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Introduction: The ability to resolve interference declines with age and is

attributed to neurodegeneration and reduced cognitive function and mental

alertness in older adults. Our previous study revealed that task-irrelevant but

environmentally meaningful sounds improve performance on the modified Simon

task in older adults. However, little is known about neural correlates of this sound

facilitation effect.

Methods: Twenty right-handed older adults [mean age = 72 (SD = 4), 11 female]

participated in the fMRI study. They performed the modified Simon task in

which the arrows were presented either in the locations matching the arrow

direction (congruent trials) or in the locations mismatching the arrow direction

(incongruent trials). A total of 50% of all trials were accompanied by task-irrelevant

but environmentally meaningful sounds.

Results: Participants were faster on the trials with concurrent sounds,

independently of whether trials were congruent or incongruent. The sound effect

was associated with activation in the distributed network of auditory, posterior

parietal, frontal, and limbic brain regions. The magnitude of the behavioral

facilitation effect due to sound was associated with the changes in activation

of the bilateral auditory cortex, cuneal cortex, and occipital fusiform gyrus,

precuneus, left superior parietal lobule (SPL) for No Sound vs. Sound trials. These

changes were associated with the corresponding changes in reaction time (RT).

Older adults with a recent history of falls showed greater activation in the left SPL

than those without falls history.

Conclusion: Our findings are consistent with the dedifferentiation hypothesis

of cognitive aging. The facilitatory effect of sound could be achieved through

recruitment of excessive neural resources, which allows older adults to increase

attention and mental alertness during task performance. Considering that the SPL

is critical for integration of multisensory information, individuals with slower task

responses and those with a history of falls may need to recruit this region more

actively than individuals with faster responses and those without a fall history to

overcome increased difficulty with interference resolution. Future studies should

examine the relationship among activation in the SPL, the effect of sound, and

falls history in the individuals who are at heightened risk of falls.
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1. Introduction

Working memory is a cognitive system critical for on-line
information processing and manipulation (Baddeley, 2010). One
of the working memory functions is to maintain cognitive control
despite interference from task-unrelated stimuli and conditions
(Engle and Kane, 2004). Interference resolution plays a vital
role in decision making, navigating complex environments, and
resolving conflicting demands during multitasking (e.g., visual,
and auditory interference during driving). The ability to resolve
interference declines with age (Collette et al., 2009; Weeks and
Hasher, 2014). Age-related performance reduction is associated
with weakened inhibitory control, decreased mental alertness, and
slowed processing speed (Hasher et al., 1999; Cepeda et al., 2001;
Guerreiro et al., 2010; Klein and Ivanoff, 2011; Qin and Basak,
2020).

Although cognitive performance in older adults could be
disrupted by distracting stimuli (Juncos-Rabadán et al., 2008;
Guerreiro et al., 2013), in some cases, distracting stimuli may
facilitate such performance (Weeks and Hasher, 2014; Schwalbe
et al., 2023). In our recent study, younger and older individuals
performed a modified Simon task in which right- or left-
pointing arrows were shown in the locations that were either
congruent or incongruent with the arrow direction. Half of the
visual stimuli were presented concurrently with the task-irrelevant
but environmentally meaningful sounds (Schwalbe et al., 2023).
Consistent with the other studies of older adults that used different
versions of Simon task (Van Der Lubbe and Verleger, 2002; Juncos-
Rabadán et al., 2008; Kubo-Kawai and Kawai, 2010; Maylor et al.,
2011), participants were slower for incongruent vs. congruent trials.
Contrary to our hypothesis that sounds would create perceptual
interference and thus worsen reaction time (RT) on the task, we
found that sound presentation significantly improved RT in both
younger and older individuals. The neural underpinnings of such
facilitation are poorly understood. In the current fMRI study,
we aimed to examine the sound effect in older adults and its
relationship to behavioral facilitation related to sound presentation.
Considering a high rate and detrimental consequences of falls in
older adults (Centers for Disease Control and Prevention, 2021)
as well as our recent findings that the cognitive interference was
greater in older adults with recent falls than in those without
falls (Schwalbe et al., 2023), we also explored how the presence
of recent falls is related to brain activation in the modified Simon
task.

Previous studies have shown that the anterior cingulate,
prefrontal, and parietal cortices are involved in interference
resolution. The anterior cingulate cortex plays a role in conflict
monitoring and response selection (Milham and Banich, 2005;
Kelly et al., 2009), while the prefrontal cortex plays a role
in cognitive control and decision-making (Wong et al., 2009;
Friedman and Robbins, 2022). The posterior parietal cortex plays
a role in attentional control, spatial reasoning, and multisensory
integration of visual and auditory stimuli, as well as the
coordination of movements in response to sensory input (Zhou
et al., 2020; Latimer and Freedman, 2023). Decreased activation
of the dorsal lateral prefrontal cortex and increased activation of
the anterior cingulate cortex have been associated with decreased
alertness, which may cause a reduction in cognitive control and

an increase in conflict monitoring (Canales-Johnson et al., 2020;
Li et al., 2019).

