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Introduction: The aging brain is characterized by decreases in not only neuronal

density but also reductions in myelinated white matter (WM) fibers that provide

the essential foundation for communication between cortical regions. Age-

related degeneration of WM has been previously characterized by histopathology

as well as T2 FLAIR and diffusion MRI. Recent studies have consistently shown that

BOLD (blood oxygenation level dependent) effects in WM are robustly detectable,

are modulated by neural activities, and thus represent a complementary window

into the functional organization of the brain. However, there have been no

previous systematic studies of whether or how WM BOLD signals vary with normal

aging. We therefore performed a comprehensive quantification of WM BOLD

signals across scales to evaluate their potential as indicators of functional changes

that arise with aging.

Methods: By using spatial independent component analysis (ICA) of BOLD signals

acquired in a resting state, WM voxels were grouped into spatially distinct

functional units. The functional connectivities (FCs) within and among those units

were measured and their relationships with aging were assessed. On a larger

spatial scale, a graph was reconstructed based on the pair-wise connectivities

among units, modeling the WM as a complex network and producing a set of

graph-theoretical metrics.

Results: The spectral powers that reflect the intensities of BOLD signals were

found to be significantly affected by aging across more than half of the WM units.

The functional connectivities (FCs) within and among those units were found to

decrease significantly with aging. We observed a widespread reduction of graph-

theoretical metrics, suggesting a decrease in the ability to exchange information

between remote WM regions with aging.

Discussion: Our findings converge to support the notion that WM BOLD signals

in specific regions, and their interactions with other regions, have the potential to

serve as imaging markers of aging.
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Introduction

Aging is a complex and heterogeneous process that is known
to affect the brain at structural, biochemical, and molecular levels,
which may consequently contribute to cognitive decline (Lee and
Kim, 2022). Aging effects in brain are often evident in specific types
of magnetic resonance image (MRI) including T1-weighted images
which provide volumetric measurements of gray matter (GM)
structures. It has been consistently reported that the cerebral cortex
becomes smaller and thinner with aging (Salat et al., 2004; Wang
et al., 2019; Taubert et al., 2020), potentially reflecting neuronal loss
over time. However, the aging brain is characterized by decreases
in not only numbers of neurons (Terry et al., 1987) but also their
myelinated projections, namely white matter (WM), that provides
the essential foundation for transmitting electrophysiological
signals between GM (Albert, 1993). Alterations in WM have
previously primarily been characterized by histopathological
degeneration and are often assessed as hyperintensities in T2
FLAIR and reduced anisotropy of water diffusion in diffusion MRI
(Madden et al., 2004, 2009; Yoshita et al., 2006; Liu et al., 2017).

Accompanied by the degeneration of nerve cells and fibers,
aging usually involves the decline of various brain functions, which
have a strong relationship with changes in the blood oxygenation
level-dependent (BOLD) signals that are measured by functional
MRI (fMRI). While such signals have been comprehensively
studied in GM, whether they reliably arise in WM has been
considered controversial, leading to a lack of understanding of
whether or in what manner WM functions are influenced by
aging processes. However, it is clear from our own and other
recent studies that although BOLD effects are weaker in WM,
using appropriate detection and analysis methods they are robustly
detectable (D’Arcy et al., 2006; Fraser et al., 2012; Ding et al.,
2013, 2018; Gawryluk et al., 2014; Peer et al., 2017; Courtemanche
et al., 2018; Gore et al., 2019; Li M. et al., 2019), and vary
with baseline activity (e.g., as induced by different levels of
anesthesia), and alter in response to a stimulus (Wu et al., 2016;
Ding et al., 2018; Li et al., 2020; Mishra et al., 2020), supporting
their interpretation as indicators of neural activity. In addition,
although BOLD effects in GM indirectly reflect the metabolic
demands of the electrical and biochemical activity of neurons,
there is preliminary evidence that BOLD effects in WM may reflect
metabolic processes in glial cells that arise during and after axonal
transmission aging brain (Schilling et al., 2022). These processes
include upholding resting potentials on cell membranes, such as
those found in oligodendrocytes, and providing general support
for cellular maintenance, such as myelin upkeep. In addition, the
glia are altered in the aging process and changes in WM are
known to be associated with loss of brain functions in aging
and neurodegenerative diseases (Salas et al., 2020). Moreover,
WM BOLD signals measured during a resting state, where no
external task or stimulus is present, reflect an intrinsic activity
that has been shown to be altered significantly in subjects with
neurological or psychiatric disorders (Gao et al., 2020; Huang J.
et al., 2020; Lin et al., 2020). Thus there are grounds for postulating
that BOLD signals in WM may show changes across the lifespan
and potentially provide new insights into functional changes with
cerebral aging.

