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Objectives: This study aimed to make a systematic analysis of cuproptosis-
related genes (CRGs) in immunological characterization and predictive drugs in 
Alzheimer’s disease (AD) through bioinformatics and biological experiments.

Methods: The molecular clusters related to CRGs and associated immune cell 
infiltrations in AD were investigated. The diagnostic models were constructed for 
AD and different AD subtypes. Moreover, drug prediction and molecular docking 
were also performed. Subsequently, a molecular dynamics (MD) simulation 
was conducted to further verify the findings. Finally, RT-qPCR validation was 
performed.

Results: The characterization of 12  AD-related CRGs was evaluated in AD, and 
a diagnostic model for AD showed a satisfying discrimination power based on 
five CRGs by LASSO regression analysis. The dysregulated CRGs and activated 
immune responses partially differed between patients with AD and healthy 
subjects. Furthermore, two molecular subtypes (clusters A and B) with different 
immune infiltration characteristics in AD were identified. Similarly, a diagnostic 
model for different AD subtypes was built with nine CRGs, which achieved a 
good performance. Molecular docking revealed the optimum conformation of 
CHEMBL261454 and its target gene CSNK1D, which was further validated by MD 
simulation. The RT-qPCR results were consistent with those of the comprehensive 
analysis.

Conclusion: This study systematically elucidated the complex relationship 
between cuproptosis and AD, providing novel molecular targets for treatment 
and diagnosis biomarkers of AD.
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Introduction

Alzheimer’s disease (AD) is the most general neurodegenerative 
disease among older adults, characterized by executive and 
visuospatial dysfunction, deficits in short-term memory, and praxis 
(Oboudiyat et al., 2013). The most recent available data indicates that 
42.3 million people are living with AD and this number is forecast to 
reach 85 million by 2060 (Alzheimer’s Association, 2022). The 
financial burden on families due to AD is substantial. The monetary 
costs linked to the disease are expected to be equally significant and 
to increase continuously (Deb and Sambamoorthi, 2018). Moreover, 
due to the clinical heterogeneity and complexity of pathological types, 
there is a lack of satisfactory treatment and effective prevention 
strategies. Given the high incidence and mortality of AD, it is of great 
significance for the early diagnosis, prevention, and treatment of AD 
to understand its etiology and pathogenesis by identifying molecular 
biomarkers and further determining the molecular subtypes of AD at 
the molecular level.

Neurodegeneration in AD is likely caused by various mechanisms. 
These include, but are not limited to, energy and mitochondrial 
dysfunction, oxidative stress, cell cycle abnormalities, and 
neurovascular dysfunction (Blennow et al., 2006). Extensive neuronal 
loss is a long-standing observation and previous research has 
concentrated on apoptosis, but the recent identification of cuproptosis 
as a new type of cell death has raised significant concerns that 
excessive copper accumulation and the aggregation of lipoylated 
proteins can lead to cellular demise through proteotoxic stress 
(Mangalmurti and Lukens, 2022; Tsvetkov and Coy, 2022). It is well 
known that copper homeostasis is largely dependent on mitochondrial 
regulation (Baker et al., 2017). A recent study has linked tau pathology 
in AD to mitochondrial dysfunction (Cheng and Bai, 2018). The 
overexpression of hyperphosphorylated and aggregated tau may harm 
the axonal transport of various organelles and mitochondrial 
dynamics, leading to mitochondrial dysfunction (Eckert et al., 2014). 
Tau becomes phosphorylated and aggregated because of mitochondrial 
dysfunction. However, hyperphosphorylated tau disrupts 
mitochondrial axonal transport, which damages nerve and synaptic 
function and leads to memory impairment in AD (Cheng and 
Bai, 2018).

Hypoxia is one of the most common pathological reactions and 
can be induced by ischemic injury, trauma, inflammation, tumors, and 
other events. Hypoxia can promote cell proliferation and invasion and 
regulate immune response (Jing et  al., 2019). One of the main 
regulatory factors of cell response to hypoxia is a kind of protein (Wu 
et al., 2019) called hypoxia-inducible factor-1 (HIF-1). Neurons in the 
central nervous system are particularly sensitive to hypoxia. Even 
transient ischemic hypoxia can lead to severe brain damage, especially 
in the hippocampus, which is extremely sensitive to hypoxia. Because 
the hippocampus is very important for spatial learning and memory, 
damage in this area will lead to a significant decline in cognitive 
function, thus seriously reducing the quality of life of patients (Yang 
et al., 2017). In addition, the central nervous system (CNS) contains a 
variety of immune cell types, which play different roles in tissue 
homeostasis, immune defense, and nervous system diseases. In the 
process of neurodegenerative diseases, inflammation in the brain 
gradually increases, the immune landscape of the central nervous 
system changes significantly, the resident immune cells are activated, 
and the essence can be infiltrated by inflammatory white blood cells 

(Deleidi et al., 2015). White blood cells in the central nervous system 
may also play a role in age-related inflammation and 
neurodegeneration (Ritzel et al., 2016). Type 1 and type 17 T cells, two 
subtypes of CD4+ T cells, promote the development of AD by 
triggering a glial pro-inflammatory reaction (McQuillan et al., 2010). 
The changes in dendritic cells may be  related to serious clinical 
symptoms (Ciaramella et al., 2016). These findings emphasize the 
important role of immune infiltration and hypoxia levels in 
AD. Therefore, it is necessary to study the immune microenvironment 
of AD in detail and accurately identify molecular subtypes, which is 
helpful to determine which patients with AD can benefit 
from immunotherapy.