Processing of auditory stimuli relies on the primary and
secondary auditory cortices (Langers et al., 2007; Röhl and
Uppenkamp, 2012). Sound processing also plays an important role
in cognitive function and may engage various brain areas beyond
the auditory cortex (Quinci et al., 2022). For example, it was shown
that sounds can concurrently activate the visual cortex and improve
performance on visual tasks (Feng et al., 2014). In addition, the
studies of adaptation to sound repetition indicate that the medial
parietal cortex, thalamus, caudate nucleus, and medial occipital
cortices could be involved in sound processing (Grady et al., 2011).

Based on this previous research, we hypothesized that
performance on incongruent, compared to congruent, trials would
be supported by the anterior cingulate, prefrontal, and parietal
cortices, while performance on the sound trials would be supported
by auditory cortices. The findings from our study may help
differentiate between the two prominent hypothesis of cognitive
aging: neural compensation and dedifferentiation (McDonough
et al., 2022). If a smaller behavioral cost of interference resolution
is related to a greater increase in task-related brain activation,
this would support the neural compensation hypothesis suggesting
that cognitive aging is associated with fronto-parietal increases in
activation to compensate for age-related structural and functional
decline (Reuter-Lorenz and Cappell, 2008; Cabeza et al., 2018).
Alternatively, the findings that a distributed network of cortical
and limbic regions is activated during interference trials would
be consistent with the dedifferentiation hypothesis suggesting that
with age the brain regions’ specialization decreases but the extent
of brain activation becomes more widespread (Cabeza and Dennis,
2014; Hülür et al., 2015).

2. Materials and methods

2.1. Participants

The study was approved by the University of Pittsburgh
Institutional Review Board (IRB number STUDY20120072).
Written informed consent was obtained from all participants.
Twenty right-handed participants between 65 and -80 years of
age were recruited from the previous study. That study enrolled
participants from the community and the online Pitt + Me
and Pepper (IRB number STUDY19090270) registries and did
not include a neuroimaging component (Schwalbe et al., 2023).
All participants were right-handed, fluent in English, and had
premorbid IQ >85 per the National Adult Reading Test (Nelson,
1982). The Montreal Cognitive Assessment (MoCA) cut-off score
was 23 to account for participants’ level of education and race
(Milani et al., 2018). Exclusion criteria were the standard MRI
precautions (e.g., metal in the body and claustrophobia), a history
of head injury, neurodevelopmental and neurological disorders,
learning disability, current alcohol/drug abuse, and psychiatric
disorders except depressive and anxiety disorders. In addition,
the data from participants whose head motion inside the scanner
[computed using mriqc 0.15.1 (Esteban et al., 2017)] exceeded the
mean framewise displacement of 0.5 mm (Power et al., 2012) and
those whose accuracy was below 75% were excluded from the data
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analyses. Considering the participants’ age, the medications for
high blood pressure or cholesterol were not exclusion criteria.

2.2. Demographics, cognitive, and
neurological assessments

Information about general demographics, health, and current
medications was collected through intake interviews and self-
reports. A basic neurological examination was administered by a
trained team member to screen for possible neurological deficits.
The MoCA (Nasreddine et al., 2005) was used to assess general
cognitive functioning across the core domains of cognition. Visual
acuity was assessed with the Snellen test. Participants reported fall
history for the past year.

2.3. Behavioral assessments

We used a modified version of the Simon task (Schwalbe
et al., 2023) to examine participants’ ability to resolve cognitive,
perceptual, and combined cognitive and perceptual interference
(Figure 1). During this task, participants were shown an arrow
pointing either to the left or to the right on the screen. The arrow
could be shown on the left or right side of the screen, equidistant
from the fixation cross. Participants were instructed to press the
response button on the 5-button MRI compatible response system
with their right index finger if the arrow was pointing to the right
and with their left index figure if the arrow was pointing to the
left independently from where on the screen the arrow appeared.
Participants were asked to respond as quickly and accurately as
possible.

The stimuli were white arrows presented on a black background
to the right or to the left of a fixation cross. There were 32 congruent
(the arrow’s location and direction matched as when the left-
pointing arrow was presented on the left side of the screen) and
32 incongruent (the arrow’s location and direction mismatched as
when the left-pointing arrow was presented on the right side of
the screen) trials.

