 (Ramsbeck et al.,

2021); 25 (Taudte et al.,

2021)

26 (Park et al., 2022)

3.2. Representative QCIs designed for
non-hsQC with potent hsQC inhibitory
activity

Although the structural differences in both the overall

conformations and active cores are essential and convenient for the

design of type I/II QC-specific inhibitors, some bacterial QCs, such

as porphyromonas gingivalis QC (PgQC), show similar structures

and enzymatic features to hQC and were thus characterized as

Mammalian-like type II QCs (Lamers et al., 2021). Therefore,

inhibitors designed for bacterial QCsmay also bind to and suppress

hQC activity. For example, PgQC inhibitors 22–24 (Table 2B)

designed for the treatment of periodontitis are almost equally

potent in suppressing hQC activity in vitro (Lamers et al., 2021;

Ramsbeck et al., 2021). Meanwhile, another inhibitor 25 with

imidazo[4,5-b]pyridin scaffold exhibited a significantly improved

selectivity (>12) over PgQC (Taudte et al., 2021).

Human gQC was recently recognized as an important

modulator of the CD47-SIRPα pathway via promoting pGlu

formation on the N-terminus of CD47 (Logtenberg et al.,

2019). The gQC blockade contributes to reducing the “do not

eat me” immune signals of CD47 on tumor cells. Therefore,

developing gQC inhibitors is regarded as a novel and promising

strategy for cancer immunotherapy. In a most recent study, a

novel ZBG (1H-benzimidazol-5-yl)-1,3,4-thiadiazol-2-amine was

hit by a fragment identified through library screening, and an

aromatic ring and alkylamine were further added as additional QC

pharmacophores. The most potent gQC inhibitor 26 (Table 2B)

showed an outstanding IC50 of 73 nM, while unluckily it has 6-

fold stronger activity against sQC with an IC50 of 12 nM (Park

et al., 2022), which further indicates that more attentions should

be paid to the selectivity of inhibitors when developing QCIs for

the treatment of AD.

3.3. Virtual screening-based QCIs

In addition to the various rational design and experimental-

based QCI discoveries, virtual screening offers another efficient

tool to advance the understanding of activity profiles, and the

development of new QCIs (Kumar et al., 2013; Lin et al.,

2019). Those screening strategies include fragment-based screening

(Szaszko et al., 2017), QSAR modeling (Al-Attraqchi and

Venugopala, 2020; Kumar et al., 2021), and pharmacophore-

assisted high-throughput virtual screening (Lin et al., 2019).

Katharigatta N. Venugopala et al. developed linear and non-linear

2D QSAR models and a partial least squares-based 3D model

to help predict the activity of not yet synthesized compounds.
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Combined with ADME filtering and 2D-similarity search, potential

QCIs 27–29 (Table 3) were identified from the ZINC database

(Al-Attraqchi and Venugopala, 2020). Similarly, Ashwani Kumar

et al. identified the structural features that are both positively and

negatively responsible for the QC inhibitory activity based on a

dataset of 125 QCIs for QSAR analysis via Monte Carlo modeling

studies. The QSAR further supports the importance of 5-methy

substituted imidazole and alkyl-substituted benzene in activity

enhancement, as previous SAR revealed, and novel compounds

30–32 (Table 3) were then computationally designed and showed

improved pKi and QC binding affinities (Kumar et al., 2021). The

hits of the two studies actually inherited typical features of classic

QCIs with imidazole or methyl-imidazole as ZBG and an aromatic

group located in the opposite position, while the QC inhibitory

activities were not experimentally evaluated and validated in vitro.

Combining activity evaluation with virtual screening will

provide more convincing evidence. Kam Y. J. Zhang et al.

reported a QC inhibitor 33 (Table 3) with a novel MBG

moiety, peperidine-4-carboxamide, through a pharmacophore-

assisted high-throughput virtual screening (Dileep et al., 2021).