In the present study, based on bioinformatics and biological 
experiments, we systematically explored the influence of cuproptosis 
on the occurrence and development of AD from the perspective of 
genes, providing novel insights into the treatment of AD.

Methods and materials

Data acquisition

After excluding cell line or animal-level studies and single sample 
studies, two datasets (GSE63060 and GSE63061) were obtained from 
the Gene Expression Omnibus (GEO) database.1 The GSE63060 
dataset (GPL6947 platform), including blood samples from 104 
healthy controls and 145 patients with AD, was selected as the training 
set for further analysis. The GSE63061 dataset (GPL10558 platform), 
which included blood samples from 134 healthy subjects and 139 
patients with AD, was selected as the validation set.

Cuproptosis-related genes (CRGs) 
collection

In total, 12 CRGs were collected based on the literature review. 
Among them, there were 10 genes involving the cuproptosis pathway, 
including 7 pro-cuproptosis genes (DLD, FDX1, LIPT1, LIAS, PDHB, 
DLAT, and PDHA1) and 3 anti-cuproptosis genes (CDKN2A, MTF1, 
and GLS). Besides, SLC31A1 and ATP7B, 2 copper transporters genes, 
were also selected.

Differentially expressed genes (DEGs) and 
AD-related differentially CRGs analysis

The DEGs with p-value <0.05 between AD and healthy control 
groups in GSE63060 were obtained via the Limma package in R 
(version 3.40.6).

Protein–protein interaction (PPI) networks of 12 CRGs were 
reviewed from the STRING database.2 Spearman correlation analysis 
was used to evaluate the relationship between the expressions of 12 
CRGs in all AD samples. The expressions of 12 CRGs between patients 

1 www.ncbi.nlm.nih.gov/geo

2 https://string-db.org/
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with AD and healthy subjects were compared by the t-test, and the 
difference standard was a p-value of <0.05. Least absolute shrinkage 
and selection operator (LASSO) regression was applied for feature 
selection and size reduction to select diagnostic-relevant genes with 
non-zero coefficients to establish a diagnostic model for AD. Receiver 
operating characteristic (ROC) analysis was performed with the R 
package “pROC (version 1.15.3)” to calculate the area under the curve 
(AUC) to evaluate the model accuracy.

Evaluating the immune cell infiltration and 
hypoxia status in different AD subtypes

The relative abundances of 23 types of immune cells in each 
sample as well as the activity of specific immune responses based on 
the proceeded gene expression data were estimated by the single 
sample gene set enrichment analysis (ssGSEA) algorithm. Gene sets 
that marked each IME infiltrating immune cell were gained from a 
previous study (Charoentong et al., 2017), which were rich in human 
immune cell subtypes, including natural killer (NK) cells, dendritic 
cells, CD8+ T cells, macrophages, NK T (NKT) cells, and Tregs cells. 
Immune response genes were collected from the import database.3 
Wilcox test was used to compare the differences in immune cell 
infiltration, immune response activity, and HLA-related genes 
between different groups. Spearman correlation analysis was 
performed to analyze the correlation between the cuproptosis and the 
relative percentage of immune cells. The differences of 23 immune 
cells were verified in the validation set.

The unsupervised clustering analysis was utilized based on the 
expression profiles of the 12 CRGs, employing the k-means algorithm 
with 500 iterations to classify the AD samples into different clusters. 
With LASSO regression analysis, diagnostic models for different AD 
subtypes were constructed. The Wilcox test was performed to compare 
infiltrating immune cell abundance score, CRG expression, immune 
response score, and HLA gene expression for different cuproptosis 
modification patterns. The same method was used to classify AD into 
different cuproptosis-related subtypes in the validation set, and the 
differences in the abundance scores of infiltrating immune cells 
among them were verified.

In addition, since oxygen deprivation stress is a non-hereditary 
risk factor for AD, and cuproptosis is weakened under oxygen-
deprived conditions (James et al., 2012), three hypoxia-related gene 
sets (HALLMARK_HYPOXIA, WINTER_HYPOXIA_DN, and 
WINTER_HYPOXIA_UP) were selected for GSEA analysis to assess 
hypoxia among different subtypes associated with cuproptosis in AD.

Weighted gene co-expression network 
analysis (WGCNA)

The co-expression modules were identified by WGCNA using the 
“WGCNA” R package (version 1, 70.3). To ensure the quality of the 
results, the top 25% of genes with the highest variance were selected 
for subsequent WGCNA analyses. Since the modules identified by the 

3 http://www.immport.org

dynamic tree-cutting algorithm may be similar, they were merged 
with a height cutoff of 0.25.

Identification of hub genes and enrichment 
analysis

To identify the hub genes, the module connectivity of each gene, 
which was relative to AD subtypes based on the WGCNA algorithm, 
was analyzed. Module connectivity was defined as the module 
membership (MM), that is, the correlation of the module eigengene 
and the gene expression profile. Specifically, AD subtype hub genes 
were defined as the most relative genes in the related module. Gene 
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses were performed on the selected genes 
using DAVID.9 to better comprehend their functions. P-value <0.05 
was considered as significantly enriched and the results of GO and 
KEGG enrichment analysis were plotted by a bioinformatics 
online tool.