The task consisted of 2 runs of 32 trials. Trial duration was
randomly determined for each trial and varied between 6,400
and 13,600 ms. Each trial consisted of a fixation star, stimulus
presentation, and the rest period [i.e., the inter-trial interval (ITI)].
The fixation star duration ranged between 400 and 3,200 ms in
400 ms increment and was randomly determined for each trial.
Stimulus duration was equal to RT but could be no longer than
2,400 ms. The ITI consisted of a “PLEASE REST” screen whose
duration was calculated as the difference between the trial duration
and the sum of fixation duration and RT for that trial.

A concurrent auditory stimulus started simultaneously with
the onset of the visual stimulus (i.e., white arrows) and ended
when a participant responded in the trial. Auditory stimuli
were natural (e.g., birds chirping, thunderstorm) or man-made
(e.g., construction and sirens) sounds and accompanied 50%
of congruent and 50% of incongruent trials. The sounds were
presented via the MRI compatible Avotec audio system with low
profile headphones. To ensure participants could hear the sounds,
the sound volume was adjusted to a comfortable level for each

participant individually after they were placed inside the scanner.
Each run had an equal number of congruent/incongruent and
sound/no sound trials. The order of the congruent/incongruent
trials with and without sound as well as the trial and fixation
durations were randomized for each participant to avoid
systematic bias.

2.4. Neuroimaging data acquisition

The neuroimaging data were collected at the University of
Pittsburgh/UPMC Magnetic Resonance Research Center using a 3T
Siemens Prisma scanner with a 64-channel head coil and named
according to the ReproIn convention (di Oleggio Castello et al.,
2020). The EPI data were collected in the anterior-to-posterior (AP)
direction using a multi-band sequence (factor = 8, TR = 800 ms,
resolution = 2 × 2 × 2 mm, FOV = 210, TE = 30 ms, flip
angle = 52◦, 72 slices, 375 volumes). High-resolution T1w images
were collected using the MPRAGE sequence (TR = 2,400 ms,
resolution = 0.8 × 0.8 × 0.8 mm, 208 slices, FOV = 256,
TE = 2.22 ms, flip angle = 8◦). Field maps were collected in the
AP and posterior-to-anterior (PA) directions using the spin echo
sequence (TR = 8,000, resolution = 2 × 2 × 2 mm, FOV = 210,
TE = 66 ms, flip angle = 90◦, 72 slices).

2.5. Data analyses

2.5.1. Behavioral data analysis
The RT values for incorrect responses and those that were

outside the 2 IQRs (interquartile range) from the first or third
quartile were excluded from the RT analyses. As in our previous
study (Schwalbe et al., 2023), two-way mixed-effects models
examined the effects of Congruency and Sound on RT (using linear
mixed-effect models) and accuracy (using generalized linear mixed-
effects models) using the “lme4” package in R (Bates et al., 2015). In
all models, participants were treated as a random factor and their
age, sex, and IQ were used as covariates. For significant effects, the
contrasts and means were estimated from the mixed effects models
using the “modebased” package in R (Makowski et al., 2020).

Considering that all participants were recruited from the
previous study in which they completed the same task (albeit
outside the scanner), we were able to explore test-retest reliability
of the modified Simon task using the inter-class correlation analysis
(ICC) function in the “psych” package in R (Revelle, 2023).

2.5.2. Neuroimaging data analysis
2.5.2.1. Preprocessing

The DICOM images were converted to a BIDS (Gorgolewski
et al., 2016) dataset using heudiconv version 0.5.4 (Halchenko et al.,
2019). Data were examined for quality using mriqc 0.15.1 (Esteban
et al., 2017) and preprocessed using fmriprep 20.1.1 (Esteban
et al., 2019). T1w images were skull-stripped, brain surfaces were
reconstructed using recon-all (FreeSurfer 6.0.1) (Dale et al., 1999),
brain masks were generated, and a reference volume, and its skull-
stripped version were generated using fmriprep (Esteban et al.,
2019). Head-motion parameters were estimated with respect to
the BOLD reference before any spatiotemporal filtering using

Frontiers in Aging Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1207707
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1207707 August 8, 2023 Time: 14:2 # 4

Manelis et al. 10.3389/fnagi.2023.1207707

FIGURE 1

The design of the modified Simon task.

