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Background: In recent years, radiomics has been increasingly utilized for the
differential diagnosis of Parkinson'’s disease (PD). However, the application of
radiomics in PD diagnosis still lacks sufficient evidence-based support. To address
this gap, we carried out a systematic review and meta-analysis to evaluate the
diagnostic value of radiomics-based machine learning (ML) for PD.

Methods: We systematically searched Embase, Cochrane, PubMed, and
Web of Science databases as of November 14, 2022. The radiomics
quality assessment scale (RQS) was used to evaluate the quality of the
included studies. The outcome measures were the c-index, which reflects
the overall accuracy of the model, as well as sensitivity and specificity.
During this meta-analysis, we discussed the differential diagnostic value of
radiomics-based ML for Parkinson’s disease and various atypical parkinsonism
syndromes (APS).

Results: Twenty-eight articles with a total of 6,057 participants were included.
The mean RQS score for all included articles was 10.64, with a relative
score of 29.56%. The pooled c-index, sensitivity, and specificity of radiomics
for predicting PD were 0.862 (95% CI: 0.833-0.891), 0.91 (95% CI: 0.86—
0.94), and 093 (95% Cl: 0.87-0.96) in the training set, and 0.871 (95%
Cl: 0.853-0.890), 0.86 (95% ClI: 0.81-0.89), and 0.87 (95% CI: 0.83-
0.91) in the validation set, respectively. Additionally, the pooled c-index,
sensitivity, and specificity of radiomics for differentiating PD from APS
were 0.866 (95% Cl: 0.843-0.889), 0.86 (95% Cl: 0.84-0.88), and 0.80
(95% Cl: 0.75-0.84) in the training set, and 0.879 (95% Cl: 0.854-0.903),
0.87 (95% CI: 0.85-0.89), and 0.82 (95% CI: 0.77-0.86) in the validation
set, respectively.

Conclusion: Radiomics-based ML can serve as a potential tool for PD
diagnosis. Moreover, it has an excellent performance in distinguishing Parkinson’s
disease from APS. The support vector machine (SVM) model exhibits excellent
robustness when the number of samples is relatively abundant. However, due
to the diverse implementation process of radiomics, it is expected that more
large-scale, multi-class image data can be included to develop radiomics
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intelligent tools with broader applicability, promoting the application and
development of radiomics in the diagnosis and prediction of Parkinson’'s disease

and related fields.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/display_
record.php?RecordID=383197, identifier ID: CRD42022383197.

Parkinson’s disease, radiomics, machine learning, diagnostic accuracy, meta-analysis,

systematic review

1. Introduction

Parkinson’s disease (PD) is the second utmost common
neurodegenerative illness, and its prevalence is anticipated to more
than double over the next 30 years (GBD 2016 Parkinson’s Disease
Collaborators, 2018; Tolosa et al., 2021). The increasing number of
patients will impose a significant medical and economic burden
on society. Currently, the diagnosis of PD depends on a set of
standards proposed by the International Parkinson and Movement
Disorder Society (MDS) in 2015 (Postuma et al., 2015). During this
process, clinicians rely on limited support and exclusion criteria, as
well as "Red flags" to evaluate patients, which is time-consuming
and labor-intensive and is related to the experience of clinical
experts. Moreover, in the early stages, it is challenging to accurately
and timely identify PD due to overlapping symptoms with atypical
Parkinson’s syndrome (APS) (Respondek et al., 2019). Studies have
shown that about 20-30% of patients with multiple system atrophy
(MSA) or progressive supranuclear palsy (PSP) were initially
misdiagnosed as idiopathic Parkinson’s disease (IPD) in clinical
practice (Saced et al., 2020). In addition, in terms of the motor
subtypes of PD, the postural instability and gait difficulty subtype
(PIGD) has greater damage to the neurological function than the
tremor-dominant subtype (TD) and has a relatively poor response
to deep brain stimulation (DBS) and levodopa therapy (Sun et al.,
2021). Given the above reasons, early and accurate identification
of PD and differentiation of its subtypes have profound clinical
significance for developing individualized treatment plans and
predicting prognosis.