Drug prediction and molecular docking

Based on the Drug-Gene Interaction database (DGIdb4), drugs 
related to hub genes were screened, and then molecular docking was 
performed between candidate drugs and target genes to reveal the 
relationship between them. Briefly, receptor target protein structures 
obtained from the RCSB PDB databases5 and the active ingredients of 
drugs and their corresponding 3D structures obtained from the 
PubChem were imported into AutoDock Vina. Protein hydrogenation 
was performed using AutoDock 4.2.6 software, and PyMOL software 
was used for dehydration/ligand/receptor analysis. AutoDock Vina 
1.1.222 was employed to dock three receptor proteins with three small 
molecule ligands. The binding energy was used as a reference in 
screening for the most active ligand molecules and target genes. A 
binding energy <0 meant that the ligand and receptor could bind 
spontaneously, with smaller values indicating a more stable binding. 
A binding energy below −5.0 kJ/mol was considered to indicate better 
binding activity for drugs (Liu et al., 2020).

Molecular dynamics (MD) simulation

The GROMACS software package was utilized for conducting MD 
simulations. The protein was simulated using the CHARMM36 force 
field parameters, while the topology of small molecules was built 
based on the CGenFF database. The small molecule-protein complex 
was then placed in a solvent box, filled with water molecules, and 
stabilized with Cl− and Na+ ions to maintain an electrically neutral 
system. After equilibrating the system using an NPT ensemble (fixed 
pressure, temperature, and particle number), the simulation time was 
set to 50 ns, and the simulation went through heating, equilibration, 
and production stages. Finally, the simulation results were analyzed 

4 https://dgidb.org/

5 http://www.rcsb.org/pdb/home/home.do
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based on root mean square deviation (RMSD), root mean square 
fluctuation (RMSF), radius of gyration (RoG), solvent accessible 
surface area (SASA), and hydrogen bonds (H-bonds).

RT-qPCR validation

Total RNA from the blood samples of patients with AD (n = 5) and 
healthy subjects (n = 7) was extracted with a TRIzol reagent according 
to the manufacturer’s instructions. The patients with AD included 
individuals aged 65 years or older, with an MMSE score of 26 or lower, 
who met the diagnostic criteria for AD based on the NINCDS-
ADRDA criteria. Individuals with mild cognitive impairment, mixed 
dementia, vascular dementia, other neurological disorders, and head 
trauma were excluded from the AD group. The control group 
consisted of individuals aged 65 years or older, with an MMSE score 
greater than 27, and without a history of memory or other cognitive 
impairments, significant psychiatric disorders, or major coexisting 
medical conditions. Patients with significant comorbidities such as 
poorly controlled diabetes, end-stage renal failure, unstable 
hypertension, cancer, stroke, and end-stage cardiovascular disease 
were excluded from the control group. This study was approved by the 
Ethics Committee of the Second People’s Hospital of Yibin City (2019-
069-01). Informed consent was taken from all individual participants. 
The RT-qPCR reactions were performed in the Gene-9660 System 
with SuperReal PreMix Plus. The relative quantification of mRNAs 
was normalized to GAPDH with the 2−ΔΔCT method. The primers are 
listed in Table 1.

Results

AD-related differentially CRGs

The distribution of the 12 CRGs on the chromosome is shown in 
Figure 1A. The PPI network revealing the interactions is presented in 
Figure 1B. Correlation analysis results showed that LIPT1 had the 
highest positive correlation with DLAT (r = 0.57), and MTF1 had the 
highest negative correlation with DLAT (r = −0.58) (Figures 1C–E). 
Volcano and heat maps of CRGs between patients with AD and 
controls are shown in Figures 1F,G. The expression of 12 genes in the 

training and validation sets is shown in Figures  1H,I. Besides, 
CRG-related drugs were screened from the DGIdb database 
(Figure 1J).

Construction of a diagnostic model

With LASSO regression analysis, five genes, namely, CDKN2A, 
DLD, FDX1, PDHA1, and PDHB, were obtained from 12 CRGs to 
construct a diagnostic model (Figures  2A,B). The risk score  
calculating formula was as follows: RiskScore = (CDKN2A ×  
0.43146946) + (DLD × 1.47198071) + (FDX1 × -0.1765289) + (PDHA1 ×  
0.04818165) + (PDHB×1.80831198). The ROC analysis revealed that 
the AUC of the diagnostic model was 0.739 in the training set, and the 
AUC was 0.622 in the validation set, proving that cuproptosis does 
indeed play an important role in AD (Figures 2C,D).