MCFLIRT [FSL 5.0.9 (Jenkinson et al. (2002); RRID:SCR_002823],
and applying slice-time correction using 3dTshift (Cox and
Hyde, 1997), (AFNI 20160207; RRID:SCR_005927). Fieldmaps
were estimated with 3dQwarp (Cox and Hyde, 1997) (AFNI
20160207) based on two spin echo images collected with
opposing phase-encoding directions (i.e., AP and PA). Based on
estimated susceptibility distortion, a corrected EPI (echo-planar
imaging) reference was calculated for more accurate co-registration
with the anatomical reference. The BOLD reference was co-
registered to the T1w reference using bbregister (FreeSurfer) (Dale
et al., 1999; RRID:SCR_001847) which implements boundary-
based registration (Greve and Fischl, 2009). Co-registration was
configured with six degrees of freedom. The BOLD time-
series were resampled onto the fsaverage surfaces (FreeSurfer
reconstruction nomenclature) and onto their native space by
applying a single, composite transform to correct for head-
motion and susceptibility distortions. The BOLD time-series were
resampled into standard space, generating a preprocessed BOLD
image in MNI152NLin2009cAsym space. Automatic removal of
motion artifacts using independent component analysis (ICA-
AROMA) (Pruim et al., 2015) was performed on the preprocessed
BOLD after removal of non-steady state volumes and spatial
smoothing with an isotropic, Gaussian kernel of 6 mm FWHM
(full-width half-maximum). After that, global signals within
the CSF and WM were extracted and regressed out from
preprocessed BOLD data and high-pass temporal filter (90-s cut-
off) was applied. All resamplings were performed with a single
interpolation step by composing all the pertinent transformations
(i.e., head-motion transform matrices, susceptibility distortion
correction when available, and co-registrations to anatomical and
output spaces). Gridded (volumetric) resamplings were performed
using antsApplyTransforms (ANTs), configured with Lanczos
interpolation to minimize the smoothing effects of other kernels
(Lanczos, 1964).

2.5.2.2. Subject-level analysis

Subject-level statistical maps were computed using FSL 6.0.3
installed system-wide on the workstation with GNU/Linux Debian
10 operating system. A hemodynamic response was modeled
using a gamma function. A subject-level model included seven
explanatory variables: correctly answered congruent trials without
sound, correctly answered incongruent trials without sound,
correctly answered congruent trials with sound, correctly answered

incongruent trials with sound, all trials with incorrect responses,
right-hand motor responses, and left-hand motor responses. The
motor responses were modeled as the last 200 ms of each trial on
which participants responded. The duration for all other conditions
was equal to the participants’ RT on that trial. If participants
failed to respond within 2.4 s, these trials were considered errors
and their duration was modeled as equal to the maximum trial
duration of 2.4 s.

The GLM contrasts included comparing all congruent vs. all
incongruent trials (i.e., a main effect of congruency), all trials with
sound vs. all trials without sound (a main effect of sound), and
the interaction between congruency and sound conditions (for
exploratory analyses).

2.5.2.3. Group-level analysis

First, we wanted to understand the neural underpinnings for
the main effects of sound and stimulus congruency observed in our
previous behavioral study (Schwalbe et al., 2023). For this purpose,
we contrasted the trials with vs. without sound and congruent vs.
incongruent trials using the swe (Sandwich Estimator)(Guillaume
et al., 2014) approach with 5,000 permutations for non-parametric
permutation inference, Threshold-Free Cluster Enhancement
(TFCE) correction (Smith and Nichols, 2009), and the FWE-
corrected p-values threshold set to p < 0.01 (0.05/4 = 0.0125)
to apply Bonferroni correction for the two contrasts (the effect
of sound and the effect of congruency) and two-tailed test (i.e.,
activation increases and decreases). Age, gender, and IQ were used
as covariates in all analyses.

Even though we did not observe the congruency by sound
interaction effect on RT and accuracy in the previous study, we still
wanted to explore the Congruency-by-Sound interaction effect on
brain activation. This exploratory analysis was conducted using the
same swe approach as describe above with the difference that the
FWE-corrected p-values threshold was set to p = 0.025 (or 0.05/2)
to apply Bonferroni correction for the two-tailed test.

The second exploratory analysis used the mixed effects models
to examine whether the RT differences between No Sound and
Sound conditions were related to the main and interaction effects
between Congruency (Congruent/Incongruent) and No Sound-
minus-Sound differences in BOLD percent signal changes in
the ROIs determined by the analyses described above. Sex, age,
and IQ served as covariates in these models. In addition, to
better understand the relationships between brain and behavior,
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we conducted correlation analyses between participants’ RT and
activation in the brain regions showing the Congruency-by-Sound
interaction effect for each of the four task conditions.

The third exploratory analysis compared percent signal changes
in the brain regions showing Congruency-by-Sound interaction
effect in participants with a history of falls during the past
12 months vs. those without such history using a Congruency-by-
Sound-by-Falls mixed effects model.