Radiomics has emerged as a result of the development of
artificial intelligence and medical precision. It extracts high-
dimensional data from clinical images (such as PET, MRI, and
CT) that can be mined (Lambin et al., 2012, 2017). Through
analyzing and constructing classification models, radiomics can be
utilized alone or in conjunction with histological, demographic,
genomic, or proteomic data to support evidence-based clinical
decision-making (Rizzo et al., 2018). In recent years, radiomics has
gradually demonstrated significant clinical utility in the diagnosis,
differential diagnosis, severity assessment, and prediction of disease
progression in Parkinson’s disease (PD), Parkinson’s syndrome,
and other neurodegenerative disorders, through the utilization of
various imaging techniques (Adeli et al., 2016; Klyuzhin et al., 20165
Rahmim et al., 2016).
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However, radiomics encompasses diverse methods in its
implementation and is highly correlated with the expertise
of clinical experts. The diagnostic performance of radiomics
needs to be comprehensively evaluated from an evidence-
based perspective. Systematic reviews, as a component of
evidence-based medicine, can provide relevant guidance to
some extent in formulating clinical strategies. Therefore, we
conducted this study to evaluate the accuracy of radiomics-
based machine learning in diagnosing Parkinson’s disease (PD)
and to summarize some of the challenges currently faced
by radiomics in order to provide a reference for future
applications of radiomics.

2. Materials and methods

Our systematic review and meta-analysis were conducted
based on the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA 2020) guidelines (Moher et al,
2009). The PRISMA guidelines are provided in Supplementary
Table 1. This study was registered on PROSPERO (ID:
CRD42022383197).

2.1. Inclusion and exclusion criteria

2.1.1. Inclusion criteria
(1) Patients clinically diagnosed with Parkinson’s disease (PD)
with complete imaging data.
(2) Fully
diagnosis of PD.
(3) Studies without external validation were also included.

constructed radiomics ML models for the

(4) Published studies employing the same or different machine
learning (ML) algorithms on a single dataset.
(5) Studies reported in English were included.

2.1.2. Exclusion criteria
(1) Meta-analyses, reviews, guidelines, expert opinions, etc.
(2) Studies that only performed differential factor analysis and did
not construct a complete ML model.
(3) Studies that lacked outcome indicators for ML model
prediction accuracy (Roc, c-statistic, c-index, sensitivity,

frontiersin.org


https://doi.org/10.3389/fnagi.2023.1199826
https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=383197
https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=383197
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

10.3389/fnagi.2023.1199826

[ Identification of studies via databases and registers ]
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2) Review(n=2)
3) Case report (n=38)
4) Letters(n=2)
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disorder (n=4)
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FIGURE 1

Literature screening flowchart.

specificity, accuracy, recall, precision, confusion matrix,
diagnostic four-grid table, F1 score, calibration curve).

2.2. Literature search strategy

We performed a comprehensive search of the PubMed,
Cochrane, Embase, and Web of Science databases for all available
literature up to November 14th, 2022, utilizing a combination of
subject headings and free-text terms. Our search was not restricted
by language or geographic region. The detailed search strategy is
shown in Supplementary Table 2.

2.3. Study selection and data extraction

We imported the retrieved literature into EndNote and
removed duplicate articles. The remaining articles were screened
based on their titles and abstracts. For the potentially relevant
studies, we downloaded and read the full-text articles to
determine their eligibility according to the inclusion and
exclusion criteria. Before extracting the data, a standardized
electronic spreadsheet was developed. The extracted information
included the title, first author, publication year, country, study
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2) Subgroup analysis of treatment
response (n=2)

3) Subgroup analysis of discase
progression (n=6)

4) Could not extract useful data (n=2)
5) Not building full machine learning
(n=1)

type, patient source, PD diagnostic criteria, radiomics source,
whether complete imaging protocols were recorded, number
of imaging reviewers involved, whether pre-experiments were
conducted under different imaging parameters, whether repeated
measurements were performed at different times, imaging
segmentation software, texture extraction software, number of
PD cases/images, total number of cases/images, number of PD
cases/images in the training set, number of cases/images in the
training set, method of generating the validation set, number of PD
cases in the validation set, number of cases in the validation set,
variable selection method, type of model used, modeling variables,
whether radiomics scores were constructed, overfitting evaluation,
whether the code and data were made publicly available, and model
evaluation indications.

The screening and data
independently conducted by two researchers (JB and XW), and

literature extraction were
cross-checking was performed afterward. In cases of disagreement,

a third researcher (WH) was consulted to resolve the issue.