33 showed moderate activity against QC with IC50 = 33.4 ±

5.1µM, and docking, MD simulation, and crystallographic studies

suggested that 33 anchors to the active site via a coordinate bond

with Zn2+ located deeply in the active site cleft of the QC, while it

lacks stacking interactions with Tyr299, Phe325, and Trp329, which

are assumed to be critical for QC activity.

Wu et al. performed a less efficient but simple and direct

approach for new scaffold QCIs discovery by repurposing FDA-

approved drugs (Xu et al., 2020). Such a repurposing strategy is

more likely to succeed since the drugs have been fully evaluated in

both pre-clinical and clinical trials. The QC inhibitory evaluation

of 1,621 drugs was performed at a concentration of 10µM in

vitro, and the top five compounds were highlighted with reasonable

activity. Although the inhibitory activity was relatively weak with

IC50 values at the millimolar level, only two drugs contained

the imidazole group; the other three drugs 34–36 (Belinostat,

Amlexanox, and Acipimox; Table 3) have completely different

structures from the classic QCIs model, which may still offer

insights for the design and discovery of novel QCIs with new

structural features.

3.4. Natural product-based QCIs

Imidazole- and benzimidazole-based ZBGs have so far been

the first choice for the design of QC inhibitors. Nevertheless,

these ZBG groups are less selective and are likely to interact

with various metalloproteins in vivo and thus increase the risk of

side effects (Park et al., 2022). Natural products are an important

resource for the discovery of new activity scaffolds, which may offer

opportunities to overcome the potential drawbacks of classic QCIs

with new pharmacophores (Table 4). The oleuropein aglycone

(OLE, 37, Table 4), a natural phenol (secoiridoid) abundant

in extra virgin olive oil, was found to be protective both in

memory and behavioral performance of young and middle-aged

TgCRND8 mice (Grossi et al., 2013). In an extended study

of aged TgCRND8 mice showing increased pE3-Aβ42 deposits

in the brain, OLE could also retard the growth of pE3-Aβ42

aggregates even in advanced and late stages of Aβ deposition

(Luccarini et al., 2015). Several reviews summarized OLE as

a QC inhibitor, while OLE certainly showed weak inhibitory

activity at a concentration of 10µM. Immunofluorescence staining

and immunoblot analysis demonstrated that QC levels were

significantly reduced in the brains of the OLE-fed Tg mice,

suggesting that OLE is active against pE-Aβ generation by reducing

QC expression rather than direct inhibition (Luccarini et al.,

2015).

Some algal extracts were preliminary reported to have positive

effects on QC inhibition, while the bioactive chemical entities

were not isolated and clearly identified by traditional methods,

Wessjohann et al. identified three sulfolipid QC inhibitors (38–

40, Table 4) from microalgae using a new “Reverse Metabolomics”

technique including an activity-correlation analysis. The sulfolipids

showed a noteworthy QC inhibition of 76% at a low concentration

of 0.025 mg/ml, and the authors proposed that sulfolipids provide

similar pharmacophore characteristics to PBD150, in which the

negative sulfonate group and the polyhydroxy elements probably

act as a ZBG and the glucose as the core scaffold. Interestingly,

SODG (structure not shown), a lipid product used as a standard

reference in the assay, was first shown to exhibit quite similar

QC inhibition activity compared with sulfolipids (Hielscher-

Michael et al., 2016). Unlike traditional natural product screening

approaches, Wu et al. explored apigenin-based QCI discovery

via chemical modification. A total of 40 apigenin derivatives

belonging to the phenol-4
′

(R1), C5-OH(R2), and C7-OH(R3)

modified series were synthesized and evaluated. The compound

41 (Table 4) has remarkable inhibitory potency with an IC50

value of 16.1±2µM, and the SAR study indicated that the C7-

OH was required for binding with Zn2+ and that the C5-OH

was favored, whereas phenol-4
′

was tolerant for the inhibitory

activity. The essential role of C7-OH was further supported by

the binding interaction with conservative Zn2+ via molecular

docking. Although the activity of apigenin derivates was relatively

weak compared with nanomolar level classic QCIs, the non-

imidazole ZBG, acquisition of SAR, and simple synthesis route

made it a potential lead scaffold for further optimization (Li et al.,

2016).