In this study we performed a comprehensive analysis of WM
BOLD signals across scales in order to investigate possible changes
in the functional organization of the brain with normal aging.
According to our previous work, resting-state BOLD signals in
WM are similar though weaker to GM, organized in a manner
where voxels sharing similar time courses may be grouped
into spatially independent components (ICs) (Huang Y. et al.,
2020). The temporal synchronizations among specific components
can be assessed, possibly revealing important aspects of neural
communications and networks. Here we reconstructed a graph
based on the pair-wise connectivity among ICs, modeling the WM
as a complex network and producing a set of graph-theoretical
metrics i.e., cluster coefficients, efficiency, and strength, that can be
used to probe the topological properties underlying the network
(Wang, 2010). Meanwhile, based on the hierarchical structures
of the graph, we grouped ICs into three sub-circuits and then
assessed the within-/inter- circuit connectivities. All the above
measurements served to characterize macroscopic, system-wide
properties of brain communication and were found to decrease
in older individuals, suggesting a reduced capacity/efficiency
in information exchange therein. In addition, our recent work
suggests the frequency contents of WM resting state signals differ in
magnitudes and shapes from those in GM, and vary with location
across the WM (Li et al., 2021; Li M. et al., 2022). Therefore, on a
smaller scale, we also evaluated the power spectra of BOLD signals
within each IC and observed a significant relationship between
their magnitudes and age in more than half of the ICs. This finding
adds to our knowledge about the intensity of BOLD fluctuations
in WM during normal aging. Our findings converge to support
the notion that neural activities are embedded in WM BOLD
signals, and the neural activities in specific WM regions and their
interactions with others have the potential to serve as imaging
markers of aging.

Materials and methods

Dataset

Seven hundred and Seventy healthy (Cognitively normal,
CDR = 0) individuals were selected from the OASIS-3 database
(LaMontagne et al., 2019). Among them, five hundred and ten who
have complete fMRI data and passed the quality control criteria
(see the preprocessing section for detail) were analyzed (213 males
and 297 females whose ages ranged between 42 and 95 years).
Many individuals have longitudinal data but here we use the images
acquired on only their first visits. All but three individuals were
scanned twice in the single session so we included 1,017 image
datasets in total. The imaging protocols are described in detail in
a previous report (LaMontagne et al., 2019). Briefly, all images were
acquired using Siemens TIM Trio 3T (433 individuals) or Siemens
BioGraph mMR PET-MR 3T scanners (77 individuals). Participants
were placed in a 20-channel head coil with foam pad stabilizers
placed next to the ears to decrease motion. MR imaging included
various anatomical and functional sequences, but here only resting
state fMRI and T1-weighted images are analyzed. In particular, each
resting state session was comprised of two runs of 6 min each,
repetition time (TR) = 2,200 ms, echo time (TE) = 27 ms, voxel
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size = 4 mm isotropic, and the number of volumes = 164. T1-
weighted images were acquired using a 3D magnetization-prepared
rapid acquisition with gradient echo (MPRAGE), TR = 2,400 ms,
TE = 3.16 ms, voxel size = 1 mm isotropic.