Functional localization was determined using the Harvard-
Oxford cortical and subcortical structural atlases and visualized
using fslviewer. The mean percent signal changes were extracted
from the clusters of voxels showing significant differences between
the conditions of interest. These values were then used in the
follow-up analyses.

3. Results

3.1. Demographics and behavioral

Twenty individuals [mean (SD) age = 72(4), mean (SD)
MoCA = 27.6 (1.8), mean (SD) IQ = 113.9 (5.5), 11 female,
5 participants reported falling within the past 12 months]
participated in the study and were included to the data analyses.

We excluded 3.4% of RT outliers because they exceeded
2 IQRs. The mixed effect analysis revealed significant main
effects of congruency [F(1,1156.30) = 121.8, p < 0.001] and
sound [F(1,1156.16) = 9.0, p < 0.01], but no Congruency-by-
Sound interaction effect on RT. Participants were faster on the
congruent compared to incongruent trials [t(1156.24) = −11.04,
fdr-corrected-p < 0.001], and on the trials with concurrent sound
compared to the trials without sound [t(1156.10) = −3, fdr-
corrected-p < 0.01] (Figure 2). There was also a significant effect
of IQ on RT [F(1,16.18) = 11.7, p < 0.01]. Individuals with
higher IQ responded faster [t(16.178) = −3.42, p < 0.01]. The
analysis of accuracy revealed a significant main effect of congruency
with higher accuracy on congruent compared to incongruent
trials (Z-value = 2.9, p < 0.05), but no significant main effect
of sound or Congruency-by-Sound interaction effect. Considering
that participants were very accurate on the task with over 94% on
any type of trial (Figure 2), we will refrain from further discussion
of accuracy.

The ICC revealed a moderate-to-high degree of tests-retest
reliability between our previous study when participants completed
the task outside the scanner (time 1) and the current study in which
participants completed the task inside the scanner (time 2). The
average measure ICC3k was 0.585 [F(19,19) = 2.4, p = 0.03] for
congruent trials without sound, 0.7 [F(19,19) = 3.3, p = 0.006] for
congruent trials with sound, 0.88 [F(19,19) = 8.3, p < 0.001] for
incongruent trials without sound, and 0.7 [F(19,19) = 3.4, p = 0.006]
for incongruent trials with sound.

3.2. Neuroimaging

No participants were excluded from the analyses based
on their head motion inside the scanner or behavioral
performance accuracy.

3.2.1. The effect of congruency between the
arrow direction and location

Our analyses revealed no significant differences between
congruent and incongruent trials. No cluster survived the
correction for multiple comparisons.

3.2.2. The effect of sound
The comparison of the trials with concurrent sound vs. the

trials without sound revealed an extended network of regions that
showed greater activation for the trials with sound. This network
included the bilateral Heschl’s gyrus, superior temporal gyrus,
postcentral gyrus, superior parietal lobule (SPL), supramarginal
gyrus, thalamus, caudate nucleus, and nucleus accumbens. The
activation clusters also extended to the hippocampus as well as the
frontal and occipital cortices (Table 1 and Figure 3).

3.2.3. Exploratory analyses
The first exploratory analysis revealed a significant

Congruency-by-Sound interaction effect on brain activation in the
left SPL, bilateral precuneus, left lateral occipital cortex, cuneal
cortex, and occipital fusiform gyrus (Table 2 and Supplementary
Figure 1).

The brain regions identified in the Congruency-by-Sound
interaction analysis could be associated with working memory;
therefore, we overlaid the map of the regions revealed in this
analysis and the working memory circuitry image that was derived
from the 1,091 studies in NeuroSynth meta-analysis (Yarkoni et al.,
2011). We found that the left SPL and bilateral precuneus found
in our analysis were a part of the working memory circuitry
(Figure 4A).

The second exploratory analysis conducted in the bilateral
auditory cortex, cuneal cortex, and occipital fusiform gyrus,
precuneus, left SPL, and left lateral occipital cortex examined
the main effects and interaction of congruency and No Sound-
Sound differences in brain activation on the No Sound-Sound
differences in RT. A significant interaction effect was found in the
left SPL [F(1,33) = 11.2, p = 0.002], and a marginally significant
interaction effect was found in the auditory cortex [F(1,33) = 3.5,
p = 0.07] (Figure 4B). The significant main effects of the No
Sound-minus-Sound activation differences on the No Sound-
minus-Sound RT differences were found in the bilateral auditory
cortex [F(1,33) = 5.3, p = 0.03], cuneal cortex [F(1,33) = 4.9,
p = 0.03], occipital fusiform gyrus [F(1,33) = 9.8, p = 0.004],
precuneus [F(1,33) = 8.2, p = 0.007], the left SPL [F(1,33) = 7.7,
p = 0.009] (Figure 4C).