4. QC inhibitor undergoing clinical
trials

Hundreds of QC inhibitors have been revealed in the literature,

and reports of novel, high-potency QC inhibitors have dramatically

increased in recent years with the structure-activity relationships

becoming clear, while only PQ912 is currently undergoing clinical

trials in human subjects for AD treatment. PQ912 has a scaffold

slightly different from the common classic QCIs (Table 1A). It

is a heterocyclic competitive inhibitor with benzimidazole as the

ZBG at position 1 of the imidazolidine-2-one. PQ912 has strong

human, rat, and mouse QC inhibitory activity with Ki values

ranging between 20 and 65 nM (Hoffmann et al., 2017). Preclinical

studies revealed that PQ912 has an attractive drug-like profile and
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TABLE 3 Representative screening-based QCIs.

27–29 (Al-Attraqchi and

Venugopala, 2020)

30–32 (Kumar et al., 2021)

33 (Dileep et al., 2021)

34–36 (Xu et al., 2020)

robust pharmacological therapeutic effects, both in vitro and in

vivo (Hoffmann et al., 2017). PQ912 was considered safe and well

tolerated with dose-proportional pharmacokinetics up to doses of

200mg in the first-in-man phase 1 study (Lues et al., 2015). In the

subsequent randomized, double-blind, placebo-controlled phase

IIa trial (NCT 02389413), the safety, tolerability, and efficacy of

higher doses of PQ912 (800mg twice daily for 12 weeks) were

carefully evaluated in biomarkers confirmed early AD patients

(n = 120). PQ912 showed an acceptable safety and tolerability

profile in a treatment regime of lower doses and slower titration

(Scheltens et al., 2018). The treatment of PQ912 resulted in an

average QC target occupancy of >90% in cerebrospinal fluid

(CSF), an improvement of working memory, and a reduction of

synaptotoxicity and neurogranin levels, as well as improvements

in some other experimental endpoints (Scheltens et al., 2018).

However, no PQ912 treatment effects were found on the composite

scores of episodic memory, executive function, attention, or overall

cognition (Scheltens et al., 2018). The results of the phase IIa study

might indicate early beneficial effects of PQ912 on cognition by

preventing the synaptotoxicity of pE-Aβ in the central nervous

system and thus rescuing impaired synaptic functions. While

episodic memory is the most impaired area of function in AD

pathology, a relatively short intervention (12-week time period)

by PQ912 was actually not expected to have an obvious clinical

influence on episodic and long-term memory. To further test the

efficacy (particularly on cognition and brain activity) of PQ912 as a

disease modifier, a phase IIb program in participants with MCI and

mild AD-VIVIAD was recently launched, and results are expected

early in 2023 (Vijverberg et al., 2021).

5. New trends toward QCIs

Theoretically, QC inhibition can significantly decrease the

formation of pE-Aβ while having little influence on the clearance

of full-length Aβ and the existing pE-Aβ, which may still induce Aβ

cascades and lead to the deposition of senile plaques. Hence, QC

inhibition-based combination therapy and multi-target-directed

ligands (MTDL) have drawn considerable attentions in recent

years. The combination effects of PQ912 and a pE-Aβ specific

antibody m6 on the formation and clearance of pE-Aβ in

an AD mouse model were evaluated. The study showed that

combination treatments resulted in significant reductions of total

Aβ by 45–65% in the brain of AD mouse overexpressing both

human amyloid precursor protein containing the Swedish and

London mutations and human QC (hAPPsl × hQC), while single

treatments at subtherapeutic levels only showed a moderate (16–

41%) but statistically insignificant reduction in Aβ level. The

additive effects of the combination of PQ912 and m6 on brain

Aβ pathology were evaluated using a bliss independence model,

and a combination index of ≈1 was determined (Hoffmann et al.,

2021). The combination strategy may achieve a better therapeutic

effect than a single treatment, even at a reduced dose for the

individual drug.
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TABLE 4 Natural compounds with potential QC inhibitory activity.