Preprocessing

To first process the data, an automated high-performance
pipeline was created. Briefly, slice timing and head motion were
removed from the fMRI volumes, and then the mean cerebrospinal
fluid (CSF) signal and 24 motion-related parameters were modeled
as covariates and regressed out from the BOLD signals. The data
were then detrended and passed through a temporal filter with
a passband frequency of between 0.01 and 0.1 Hz. All of these
procedures were carried out using a customized pipeline based
on the DPABI toolbox (Yan et al., 2016). The Computational
Anatomy Toolbox (CAT12) was then used to segment GM, WM,
and CSF tissue based on the T1-weighted images (Gaser et al.,
2022). Using co-registration and normalizing functions in SPM12
(Friston, 1994), the filtered fMRI data, along with corresponding
tissue masks, were spatially normalized into MNI space (voxel
size = 3 × 3 × 3 mm3). As the analyses were restricted to
WM, a group-wise WM mask was constructed by averaging the
WM parcellations (probability maps) that were derived from cat12
across all subjects and applying a threshold. The initial threshold
was set to 0.95, which was capable of eliminating effects from
GM. However, this cropped out many important WM voxels,
particularly small structures spatially located between gray matter
regions, e.g., internal and external capsules, that were vulnerable
to inter-individual variabilities. We then spatially expanded the
WM mask by decreasing the threshold gradually in steps of 0.01
until the overlap between the mask and GM area could be visually
noticed on the averaged T1 image (group mean T1). We found that
0.8 was the minimal value that could produce a clean WM mask
(Supplementary Figure 1) while retaining most of the important
WM structures. After that, the fMRI data within the WM mask
were spatially smoothed with a 4-mm full width at half maximum
(FWHM) Gaussian kernel. The preprocessed results were subjected
to a manual quality control procedure in which the passing criteria
included: (1) all the preprocessed results must be successfully
generated; (2) the maximal translations and rotations of head
motion must be less than 2 mm and 2◦, respectively; (3) the mean
frame-wise displacement (FD) must be less than 0.5 mm (Power
et al., 2014) and (4) the spatial normalization was acceptable by an
expert’s visual inspection.

Group ICA

Spatiotemporal data can be broken down by ICA into spatial
ICs, which are considered a basis set that constitutes the original
data after an unidentified but linear mixing process. The data
in this study were analyzed using the Group ICA of the FMRI
Toolbox (GIFT) (Calhoun et al., 2001). Most of the parameters in
the toolbox were set to the default values except for the number of
ICs and principal components (PCs). Our previous work reliably
detected 31 ICs in WM (Huang Y. et al., 2020). To provide as many

components as possible to match known functional segmentations,
we set the number of ICs to a greater number, 40, in this study.
The first step of group ICA is to reduce the temporal dimension
of each subject from 164 to 60 (1.5 times the intended number of
ICs) using spatial principal component analysis (PCA). Those PCs
were then concatenated along their temporal dimensions across all
individuals, to produce a signal time course of 1,017∗60 dynamics
for every voxel. The group data were subjected to PCA once more,
with the dimension further decreased from 60 to 40. This produced
PCs that accounted for the greatest variations at the group level,
and 40 ICs were then estimated using Infomax from these PCs
(Bell and Sejnowski, 1995). The spatial map (at the group level)
of each IC was rebuilt, translated to z-scores, and thresholded at
z > 2. Note that the z-score is solely used here for descriptive
purposes and has no claimed statistical validity (Mckeown et al.,
1998). Finally, the ICs were overlaid back as masks on the fMRI
data of each individual to extract averaged time courses of interest,
based on which functional networks were constructed by evaluating
correlations as discussed below.

Network measurements

Connectivity matrices were constructed by calculating
Pearson’s correlation coefficients between time courses of ICs
pair-wise for each subject. Three types of network measurements,
including within-IC functional connectivity (FC), inter-IC FC,
and graph-theoretical metrics, were extracted and analyzed.
Specifically, the within-IC FC, i.e., the average z score obtained
from the group ICA served as a measure of functional integrity
in each IC. The inter-IC FC is equivalent to Pearson’s correlation
between two specific ICs. Five graph-theoretical metrics were
calculated using the brain connectivity toolbox (Rubinov and
Sporns, 2010), including two global metrics and three local metrics
as follows:

(1) global characteristic path length, i.e., the average shortest
path length in the network. A shorter path allows for the
quicker transfer of information and reduces costs.