The follow-up correlation analyses between RT and brain
activation conducted separately for each task condition revealed
a significant positive correlation between RT and brain activation
in the left SPL (Congruent – no sound: r = 0.58, p < 0.01,
Congruent – with sound: r = 0.51, p < 0.05, Incongruent – no
sound: r = 0.57, p < 0.01, Incongruent – with sound: r = 0.69,
p < 0.001). Specifically, lower RT (indicating faster responses) was
associated with lower activation in the left SPL (Supplementary
Figure 3). The bilateral precuneus positively correlated with RT
in the Incongruent – sound (r = 0.52, p < 0.05), but not any
other conditions. The other brain regions showed no significant
correlation with RT for either condition.

The third exploratory analysis conducted on percent signal
changes examined whether activation in the brain regions showing
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FIGURE 2

Estimated mean and standard error for RT and accuracy on different types of trials in the modified Simon task.

TABLE 1 Brain activation for the trails with vs. without sound.

Region n-vox Max Z-score MNI coordinates
X, Y, Z

L Planum temporale, parietal opercular, superior temporal g. 1,5371 12.5 −62, −26, 14

L Heschl’s g. (includes H1 and H2) 11.8 −52, −12, 6

L Planum polare, Heschl’s g. (includes H1 and H2) 10.9 −44, −20, −4

L Superior temporal g. 10.4 −66, −20, 4

R Planum temporale, parietal opercular, superior temporal g. 5,925 12.2 62, −22, 12

R Superior temporal g., supramarginal g. 11.2 66, −36, 8

R Heschl’s g. (includes H1 and H2) 10.7 54, −18, 6

R Superior temporal g. 9.68 68, −24, 4

R Planum polare, Heschl’s g. (includes H1 and H2) 9.04 44, −14, −4

L Thalamus 21 4.94 −6, −12, 10

R Caudate 19 4.62 10, 18, 8

L Postcentral g., superior parietal lobule 18 3.87 −22, −40, 74

L Postcentral g., superior parietal lobule 16 4.3 −18, −40, 66

L Superior parietal lobule, postcentral g. 16 4.25 −14, −50, 70

R Nucleus accumbens 13 5.26 6, 12, −6

g., gyrus. The regions without n-vox values are local maxima.

FIGURE 3

The contrast between trials with sound vs. trials without sound. The right hemisphere is on the left side of the image.
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TABLE 2 The interaction effect of Congruency-by-Sound on brain activation.

Region n-vox Max Z-score MNI coordinates
X, Y, Z

L Occipital fusiform g. 1,026 5.77 −28, −78, −16

R Lingual g. 5.32 14, −88, −8

R Occipital pole 4.76 20, −96, −14

L Lingual g. 4.23 −14, −70, −12

L Temporal occipital fusiform cortex 4.17 −26, −56, −16

R Lateral occipital cortex, superior division (LOCsup) 756 5.29 12, −64, 64

R Precuneus cortex 4.61 6, −60, 56

L Precuneus cortex 4.23 −4, −42, 48

L Lingual g. 747 4.5 −22, −84, 2

L Supracalcarine cortex 4.24 −6, −88, 14

R Cuneal cortex 3.87 18, −80, 30

R Lateral occipital cortex, superior division 3.77 16, −84, 24

L Cuneal cortex 3.71 −8, −84, 28

L Lateral occipital cortex, superior division (LOCsup) 544 4.72 −38, −72, 22

L Superior parietal lobule (SPL) 336 4.14 −34, −56, 48

L Angular g. 4.04 −46, −56, 52

L Supramarginal g., posterior division 3.55 −42, −42, 42

L Lateral occipital cortex, superior division 3.5 −44, −56, 60

R Lateral occipital cortex, superior division 147 5.03 40, −64, 24

R Lateral occipital cortex, inferior division 4.73 48, −68, 10

R Precuneus cortex 31 3.82 6, −56, 32

R Cingulate g, posterior division 3.66 8, −52, 26

g., gyrus. The regions without n-vox values are local maxima.

Congruency-by-Sound interaction effect was also related to
recent falls reported by our participants. We found a significant
Congruency-by-Sound-by-Falls interaction effect in the left SPL
[F(1,54) = 8.5, p = 0.005, Figure 5] with the more pronounced
increases in brain activation observed in the individuals with recent
falls on trials with sound [t(54) = 2.5, p = 0.015]. No significant
main or interaction effects of fall history were revealed in the other
brain regions.