Immune infiltration characteristics in AD

The results of the ssGSEA analysis indicated that compared with 
the control group, the abundance of activated B cell/CD4 T cell/CD8 
T cell, gamma delta T cell, immature dendritic cell, natural killer cell, 
plasmacytoid dendritic cell, and type 17 T helper cell were significantly 
reduced in the AD group, while CD56dim natural killer cells, MDSC, 
natural killer T cells, and regulatory T cells were significantly increased 
in the AD samples (Figure 2E). Consistent with the training dataset, 
the AD group had a lower level of infiltrated activated B cells, activated 
CD8 T cells, and Gamma delta T cells, whereas a higher level of 
infiltrated CD56dim natural killer cells, MDSC, and natural killer T 
cells were enriched in the validation set (Figure 2F). However, only the 
immunocompetence score of chemokine receptors, interferon 
receptors, and TGFb family members were significantly different, 
indicating that the change in the immune microenvironment may 
be one of the causes of AD (Figure 2G). A similar trend was observed 
for HLA gene expression (Figure 2H). The results showed that the 
expression levels of HLA-A, HLA-A29.1, HLA-B, HLA-F, and HLA-H 
in the AD group were significantly higher than those in the control 
group, while the expression levels of HLA-DPB1, HLA-DQA1, and 
HLA-DRA were significantly lower than those in the control group. 
Subsequently, correlation analysis between CRGs and immune cells 
showed that MTF1 and activated CD8 T cells exhibited a strong 
negative correlation, while LIPT1和activated CD8 T cells presented a 
strong positive correlation, indicating that the decrease of activated 
CD8 T cells in the AD group may be closely related to the expression 
of MTF1 and LIPT1, which suggests that CRGs may be a remarkable 
factor in the regulation of molecular and immune infiltration in 
patients with AD (Figures 2I–K).

Identification of two different subtypes in 
the AD group

Consensus clustering revealed that the k = 2 was identified with 
optimal clustering stability (Figures 3A,B). Then, 145 patients in the 
training set were clustered into two subtypes, namely, cluster A 
(n = 69) and cluster B (n = 76) (Figures 3C–F). Consistent with the 
analysis in the training set, the validation in the validation set 

TABLE 1 The names and sequences of the PCR primers.

Primer names Primer sequences (5’to 3’)

GAPDH-F GGAGCGAGATCCCTCCAAAAT

GAPDH-R GGCTGTTGTCATACTTCTCATGG

DLD-F CTCATGGCCTACAGGGACTTT

DLD-R GCATGTTCCACCAAGTGTTTCAT

LIAS-F AGGAAGCTCGATGTCCCAAT

LIAS-R TTGTAGGGCTCACTGGCATC

MTF1-F CAGTGCGGAGAACACTTGC

MTF1-R TGCACATAACCCTGGGACATT

PDHA1-F CCAGTTCTGAGGCAGTGTCC

PDHA1-R CTATGCAGGAGGCTGAGGTG
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displayed similar results (Figures 3G,H). Then, 139 patients in the 
validation set were clustered into two subtypes, namely, cluster A 
(n = 72) and cluster B (n = 67) (Figures 3I–L). Consensus clustering 
revealed significant differences in molecular features between the two 
AD subtypes.

Diagnostic models for different AD 
subtypes

With LASSO regression analysis, nine genes, namely, ATP7B, 
DLD, GLS, LIAS, LIPT1, MTF1, PDHA1, PDHB, and SLC31A1, were 
obtained from 12 CRGs to construct a diagnostic model 
(Figures 4A,B). The risk score calculating formula was as follows: 
RiskScore2 = (ATP7B * -8.5997052) + (DLD * 0.9287686) + (GLS * 
6.0858871) + (LIAS * 6.695944) + (LIPT1 * 1.4651665) + (MTF1 * 
-10.9825807) + (PDHA1 * 5.9849369) + (PDHB * 
3.7707367) + (SLC31A1 * -6.1211833). The ROC analysis revealed that 
the AUC of the diagnostic model was 0.999 in the training set, and the 
AUC was 0.979 in the validation set, proving that cuproptosis does 
indeed play an important role in AD subtypes (Figures 4C,D).

Immune infiltration characteristics and 
hypoxia states of two AD subtypes

In order to explore the different immune characteristics of two 
AD subtypes, we  observed different CRG expression landscapes 
through ssGSEA analysis. The results of ssGSEA analysis indicated 
that compared with Cluster A, activated B cell/CD4 T cell/CD8 T 
cell, gamma delta T cell, immature dendritic cell, regulatory T cell, 
type 1 T helper cell, and type 2 T helper cell in Cluster B were 
significantly increased, while activated dendritic cell, MDSC, 
monocyte, and neutrophil were remarkably decreased. Consistent 
with the training dataset, the alternations of activated B cell/CD4 T 
cell/CD8 T cell/dendritic cell, gamma delta T cell, immature 
dendritic cell, MDSC, monocyte, neutrophil, type 1 T helper cell, 
and type 2 T helper cell were identical in the validation set 
(Figures 4E,F). Cytokine receptors, cytokines, interferon receptors, 
interleukin receptors, TGFb family members, and TNF family 
members were more active in Cluster A, while BCR signaling 
pathway, natural killer cell cytotoxicity, TCR signaling pathway, and 
TGFb family member receptors were more active in Cluster B 
(Figure  4G). Because of HLA-related genes, Cluster B exhibited 

FIGURE 1

Difference in CRGs between AD and healthy samples. (A) The distribution of the 12 CRGs on the chromosome. (B) PPI network. (C–E) Correlation 
analysis between 12 CRGs. (F) Volcano plot. (G) Heat map. (H) Expressions of 12 CRGs in the training set. (I) Expressions of 12 CRGs in the validation 
set. (J) CRGs related drugs were screened from the DGIdb database. *p  <  0.05, **p  <  0.01, ***p  <  0.001, ****p  <  0.0001 indicated vs. Control group. 
CRGs, cuproptosis-related genes; AD, Alzheimer’s disease; PPI, Protein–protein interaction; DGIdb, Drug-Gene Interaction database.
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lower proportions of HLA-A29.1, HLA-B, HLA-C, HLA-DQB2, and 
HLA-DRB1, whereas the expression of HLA-DMB, HLA-DOB, 
HLA-DPA1, HLA-DPB1, and HLA-DRA was relatively increased in 
Cluster B (Figure 4H). The immunescore of each patient with AD, 
calculated according to the ESTIMATE algorithm, showed that a 
significantly higher immunoscore was detected in cluster B, 
suggesting that there are different immune microenvironments 
between the two subtypes of AD, and B may have a higher level of 
immune infiltration (Figure 5A). Heat map and volcano map of 
DEGs between the two AD subtypes are shown in Figures 5B,C. To 
explore the relationship between two AD subtypes and cuproptosis, 