(2) global efficiencies, i.e., the average inverse shortest path
length in the network. It measures the exchange of
information across the entire network.

(3) local cluster coefficients, the fraction of triangular
connecting pathways around an IC, equivalent to the
fraction of IC’s neighbors that are neighbors of each other.
It is a measure of the degree to which ICs in a graph tend to
cluster together. This metric has been shown to be useful
for understanding the small-worldness of a network.

(4) local efficiency, i.e., the global efficiency computed on
IC neighborhoods. It quantifies how well information is
exchanged by its neighbors when it is removed.

(5) local strength, the sum of weights of links connected to
the IC, often reflecting the influence or centrality of the
IC on the network.

Note that all these measurements are calculated based on the
weighted FC matrix and only positive weights were preserved for
calculation. We then used multiple linear regression to identify
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which measurements exhibit significant correlations with age.
For this, the head motion was parameterized by the framewise
displacement (FD) (Power et al., 2014) derived from preprocessing,
so that for each measurement M we fit the following:

M = constant + b1 × age + b2 × age2
+ b3 × gender

+ b4 × headmotion + ε

As this study focuses on age, this formula can help regress out
the effects of gender and head motions by subtracting the terms
corresponding to gender and head motion from M, producing an
adjusted M. Theoretically, this adjusted measurement reflects the
change due only to age, resulting in a more accurate measure of the
correlation between M and age. Here M can be any measurement
obtained in this study, such as within-IC FC, inter-IC FC, graph-
theoretical metrics, and the power spectra profiles.

As the data analyzed were acquired from two different scanners,
the observed correlation between age and imaging measurements
could in theory be attributed to a scanner effect instead of
biological changes due to aging. To rule out such an effect, we
performed an experiment in which the relationship between age
and within-IC FC was evaluated based on data from only one
scanner (TIM Trio 3T).

Sub-circuits and their reorganizations

By applying the Louvain community detection algorithm
(Blondel et al., 2008) to the connectivity matrix, the ICs that are
tightly connected with each other can be grouped into a community
which represents an integrated circuit or network. To evaluate the
possible reorganization of circuits with aging, we first divided the
subjects into subgroups at 10-year intervals, and then applied the
Louvain approach to the average connectivity matrix regarding
the youngest group (40–50 years) to produce a baseline circuit
configuration. The within- and inter-circuits connectivities were
captured from different age groups but based on the same baseline
configuration, and then were compared among different age
groups. Meanwhile, distinct circuit configurations were separately
calculated using the Louvain approach from different age groups
and were compared in terms of the memberships of each IC to the
circuits.

Calculation of power spectra

Spectral analysis of signals represents a complementary
approach to identifying features of interest, and BOLD effects
that appear to be random over intervals may reflect a distinct
pattern of component frequencies. We used Fourier transforms
(Welch method) (Welch, 1967) to estimate the power spectra
of the BOLD time courses of each voxel. Each IC-specific
power spectrum was calculated by averaging the power spectra
across all voxels therein. The mean powers across the low-
frequency band (0.01–0.1) were measured to indicate the intensity
of BOLD fluctuations, and their relationships to age were
determined using the same regression model as for the network
measurements.