The last exploratory analysis examined activation in the
anterior cingulate and insular cortices in Congruent/Incongruent
and Sound/No Sound conditions. This analysis was conducted
to determine whether a lack of significant differences in these
ROIs often associated with interference resolution was due to
low statistical power that did not permit detecting significant
differences in the whole-brain analysis. Given that both of these
regions are large and multifunctional, we limited the ROI analyses
to the voxels identified through the NeuroSynth (Yarkoni et al.,
2011) meta-analysis with the keyword “interference” (uniformity
test, fdr-corrected-p < 0.01; Supplementary Figure 2). Then, we
used the featquery tool in FSL to extract percent signal changes
from these regions from each participant for each condition
of interest (Congruent – no sound, Incongruent – no sound,
Congruent – sound, and Incongruent – sound). These percent
signal changes were analyzed using the mixed effects model with
Congruency, Sound and Congruency-by-Sound interaction as fixed

effects and participant as random effect. The analyses revealed no
significant main effects of Congruency or Sound, and no significant
Congruency-by-Sound interaction (all p-values > 0.1).

4. Discussion

The aim of the current fMRI study was to understand the
neural underpinnings of the sound effect observed in our previous
study (Schwalbe et al., 2023). We have replicated the behavioral
findings of Schwalbe et al. (2023) and revealed increased activation
in a distributed network of regions including the primary and
secondary auditory cortices, posterior parietal cortices, thalamus,
basal ganglia, hippocampus, and the regions in frontal and occipital
cortices for the trials that were accompanied by sounds vs. those
that were not.

Considering that the trials with and without sound differed
from each other only in the presence of sound, one might expect
that brain activation for trials with sound would be localized
to the primary and secondary auditory cortices such as Heschl’s
gyrus and the planum temporale (Langers et al., 2007; Röhl and
Uppenkamp, 2012). Our finding of greater brain activation for
sound vs. no-sound trials in the distributed network of fronto-
parietal and limbic regions (in addition to auditory cortices)
suggests heightened stimulus-driven attention in these trials
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FIGURE 4

Brain activation during the modified Simon task. (A) An overlay between the brain regions showing the Congruency-by-Sound interaction effect (in
yellow) and the working memory circuitry derived from the Neurosynth meta-analysis (in red) in the SPL and bilateral precuneus. (B) The interaction
effect of Congruency and the No Sound-minus-Sound differences in the left SPL and bilateral auditory cortex (Audit). (C) The main effect the No
Sound-minus-Sound differences in bilateral cuneal cortex (BCuneus), occipital fusiform gyrus (BOFFg), and precuneus (BPrecun) activation on the
No Sound-minus-Sound differences in RT.

FIGURE 5

The left SPL activation for congruent and incongruent trials without or without concurrent sound in the individuals with and without a recent history
of falls.

(Corbetta and Shulman, 2002). The results are also consistent with
the dedifferentiation hypothesis of cognitive aging that proposes
that neural representations of different types of information change
from sparse (in younger individuals) to more distributed (in older

individuals) thus leading to reduced specialization of brain regions
and more widespread brain activation patterns in older adults (Park
et al., 2004; Dennis and Cabeza, 2011; Cabeza and Dennis, 2014;
Koen and Rugg, 2019).
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While the reduced ability to suppress task-unrelated brain
activity may prevent older adults from taking full advantage of
relevant brain regions (Logan et al., 2002), it can also benefit
task performance by engaging additional brain regions supporting
cognitive processing. Also, it can make brain activation patterns
for different conditions more similar to each other. For example,
several previous studies revealed greater activation for incongruent
vs. congruent trials in the frontal, premotor, and SPL regions
(Maclin et al., 2001; Wittfoth et al., 2006) and noted involvement
of the anterior cingulate and insular cortices in interference
resolution (Bunge et al., 2001; Burgess and Braver, 2010). However,
contrary to these previous neuroimaging studies and despite
finding faster behavioral responses to congruent vs. incongruent
trials, we found no significant differences in the brain activation
patterns between these trials. To ensure that the lack of findings
was not due to low power to detect activation in the whole brain,
we conducted the follow up exploratory ROI analyses of percent
signal changes in the anterior cingulate and insular cortices. Those
analyses also failed to reveal significant main and interaction
effects. Although interpreting this lack of the effect is difficult
without comparing older individuals with younger counterparts,
one possible explanation is the similarity in activation patterns
for congruent and incongruent trials with potentially excessive
neurocognitive resources allocated to both types of trials. While
excessive resource usage reflects neural inefficiency (Reuter-Lorenz
et al., 2001; McDonough et al., 2022), it may provide necessary
support during cognitive task performance.