37 (Luccarini et al., 2015)

and CAS: 31773-95-2

38–40 (Hielscher-Michael

et al., 2016)

41 (Li et al., 2016)

Instead of drug combination treatment, Wu et al. in their

recent study developed a new class of maleimide-DPCI hybrid

QC/GSK-3β dual inhibitors by rationally combining the essential

pharmacophores of QC and GSK-3β inhibitors. GSK-3β, namely,

glycogen synthase kinase-3, is regarded as a critical pivotal

kinase and a high-potential anti-AD target that links both Aβ

and tau pathologies of AD. The most potent compounds 42–

44 (Table 5) exhibited slightly enhanced QC inhibitory activity

and similar GSK-3β inhibitory activity compared with individual

control compounds DPCI-2 and SB-415286, respectively. The

selected dual-target inhibitor 42 can dramatically reduce pE-Aβ

accumulation and Tau hyperphosphorylation in the brains of 3 ×

Tg-AD mice. In addition, 42 also effectively attenuates cognitive

deficits and decreases anxiety-like behavior in 3 × Tg mouse (Xie

et al., 2023).

6. Perspective and conclusion

pE3-Aβ represents a highly desirable and abundant target due

to its distinctive aggregation properties and neurotoxicity. As QC

plays a key role in the conversion and formation of pE3-Aβ,

QC inhibition is emerging as an alternative promising strategy

apart from expensive active immune clearance to decrease the

pathological toxicity of pE3-Aβ for the treatment of AD. Over

the past two decades, a number of different scaffold QCIs have

been designed and discovered, and the efficacy of several high

potent inhibitors has been evaluated both in vitro and in vivo using

different AD mice models. Moreover, PQ912 is regarded as the

proof-of-concept validation of the QC target. However, there are

still issues to be considered before QC inhibitors can effectively

translate from bench to bedside.

First, the specificity of QC inhibitors, which includes the

selective inhibition of hQC among various metalloproteins in vivo

and selectivity toward the QC-Aβ pathway rather than other QC

normal PTMs processes. Because QC is abundant in mammalian

neuroendocrine tissues and is responsible for the maturation of

numerous hormones and cytokines, non-selective QC inhibition

may lead to wide and unpredictable side effects. In the phase

IIa trial of PQ912, one-third (20/60) of subjects discontinued

PQ912 treatment due to adverse events related to gastrointestinal

disorders, skin disorders, etc. A broader battery of CSF biomarkers,

including growth-associated protein 43 and pE-CCL2, have thus

been set as exploratory endpoints to better monitor the potential

adverse effects of the treatment in AD patients. Second, the

pathological reversing effects of QC enzyme inhibitors remain

questionable. Given that pE-Aβ acts as seeds to induce the

formation of stable toxic heterogeneity polymers, QC inhibition

can suppress but not completely prevent the pE-Aβ formation.

The existing pE-Aβ may still trigger Aβ cascades. Fortunately, the

QC-based combination strategy and MTDL strategy are drawing

attention lately, which might be an ideal solution to enhance

the additive effects. Last but not least, the pE-Aβ cascade is

essentially an optimization of the original Aβ cascade hypothesis,
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TABLE 5 Dual-target QCIs.

42–44 (Xie et al., 2023)

in which the pE-Aβ replaces full-length Aβ serving as the core

initiator in the progression of AD. In the context of endless clinical

failures of Aβ-directed or related interventions and the controversy

regarding the exact role of Aβ cascade in the pathogenesis of

AD, how far will QC inhibition go remains blurred in clinical

trials. Nevertheless, the encouraging effect of the pE-Aβ-targeting

donanemab in clinical trials envisions the promising role of the pE-

Aβ-related key protein QC as an alternative potential target for the

novel disease-modifying treatment of AD.
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