Results

Relationship between within-IC FC and
age

Figure 1 shows the 40 ICs estimated by the group ICA
approach from the resting-state fMRI signals in WM. Each IC
was characterized by a cluster of highly connected voxels within a
distribution of Z scores representing the voxel-wise FC within the
IC. By visual inspection, none of them represents obvious artifacts.
These ICs are distributed across the entire WM and show great
symmetries between the left and right hemispheres. Some of the
ICs reflect known anatomical structures. For example, IC 31, 20,
12, and 16 clearly lay out the genu, anterior body, posterior body,
and splenium of the corpus callosum. The corresponding structures
of the ICs have been listed in Supplementary Table 1. Each name
in the table represents a WM bundle, defined in the JHU WM
atlas (Mori et al., 2009), that has the greatest overlap with an IC.
By regression, we identified eight ICs whose within-IC FCs varied
significantly with age (p < 0.05, Bonferroni correction) as shown
in Figure 2. Those ICs exhibited reduced within-IC FC in older
individuals, and are spatially distributed primarily at the temporal,
frontal, and midbrain areas and the genu of the corpus callosum
(CC),. From the quadratic fitting of the data, we identified slight
decelerations after 70 years old in 5 out of the 8 ICs displayed. Such
significant relationships between age and within-IC FCs still exist
even if we used the data from a single scanner (Supplementary
Figure 2). Therefore it is less likely that the observed age effects
on BOLD are attributed to scanner effects.

Relationship between inter-IC FC and
age

From 780 possible connections (upper diagonal part of the
40 × 40 FC matrix), we identified 375 pairs of ICs whose FC
decreased significantly in older individuals (p < 0.05, Bonferroni
correction), as shown in the left panel of Figure 3. IC 5, distributed
at the inferior frontal area, is involved in the top 8 connections that
showed most significant reductions in FC. The other end of those
eight connections includes five ICs located at the posterior part of
the brain and three ICs at the frontal area (including the genu of
the CC). By contrast, there are only 9 connections characterized by
increased FC over age (p< 0.05, Bonferroni correction), where the
most significant change of FC was identified between two IC at the
posterior part of the brain.

Relationship between network metrics
and age

The radar charts in Figure 4 illustrate the relationship between
age and three local network metrics, including cluster coefficients,
efficiency, and strength. We observed that all forty ICs exhibited
reduced metrics over age and the distribution of r values across
ICs is in general consistent among the three metrics. For example,
the most significant changes are consistently identified in five
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FIGURE 1

Forty ICs that are derived from group ICA are displayed in three orthogonal planes. The color map overlaid represents the Z score, reflecting the
degree of membership of the voxel to the IC. The brighter color indicates a higher Z value. Here only voxels with Z > 2 are displayed.

ICs (highlighted in the Figure) that are distributed in frontal
and temporal areas of the brain as well as the genu of the CC.
From Figures 4D, E, we observed that the global efficiency of
the network decreased significantly whereas the characteristic path
length increased significantly over age.

The reorganization of sub-circuit
configurations with age

As shown in Figure 5, three sub-groups were distinguished
by Louvain’s approach, where the first network is composed of
ICs at the inferior part of the brain, while the second and third
groupings consist of ICs at the anterior and posterior part of the
brain. The within- and between-circuit FCs in general decreased in
older individuals but were heterogeneous in their trajectories. For
example, for FCs in which circuit 2 was involved (within circuit
2, between circuits 1–2 and 2–3), the FC peaked at 50–60 years
old. For circuit 3, the within-circuit FC in the 90–100 years group
is higher than in some of the younger groups. In terms of circuit
propagation, as shown in Figure 6, IC 13 and IC30 are members

of circuit 1 and circuit 3, respectively but propagate to circuit 2 at
older ages. By contrast, IC 5 is a member of circuit 2 but propagates
to circuit 1 at older ages.

Relationship between power spectra and
age

The mean spectral powers decreased significantly with aging
in 23 out of 40 ICs (p < 0.05, Bonferroni correction). Figure 7
upper panel displays the r values corresponding to those 23 ICs in
descending order. In Figure 7 lower panel, we visualize the four
representatives corresponding to the highest r (absolute) values.
Consistently, these four displayed ICs are all distributed in the
frontal areas of the brain.

Discussion

Following standard methods that have previously been used to
analyze BOLD signals in GM, we have modeled WM as a complex
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FIGURE 2

Relationship between within-IC FC and age. Eight ICs that show significant changes across age are shown (p < 0.05, Bonferroni correction). Each
panel visualizes the spatial distribution of the IC, as well as scatter plots that represent the age of the subjects (x-axis) versus the within-IC FCs
(y-axis). Note that the y-axis does not represent the raw FC values but the residues after gender and head motions are regressed out. The color
reflects the density of the scatters. The hotter color indicates a higher density.