Our exploratory analyses revealed that the magnitude of sound-
related behavioral facilitation (i.e., the differences in RT for No
Sound-minus-Sound conditions) was associated with the changes
in activation between No Sound and Sound trials in the bilateral
auditory cortex, cuneal cortex, occipital fusiform gyrus, precuneus,
and the left SPL. In all these regions, greater differences in RT
between No Sound and Sound conditions (i.e., faster RT for
Sound vs. No Sound trials) was related to greater differences in
activation between No Sound and Sound conditions (i.e., lower
brain activation for Sound vs. No Sound trials). These results are
inconsistent with the neural compensation hypothesis that predicts
greater brain activation for better behavioral performance.

Interestingly, in addition to the main effects, we found a
significant BOLD by Congruency interaction in the left SPL with a
strong positive relationship between brain and behavior No Sound
vs. Sound changes during the Incongruent (more difficult), but
not Congruent (easier), condition. Further exploration revealed
that the left SPL activation positively correlated with RT in all
four task conditions with lower brain activation associated with
faster behavioral responses (i.e., lower RT). The SPL plays a critical
role for information manipulation and rearrangement in working
memory (Koenigs et al., 2009) and usually activates more for more
difficult working memory tasks (Owen et al., 2005; Rottschy et al.,
2012). The left SPL specifically shows age-related and task-related
increases during the tasks requiring cognitive inhibition (Long
et al., 2022). Given that performance on the Simon task relies on
working memory (Borgmann et al., 2007), slower RT is observed
in those older adults for whom sorting out relevant (i.e., the arrow
pointing direction) and irrelevant (i.e., the arrow location) features
is more difficult.

The SPL is not only linked to working memory but also
plays a significant role in visuomotor processing, attention

(Alahmadi, 2021), and integration of sensory information from
various modalities thus affecting an accurate and coherent
representation of body position and movement (Bakker et al.,
2008; Desmurget et al., 2009; Wang et al., 2015; Reinhardt et al.,
2020). SPL activation is also associated with motor imagery of
gait and movement intention during cognitive-motor dual-task
conditions (Bakker et al., 2008; Desmurget et al., 2009; Reinhardt
et al., 2020). Previous studies have demonstrated that the left
posterior parietal cortex plays a role in biasing selection away
from salient stimuli in the environment (Mevorach et al., 2006,
2009). Specially, the left SPL, in conjunction with the left pre-
supplementary motor area, plays a crucial role in activating
the ventral attention network, which responds to task-irrelevant
stimuli and helps resolve inferences (Mevorach et al., 2006, 2009;
Zhang et al., 2017). In our study, activation in the left SPL was
associated with participants’ recent history of falls by showing
greater activation for those who fell vs. those who did not. These
findings suggest that the individuals with a recent history of falls
may have a reduced ability to manipulate upcoming information
in working memory. These findings are consistent with previous
work indicating that a reduced ability to resolve interference may
be a risk factor for falls in older adults (Hausdorff et al., 2005;
Nagamatsu et al., 2016; Li et al., 2018; Schwalbe et al., 2023). We
would like to notice, however, that although these findings seem
plausible for older adults with a history of falls, they are based on a
very small sample size (n = 5) and, therefore, should be considered
as preliminary and need to be reproduced in a larger sample.

The fact that our study participants performed the same
modified Simon task twice [in this fMRI study and in the previous
behavior-only study (Schwalbe et al., 2023)] allowed us to evaluate
the task’s test-retest reliability. The intraclass correlation coefficient
was between 0.585 and 0.88 suggesting moderate-to-high reliability
that varied depending on the task condition.

One limitation of this study is the small sample size. Future
neuroimaging studies should compare larger samples of older
adults with and without history of falls to better understand
how interference resolution and associated brain responses are
related to the past and future history of falls. Considering that
stationary broadband environmental noise was shown to benefit
balance by potentially serving as an auditory anchor (Lubetzky
et al., 2020), future prospective studies should investigate the
correlation between participants’ balance, their brain response to
cognitive (congruency), and perceptual (sound) interference, and
the incidence of falls among older adults, particularly those with
different neurological and psychiatric conditions.

5. Conclusion

In summary, this neuroimaging study of older adults
has replicated the facilitatory effect of task-irrelevant but
environmentally meaningful sounds on performance in the
modified Simon task. Consistent with the dedifferentiation
hypothesis, the sound processing was associated with activation
in the distributed network of auditory, posterior parietal, frontal
and limbic brain regions suggesting that the effect of facilitation
may be achieved through recruitment of multiple neural circuitries
some of which are excessive for the task but may allow older
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adults to increase attention and mental alertness during the task.
Our preliminary finding of the relationship between the left SPL
activation, RT, and history of falls is indicative of a potential
relationship between posterior parietal activation, reduced ability
to resolve interference, and falls in older adults.
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