the expression levels of 12 CRGs were compared between cluster A 
and cluster B (Figure  5D). ATP7B, SLC31A1, and one anti-
cuproptosis gene, namely, MTF1, were significantly low expressed, 
while GLS and seven pro-cuproptosis genes, namely, DLAT, DLD, 
FDX1, LIAS, LIPT1, PDHA1, and PDHB, were significantly high 
expressed in the cluster B (Figure  5E). The results showed that 
compared with group A, the expression of CRGs in cluster B changed 
more significantly and the level of immune infiltration was higher, 
suggesting that the different immune microenvironment between 
the two AD subtypes may be  caused by the different expression 
levels of CRGs.

A

E F

G H

I J K

B C D

FIGURE 2

The diagnostic model and immune infiltration analysis of AD. (A,B) LASSO regression model was used for data dimension reduction, feature selection, 
and gene screening. In all, 5 CRGs, namely, CDKN2A, DLD, FDX1, PDHA1, and PDHB were screened from these 12 CRGs. (C) ROC curve of the AD 
diagnostic model in the training set. (D) ROC curve of the AD diagnostic model in the validation set. (E) The difference of 23 immune cells in the 
training set between the AD and healthy groups. (F) The difference of 23 immune cells in the validation set between the AD and healthy groups. 
(G) The difference in immune activity between the AD and healthy groups in the training set. (H) HLA gene differences between the AD and healthy 
groups in the training set. (I) Correlation between 23 immune cells and cuproptosis. (J) Relationship between activated CD8 T cells and MTF1. 
(K) Relationship between activated CD8 T cells and LIPT1. LASSO, Least Absolute Shrinkage and Selection Operator; CRGs, cuproptosis-related genes; 
AD, Alzheimer’s disease; ROC, receiver operator characteristic curve. HLA, Human leukocyte antigen.
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GSEA analysis indicated that the gene sets HALLMARK_
HYPOXIA and WINTER_HYPOXIA_UP were upregulated in 
cluster A, while gene set WINTER_HYPOXIA_DN was 
significantly upregulated in cluster B, indicating that the degree 
of hypoxia in the cluster A of the AD group was higher 
(Figures 5F–H).

WGCNA and identification of hub genes

142 samples were screened out through strict quality control 
procedures (Figures 6A–B). The power β = 7 was selected as the soft 
threshold to build a scale-free network (Figure 6C). A total of 10 modules 
were determined, namely, the tan module, magenta module, yellow 

FIGURE 3

Identification of different cuproptosis modes in the AD group in the training and validation sets. (A,B) Consistency clustering results in the training set. 
(C–F) The consensus matrix heat map in the training set. (G,H) Consistent clustering results in the validation set. (I–L) The consensus matrix heat map 
results in the validation set. AD, Alzheimer’s disease.
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FIGURE 4

The diagnostic model and immune infiltration analysis of AD subtypes. (A,B) LOSSA screening results. (C) ROC curve of the model in the training set. 
(D) ROC curve of the model in the validation set. (E) The difference of 23 immune cells in the training set between the AD subtypes. (F) The differences 
of 23 immune cells in the validation set between the AD subtypes. (G) The difference in immune activity in the training set between the AD subtypes. 
(H) The difference in HLA genes in the training set between the AD subtypes. LASSO, Least Absolute Shrinkage and Selection Operator; CRGs, 
cuproptosis-related genes; AD, Alzheimer’s disease; ROC, receiver operator characteristic curve.
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module, purple module, black module, green-yellow module, red 
module, brown module, green module, and grey module (Figures 6D,E). 
The correlation between module eigengenes and AD subtypes was 
analyzed, indicating that the yellow module, including 650 genes, was 
the most model associated with the two subtypes, with a correlation 
coefficient of 0.63 (Figure 6F). With |GS| > 0.5 and |MM| > 0.8, 71 genes 
were identified as AD subtype-associated genes (Figure 6G). Then, 71 
intersection genes were obtained by overlapping AD subtype-associated 
genes and DEGs between two subtypes. These genes were then uploaded 
to DAVID for GO/KEGG analyses, and the significance level was set at 
a p-value <0.05. GO biological process (BP), GO cellular component 
(CC), GO molecular function (MF), and KEGG pathways were 
significantly enriched (Figures  6H,I). In CC terms, the DEGs were 
mainly involved in the plasma membrane, membrane, and cell surface. 
In MF terms, the DEGs were mainly associated with protein binding, 
integrin binding, and low-density lipoprotein receptor activity. In BP 
terms, the DEGs were mainly enriched in signal transduction, actin 

cytoskeleton organization, and positive regulation of interleukin-1 beta 
production, phagocytosis, and receptor-mediated endocytosis 
(Figure 6H). KEGG pathway analysis indicated that the DEGs were 
mainly related to osteoclast differentiation (Figure 6I).