FIGURE 3

Pair-wise IC connections whose FC show significant correlations with age. The panel on the left displays the functional links whose FCs significantly
decrease over age (p < 0.05, Bonferroni correction). The thicker lines indicate higher r (absolute) values. The ICs involved in the top 8 most
significant changes are highlighted in blue, with their distribution maps shown beside the IC labels. Coincidently IC 5 is involved in all those 8
connections of interest so that it is highlighted with a blue rectangle. The panel on the right displays the functional links whose FCs significantly
increased over age (p < 0.05, Bonferroni correction). The thicker lines indicate higher r (absolute) values with age. ICs involved in the most
significant changes are highlighted in blue, with their distribution maps shown beside the IC labels.

network, measured the network properties at different scales, and
investigated their correlations to normal aging. We observed that
the aging brain exhibits reduced network connections, whether
measured locally or globally, suggesting an overall decline in the
ability to exchange information between GM regions. In addition,

in the majority of WM areas, the spectral power varied significantly
with aging, potentially implying changes in the intensities of BOLD
fluctuations therein.

Our analysis revealed 40 nodes derived as spatially unique
ICs that were identified using a group-ICA approach. The spatial
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FIGURE 4

Relationship between network metrics and age. Panel (A) displays the relationship between cluster coefficients and age. Each data point on the
radar chart indicates r value. Panel (B) displays the relationships between network efficiencies and age. Each data point on the radar chart indicates r
value. Panel (C) displays the relationship between network strength and age. Each data point on the radar chart indicates r value. The distributions of
IC 5, 6, 10, 20, and 24, whose spatial distributions are visualized in this panel, are considered IC of interest as they exhibit the closest relationships
with age in the case of all three measurements. Panels (D,E) display the correlation between global network metrics, including global efficiency and
characteristic path length, and age. P-values have been corrected by the Bonferroni method. Note that the y-axis does not represent the raw
metrics but the residues after gender and head motions are regressed out.

distributions of the ICs are consistent with those in previous
works identified based on either ICA (Huang Y. et al., 2020) or
K-means clustering (Peer et al., 2017; Li J. et al., 2019, 2022;
Wang et al., 2022; Yang et al., 2022). In most of those studies,
the nodes that act in concert were further grouped into sub-
groups based on their spatial distance to GM, namely, superficial,
middle, and deep layers. The intra- and inter-layer assignments
were assessed and found to be relevant to specific neurological
conditions (Li J. et al., 2022). Though promising, such grouping

was determined by anatomic locations and therefore does not
reflect any intrinsic functional specialties. By contrast, here we
used a data-driven, unsupervised approach to decompose the
ICs into functional communities (sub-circuits) by maximizing the
within-community connectivities and minimizing the inter-circuits
connectivities. Each circuit/community is more likely to represent
a distinct function. The temporal interactions between those ICs
were mathematically modeled by a graph, producing a set of
network metrics, and providing global and local descriptions of the
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FIGURE 5

The variation in circuit configuration over age. Panel (A) display the mean FC matrices corresponding to six age groups. The nodes (ICs) are sorted
according to baseline circuit configuration calculated based on the youngest age group (40–50 years). The distributions of the three circuits are
displayed in panel (B), with labels of ICs that are involved in different circuits shown above. Panel (C) shows how the within- (first row) and inter-
(second row) circuits FC vary with age (groups). Each box visualizes the median, 25, and 75 percentile in the FC values of subjects within an age
group.

network. The characteristic path length, global efficiency, strength,
clustering coefficient, and local efficiency that were quantified
in this work represented the measures of connectivity capacity,
information exchange at whole-brain and local levels, degree of
clustering, and information integration of the functional network,
respectively. We observed that ICs in the same functional circuit are
in close proximity. But rather than grouped into layers, the three
sub-circuits of ICs represent the anterior, posterior, and inferior
parts of the brain, and their connectivities, in general, showed a
decreasing trend with aging. By contrast, the connectivities within

circuit 3 and between circuits 1 and 3 are noticeably higher in the
oldest group than those in some younger groups. Similar findings
were reported in previous work where the oldest group showed
increased connectivity than younger groups (Farràs-Permanyer
et al., 2019) and cognitively abnormal individuals showed increased
connectivities between temporal and occipital areas (He et al.,
2007), possibly due to a compensatory mechanism. This is further
confirmed by Figure 3, where the FC between two regions that
are located in the posterior brain increased significantly with
aging.
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FIGURE 6