Drug prediction and molecular docking

By overlapping 71 intersection genes and DEGs between AD and 
control groups, 60 genes were obtained to predict the potential drugs 
for AD, and finally, 10 genes (CSNK1D, CRISPLD2, CSF3R, CXCR1, 
CXCR2, ICAM3, NCF4, STAT3, TLE3, and TNFRSF1A) were 
observed as targets of the 74 predicted drugs (Figure 7A). Among 
them, CSNK1D was confirmed to be highly expressed in AD and its 
inhibitor, CHEMBL261454, has been shown to have therapeutic 
effects on AD. Furthermore, CHEMBL261454 was selected for further 
molecular docking analysis with CSNK1D to verify if CHEMBL261454 

FIGURE 5

Differences in immune scores between the AD subtypes. (A) Differences in immune scores between the AD subtypes. (B) Volcano plot of differentially 
expressed genes (p-value <0.05). (C) Heat map. (D) The differences in copper death genes between the two subtypes of the experimental group. 
(E) Differences of cuproptosis genes between the AD subtypes in the validation set. (F–H) GSEA analysis to evaluate the hypoxia status among AD 
subtypes. AD, Alzheimer’s disease.
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and its metabolites had a significant role in the regulation of 
CSNK1D. The results showed that CHEMBL261454 had strong 
interactions with CSNK1D (−4.47 kcal/mol) (Figure 7B). Moreover, 
the molecular docking analysis between CSNK1D and another drug, 
GEFITINIB, was conducted, exhibiting a binding energy of −3.24 kcal/
mol (Figure 7C), which was higher than that between CSNK1D and 
CHEMBL261454. It was further demonstrated that CSNK1D and 
CHEMBL261454 may play a crucial role in the development of AD.

MD simulation

MD simulation has been widely used to evaluate the structural 
characteristics of the protein-ligand systems and study the binding 
stability between the proteins and the molecules. In the present study, 
MD simulation was performed to simulate the binding stability of 
CSNK1D and CHEMBL261454. Analysis of molecular dynamics 
simulation results can be seen in Figures 7D–H.

The RMSD curve depicted the fluctuation of molecular 
conformation after the docking of small molecule-protein 
complexes. It tended to stabilize within 10–30 ns, with slight 
fluctuations observed after 30 ns, indicating a relatively stable 
binding (Figure 7D). The RMSF curve reflected the fluctuation of 
residues within the molecule, where RMSF values suggest potential 
instability of the protein-ligand complex (Figure 7E). The RoG 
curve tended to reach equilibrium, indicating a stable conformation 
(Figure  7F). The SASA can be  used to describe the effective 
interaction between ligand complexes and receptors (Figure 7G). 
Compounds with high SASA values tended to form unstable 
protein-ligand complexes due to their easy access to solvent, while 
complexes with low SASA values were considered stable. Overall, 
there was a decreasing trend, indicating that protein-ligand 
complexes may become more stable over time. H-bonds facilitated 
the binding ability between proteins and ligands, and the number 
of hydrogen bonds could reflect the induced binding affinity. On 
average, protein-ligand complexes formed two hydrogen bonds 

FIGURE 6

Co-expression network constructions by WGCNA and enrichment results. (A) Sample screening dendrogram. (B) Sample dendrogram and feature heat 
map. (C) The scale-free fitting index of different soft threshold powers (β) and the average connectivity of various soft threshold powers. (D) Module 
merge. (E) Genes are divided into different modules by hierarchical clustering, and different colors represent different modules. (F) Heat map showing 
the correlation between module characteristic genes and the two AD models. (G) Scatter plot. (H) GO enrichment results. (I) KEGG enrichment results. 
AD, Alzheimer’s disease; WGCNA, Weighted gene co-expression network analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and 
Genomes.
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(Figure 7H). In brief, these results showed that CSNK1D could 
be well combined with CHEMBL261454.

Verification of gene expression by RT-qPCR

In total, four genes (DLD, LIAS, PDHA1, and MTF1) were 
selected for RT-qPCR analysis. Based on our integrated analysis, DLD, 
LIAS, and PDHA1 were downregulated while MTF1 was upregulated. 
It was noted that the RT-qPCR results were in line with our integrated 
analysis (Figure 8).

Discussion

Toxic oligomeric pTau, amyloid beta peptide, and neurofibrillary 
tangles and plaques accumulated in the brain are diagnostic features 
of advanced AD (Jahangir et al., 2014; Ahmad et al., 2017). As is well-
known, pyruvate dehydrogenase complex (PDHc) and α-ketoglutarate 
dehydrogenase complex (αKGDHc) are indispensable enzymes in the 
Krebs cycle of glucose metabolism (Sang et al., 2018). The pyruvate 
dehydrogenase is produced from the PDHA1 gene and is involved in 
the energy metabolic process. A recent study proposed for the first 
time that the PDHA1 expression was most significantly changed in 

AD mice compared to controls (Yang et  al., 2020). Similarly, the 
relationship between PDHA1 and Parkinson’s disease (PD) has been 
revealed (Miki et al., 2017). The DLD gene encodes the E3 subunit 
(dihydrolipoamide dehydrogenase) of the α-KGDHc enzyme, which 
is composed of three subunits. In a previous study (Brown et al., 2004), 

FIGURE 7

Drug predictions, molecular docking, and molecular dynamics simulation. (A) Drug predictions based on the DGIdb database. (B) Molecular docking to 
verify that CHEMBL261454 had a significant role in the regulation of CSNK1D. (C) Molecular docking to verify that GEFITINIB had a lower role in the 
regulation of CSNK1D. (D–H) Molecular dynamics simulation results including RMSD, RMSF, radius of gyration, SASA, and hydrogen bonds of CSNK1D 
and CHEMBL261454. RMSD, root mean square deviation; RMSF, root mean square fluctuation; SASA, solvent accessible surface area.