Independent components (ICs) that switch their membership to the circuits over age. IC 13 is a member of circuit 1 but propagates to Circuit 2 at
older ages. IC 5 is a member of circuit 2 but propagates to circuit 1 at older ages. IC 30 is a member of circuit 3 but propagates to Circuit 2 at older
ages.

FIGURE 7

The variation in spectral powers over age. Upper panel: the r values (in descending order) corresponding to the 23 ICs in which the mean low-band
powers decreased significantly with aging. Lower panel: four representatives corresponding to the highest r (absolute) values. Note that the y-axis
does not represent the raw power values but the residues after gender and head motions are regressed out. P-values have been corrected by the
Bonferroni method.

The findings regarding the within-IC FC suggest that the
frontal and temporal WM regions are more affected by aging.
Previous works have reported that age-related changes showed
the greatest effects in the frontal lobe, followed by the temporal
lobe in many aspects, but predominantly characterized by loss
of cortical volumes (Bartzokis et al., 2001; Raz et al., 2005).
Other studies have observed reduced WM integrity (O’Sullivan
et al., 2001; Gunning-Dixon et al., 2009) in frontal and temporal
areas based on diffusion MRI. Therefore, one possible explanation
of our finding is that a loss of neurons as well as their
myelinated extensions might be associated with lower demand
for communications among WM voxels, leading to reduced
within-IC FC. We observed a significant reduction of within-IC

FC in the genu (anterior part) of CC which connects bilateral
frontal regions. This notion is supported by a previous work
suggesting age-related decreases in interhemispheric FC between
the ventromedial prefrontal cortices (Zhao et al., 2020). Note that
in Figure 2, the y-axis represents the adjusted FC measurements
in which the individual-wise head motions have been regressed
out. The reason for doing this is that older individuals often
showed greater head motion during the scan (Supplementary
Figure 3 lower panel), which could introduce spurious increases
in connectivity (Kato et al., 2021). An interesting finding is
that, by contrast, if the head motions are not regressed out
from the data, we identified four ICs in which the within-IC
FC increased significantly with aging (Supplementary Figure 3),
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and more importantly, they distributed near the precentral gyrus
or within the cerebellum, and thus may be relevant for motor
effects. We suspect that the higher neural activities or inter-voxel
communication in these regions in older individuals shaped those
positive correlations. However, these disappeared (at least were
not significant anymore) after the head motions were controlled
during regression analysis, suggesting that head motions should
be carefully treated when assessing age-related changes in fMRI
measurements.

On a larger scale, we observed that nearly half of inter-
IC connections exhibit widespread decreases in FC with aging,
while only a few, predominantly short-range connections between
specific posterior regions, show an increasing trend. Similarly, as
reported in previous literature, FC decreased in the connections
between most pairs of GM regions but increased only in regions
within visual networks which were located at the posterior part of
the brain (Zonneveld et al., 2019). A more interesting finding is that
an IC at the inferior frontal area is the most affected by aging in
terms of a significant reduction of its interactions with the other
eight ICs. This finding confirms the vulnerability of the inferior
frontal brain to aging and supports the findings reported by Feng
et al. (2020) where reduced volume and cerebral blood volume
(CBV) were identified. Moreover, the other eight ICs mentioned
above show a clear separation: five ICs at the posterior and three
ICs at the anterior part of the brain, reflecting two distinct patterns
of connections (a short-range and a long-range) that are affected.
In addition, the graph metrics indicate a widespread reduction
across nearly all regions, among which five frontal ICs appear to
be most affected by aging, again confirming the vulnerability of
the frontal brain to aging. On an even larger scale, the WM ICs
group into three sub-circuits. The FCs within and between the
sub-circuits consistently reduced in older individuals, suggesting
abnormal communications across all major communities of WM
nodes. Such parallel neurodegenerations observed in the anterior,
posterior, and inferior parts of the brain WM are consistent with
previous findings in which nearly all communities that consisted
of GM nodes exhibit negative correlations with age (Varangis
et al., 2019). By contrast, different sub-circuits showed different
trajectories in their changes in FC over age groups. This can be
explained by the distinct time-dependent patterns of changes that
have been observed in different regions of the brain (Beason-
Held et al., 2008). Moreover, on a global scale, the information
exchange, measured by the global metrics, significantly decreases
with aging, and the fitting line exhibited a noticeable inflection
point at around the 7th decade. This is consistent with the notion
that the most notable loss of neurons occurs after 70 years of
age (Scahill et al., 2003), possibly leading to less demand for
communications between WM regions that are used to mediate
neural signal transmission.