FIGURE 8

Verification of four selected gene expressions by RT-qPCR.
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a positive correlation between the DLD gene and AD was proved. 
Inherited mutations in the DLD gene are also associated with 
metabolic diseases that often present with severe neurological 
symptoms (Hong et  al., 1997). Currently, 14 disease-causing 
substitutions in the DLD gene have been documented in the literature 
(Ambrus, 2019). A genome scan research of families with late-onset 
AD (LOAD) (Brown et al., 2004) identified a marker that is located 
within 5 cm of the DLD locus (Pericak-Vance et al., 2000). In this 
study, PDHA1 and DLD expression levels were downregulated in 
patients with AD, and RT-qPCR results showed the same trend, which 
the abovementioned evidence suggests may provide new insights into 
the treatment of AD.

The amyloid b peptide (Ab) is generally considered the primary 
culprit in AD (Selkoe, 2001) and is the main component of amyloid 
plaques. Amyloid plaques are known to be highly enriched for zinc, 
copper, and iron ions (Danielsson et  al., 2007). Chelating of 
aggregation-promoting or redox-active metal ions, such as zinc and 
copper, or reducing oxidative stress can be the methods to reduce the 
toxicity of Ab peptides. Copper homeostasis is disrupted in the brains 
of patients with AD, resulting in copper enrichment in the amyloid 
plaques and decreased overall levels of copper, which leads to reduced 
Cu/Zn SOD-1 activity (Lovell et al., 1998). In a transgenic mouse 
model of AD, dietary copper has been found to restore the function 
of SOD-1 and reduce plaque formation (Bayer et al., 2003). Metal 
chelators have also been shown to be effective, and the expression of 
metal response element (MRE)-binding transcription factor-1 
(MTF-1), the key regulator of metal homeostasis, or of human 
metallothioneins, can reduce Ab generation. MTF-1 is the most 
noticeable metal-dependent transcription factor, activated by various 
stimuli, including copper and zinc, and binding to MREs to regulate 
the expression of copper detoxification metallothioneins (Liuzzi et al., 
2004). Since MTF-1 plays a crucial role in defense against several cell 
stress conditions, including oxidative stress and hypoxia, and has been 
effective in Drosophila models of PD and AD (Saini et al., 2011), 
making it clear if MTF-1 gene expression modulates the course of 
human neurodegenerative disorders, including AD, helps shed more 
light on the molecular mechanisms of AD pathogenesis. In the present 
study, MTF-1 expression was upregulated in AD according to both 
bioinformatics analysis and biological experiments, copper 
homeostasis was disrupted, and copper was enriched in Ab, 
contributing to the onset and progression of the AD phenotype.

In order to study the relationship between hypoxia and different 
subtypes of AD related to copper death, we selected a set of hypoxia-
related genes for GSEA analysis and found that the degree of hypoxia 
in group A was particularly significant, indicating that there was 
differentiated hypoxia in different subtypes of AD. In the central 
nervous system, HIF is mainly involved in the regulation of 
neurogenesis, neuronal differentiation, and neuronal apoptosis. It has 
been found that the decrease in HIF-1a level is related to the increase 
of tau protein phosphorylation and neurofilament formation (Merelli 
et al., 2018). Pharmacological activation of HIF-1 has a neuroprotective 
effect on AD, so it may be used for treatment (Guo et al., 2017; Merelli 
et al., 2018). In clinical trials of patients with AD, it is reported that 
HIF-1 inducer deferoxamine (DFO) slows down the decline of 
cognitive ability (Zhang et al., 2011). However, it must be noted that 
HIF-1 may also have a negative impact on AD. For example, in 
SK-N-MC cells, HIF-1α activates the production of Aβ through Akt–
mTOR-HIF-1α and Akt-NF-κB pathways (Kim et al., 2017). Therefore, 
the role of the HIF signaling pathway in the development of 

AD-related neurodegeneration is still controversial and needs 
further study.