Based on our previous work, the local HRF in WM is strongly
correlated with the shape of the power spectra of the BOLD
signals based on a very short sampling rate (TR = 0.72 s)
(Li et al., 2021). However, the data interpreted in the current
study are based on a longer TR (2.2 s), and might not provide
sufficient temporal resolution to characterize the distribution of
power at specific frequencies. Therefore, instead, we measured the
mean power across the entire low-frequency band to represent
the intensity of BOLD fluctuations, which are also shown
to be correlated with resting-state cerebral flow (Zou et al.,

2009). The spectral power decreases significantly with aging,
particularly in frontal regions. This might be either explained
by a reduced demand for signals to be transmitted between
neurons or the decreased supply of cerebral blood flow (flow)
due to the stiffening and wall thickening of arteries (Tarumi
and Zhang, 2018; Rosenberg et al., 2020). Moreover, a previous
study suggests that, across studies, the most consistent finding
in normal aging is decreased metabolism and cerebral flow in
the frontal regions (Xu et al., 2017). However, limited by the
temporal resolution of the data, the variation of power over
frequencies could not be accurately assessed, leading to a lack of
characterization of age-related changes in hemodynamic profiles
that were shown to be associated with power spectral shapes.
This will be examined in the future using fMRI data acquired
based on faster repetition times. Indeed, all the above observations
need to be interpreted cautiously as BOLD effects originate from
the hemodynamic response to increased demands for energy
substrates and are only indirect metrics of neural activity and
communication. Age-related changes in microvascular tone and
volume may explain some of the effects reported above. Although
BOLD signal increases are usually interpreted as physiological
responses to increased demands for oxygen that are required
for increased metabolism, the nature and driving force for
such responses in white matter are unclear. Harris and Attwell
(2012) predicted that the major energy budget of white matter
is used to support the maintenance and restoration of resting
potentials and general housekeeping rather than the costs of
synaptic neurotransmission. The ratio of glial cells to neurons
is much higher in white matter than in gray. Schilling et al.
(2022) measured the areas of the negative dip (an indicator of
oxygen metabolism) at the front of the hemodynamic response
functions in gray and white matter voxels and also calculated
the volume fractions of tissue that are neuronal and non-
neuronal, the latter being primarily composed of glial cells.
Whereas the negative dip increased with increasing neuronal
density in gray matter, an opposite trend was found in white
matter, suggesting that the metabolic demand that produces the
hemodynamic response is driven by neuronal energy requirements
in gray matter but non-neuronal components (glial cells) in
white matter. Therefore, reduced demand for communication
could also be associated with aging-related changes in WM
glial cells which have also been reported by Salas et al.
(2020).

In conclusion, in the current work, we conducted a
comprehensive quantification of age-related changes in BOLD
profiles measured from WM on multiple spatial scales. We
observed significant reductions in functional integrity in specific
areas, and widespread changes in network communication
as well as BOLD intensities. This work provides a unique
way to characterize functional changes in the process of
aging and promises to be a prelude to studies of specific
disorders and pathology.
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