Recent research suggests that the brains of individuals with AD 
are marked by an immunosuppressive microenvironment (Salminen 
et al., 2018). This immunosuppression is a key feature of pathological 
disorders that involve chronic inflammation. Immunosuppressive 
factors, such as IL-10, TGF-β, and ROS, are produced by 
immunosuppressive cells, such as MDSCs, and can inhibit the 
functions of many immune cells, such as dendritic cells, macrophages, 
CD4/CD8T, and B cells (Salminen, 2021a,b). Immunosuppressive 
MDSCs can be recruited via chemotaxis into inflamed tissues where 
their proliferation and activation could be enhanced by mounting 
inflammatory mediators (Salminen et  al., 2018). Similarly, in our 
study, we observed that MDSCs, CD56dim natural killer cells, and 
natural killer T cells were significantly elevated in patients with 
AD. Conversely, gamma delta T cells, activated CD8 T cells, and 
activated B cells were significantly reduced both in patients with AD 
and healthy subjects. Previous research has demonstrated that patients 
with AD exhibit a significant reduction in CD8+ T cell subsets, a 
significant increase in CD4+ helper T cells, and a significant 
correlation between the CD4/CD8 ratio and cognitive decline that is 
characteristic of AD (Unger et al., 2020). Therefore, the development 
and progression of AD are intimately linked to the immune infiltration 
of various immune cells. Identifying the intrinsic mechanism of 
neuroimmunity is significant for the prevention and treatment of 
AD. Meanwhile, the expression of the HLA gene showed the same 
trend. Compared with the healthy group, the expression of the HLA-I 
gene in the AD group was significantly increased, while the expression 
of the HLA-II gene was significantly decreased. The expression level 
of HLA-I genes is mainly related to rejection, which can induce 
CD8 + T cells to activate, while the expression level of HLA-II genes is 
mainly related to humoral immunity, which can induce CD4 + T cells 
to activate and stimulate B cells to produce specific antibodies. 
Recently, a large-scale genome-wide association meta-analysis 
confirmed that the haplotype HLA-dr15 mediated by nerve and 
immunity is a risk factor for delayed Alzheimer’s disease through the 
fine localization of the human leukocyte antigen (HLA) region 
(Kunkle et al., 2019). By examining millions of polymorphisms in 
subjects, studies have revealed that genes such as HLA-DRB5-DBR1 
are closely related to the risk of AD (Karch and Goate, 2015; Hampel 
et al., 2020). Therefore, in short, the occurrence and development of 
AD are closely related to the immune infiltration level of various 
immune cells. It is of great significance to clarify the internal 
mechanism of neuroimmunity for the prevention and treatment of AD.

Decades of research have produced increasing advances in 
antineurodegenerative therapies, whereas traditional classifications 
based on histology show frequent resistance (Nandigam, 2008). Thus, 
the identification of more suitable molecular clusters benefits the 
individualized treatment of AD. To differentiate patients with AD 
from healthy subjects, we constructed a diagnostic model for AD 
based on the CDKN2A, DLD, FDX1, PDHA1, and PDHB genes. 
Because the two subtypes of AD have different levels of immune 
infiltration and hypoxia, in order to guide clinical medication more 
accurately, we also screened nine genes, namely, ATP7B, LIAS, DLD, 
GLS, MTF1, LIPT1, PDHA1, SLC31A1, and PDHB, in order to 
distinguish the two subtypes of AD, and constructed a diagnostic 
model based on these genes. The AUC value of RiskScore2 indicated 
that this model was effective in distinguishing between the two 
different AD subtypes. This model represents a promising diagnostic 
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tool and provides new insights for the diagnosis of AD. Furthermore, 
we analyzed separately the correlation of immune infiltration in the 
two subtypes of AD. Our findings suggested that the proportion of 
γδT cells, activated CD4 T cells, activated B cells, activated dendritic 
cells, activated CD8 T cells, and immature dendritic cells was higher 
in both the experimental and validation sets than in the Cluster A 
group. However, the proportion of MDSCs, monocytes, neutrophils, 
type 1 helper T cells, and type 2 helper T cells was lower. These results 
suggested that the two AD subtypes may exhibit distinct neuroimmune 
characteristics and that timely recognition of these subtypes may 
facilitate the targeted treatment of AD.

The stress-induced protein kinase CK1 delta (CSNK1D) lies in the 
long arm of chromosome 17 (17q25.3) in humans, encoding CK1δ, a 
member of the CK1 family (Graves et al., 1993). Increasing studies 
have demonstrated that the dysregulation and activity of CK1δ 
expression are not only found in various cancers but also in different 
neurological diseases including AD (Zhu et al., 2022; Jin et al., 2023). 
Hence CSNK1D is expected to be a promising treatment target for 
AD. CHEMBL261454, as an inhibitor of CSNK1D, may have a certain 
effect on AD13. Furthermore, CHEMBL261454 was selected for 
further molecular docking analysis along with CSNK1D. Molecular 
docking was used to verify if CHEMBL261454 and its metabolites had 
a significant role in the regulation of CSNK1D. As a control, another 
drug, GEFITINIB, was subjected to the same procedure as 
CHEMBL261454. The results showed that CHEMBL261454 had 
strong interactions with CSNK1D (docking score − 4.47 kcal/mol), 
suggesting that they might play vital roles in the development of AD, 
which was further validated by MD simulation.

Some limitations of this study need to be  noted. First, the 
performance of the diagnostic model needs to be confirmed by more 
detailed and accurate clinical materials. Second, more AD samples will 
be  collected to prove the accuracy of AD clusters as well as the 
potential correlation between CRGs and immune responses. 
Additionally, molecular docking and MD simulation can be valuable 
tools in the validation process for drug predictions, but further related 
experiments will be  needed to provide additional insights 
and predictions.

Conclusion

In summary, two distinct patterns of cuproptosis were identified 
in patients with AD, which were divided into two subtypes, A and 
B. Based on the overall analysis of patients with AD, the immune 
infiltration and hypoxia stress of the two subtypes of AD were 
analyzed, disclosing the correlation between CRGs and immune cells 
and elucidating the significant heterogeneity of immune between 
patients of the two AD clusters. Moreover, the diagnostic model of AD 
subtypes was established. Currently, only limited drugs targeting these 
key genes are expected to alleviate AD, suggesting that more 
convincing research needs to be performed.
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