2.4. Quality assessment

The methodological quality of the included studies was assessed
by the two researchers (JB and XW) using the Radiomics Quality
Score (RQS), and an interactive check was conducted afterward
(Lambin et al., 2012). If there was a dispute, a third researcher
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TABLE 1 (A) Basic characteristic of the included studies; (B) Modeling information for included studies.

10.3389/fnagi.2023.1199826

Schedule A
[\[o} References Country Research Differential Patient source Diagnostic Radiomics
type diagnosis criteria for source
Parkinson'’s
disease
1 Zhao et al., 2022 China Case-control PD vs. APS Single center The MDS PD Criteria PET
2 Sun et al., 2022 China Case-control PD vs. HCs Multi-center The MDS PD Criteria PET
3 Shiiba et al., 2022 Japan Case-control PD vs. HCs Registration database Not described SPECT
4 Shi et al., 2022b China Case-control PD vs. HCs Registration database Not described MRI
5 Shi et al., 2022a China Case-control PD vs. HCs Registration database Not described MRI
6 Pang et al., 2022 China Case-control PD vs. MSA-p Single center Not described MRI
7 Lietal, 2022 China Case-control PD vs. HCs Single center The MDS PD Criteria MRI
8 Kim et al,, 2022 Republic of Case-control PD vs. MSA-p Single center The UK PD SBB MRI
Korea PD vs. MSA-c criteria
PD vs. PSP
9 Kang et al., 2022 China Case-control PD vs. HCs Single center The MDS PD Criteria MRI
10 Guan et al., 2022 China Case-control PD vs. HCs Single center The UK PD SBB MRI
criteria
11 Ben Bashat et al., 2022 Israel Case-control PD vs. HCs Single center The MDS PD Criteria MRI/SPECT
12 Zhang et al., 2021 China Case-control DPD vs. HCs Single center Not described MRI
NDPD vs. HCs
DPD vs. NDPD
13 Tupe-Waghmare India Case-control PD vs. HCs Single center The UK PD SBB MRI
etal.,, 2021 PD vs. APS criteria
14 Sun et al., 2021 China Case-control PIGD vs. HCs Registration database Not described MRI
TD vs. HCs
PIGD vs. TD
15 Shi et al., 2021 China Case-control PD vs. HCs Registration database The UK PD SBB MRI
criteria
16 Ren et al., 2021 China Case-control PD vs. HCs Single center The MDS PD Criteria MRI
17 Lietal, 2021 China Case-control PD vs. HCs Single center The MDS PD Criteria MRI
PD vs. DPD
18 Hu et al,, 2021 China Case-control PD vs. MSA Single center The MDS PD Criteria MRI/PET
19 Dhinagar et al,, 2021 | United States Case-control PD vs. HCs Registration database Not described MRI
20 Cao etal, 2021 China Case-control PD vs. HCs Single center Not described MRI
21 Shu et al., 2020 China Case-control PD vs. HCs Registration database Not described MRI
22 Pang et al., 2020 China Case-control PD vs. MSA-p Single center The UK PD SBB MRI
criteria
23 Liu et al., 2020 China Case-control PD vs. HCs Single center The UK PD SBB MRI
criteria
24 Cao et al., 2020 China Case-control PD vs. HCs Single center Not described MRI
25 Xiao et al., 2019 China Case-control PD vs. HCs Single center Not described MRI
26 Wu et al,, 2019 China Cohort study PD vs. HCs Multi-center The UK PD SBB PET
criteria
27 Shinde et al., 2019 India Case-control PD vs. HCs Single center The UK PD SBB MRI
PD vs. APS criteria
28 Cheng et al., 2019 China Case-control PD vs. HCs Single center The UK PD SBB MRI
criteria
(Continued)
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TABLE 1 (Continued)

10.3389/fnagi.2023.1199826
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05

Total Sample size Verification Sample size in Variable Type of model
sample size| in training method validation set screening
set method
1 Zhao et al., 2022 1017 (IPD 682, 737 External validation 280 Not described CNN
MSA 168, PSP
124, HCs 43)
2 Sun et al,, 2022 406 (PD 125, 358 External validation 48 Not described SVM, CNN
HCs 281)
3 Shiiba et al., 2022 413 (PD 312, 224 Random sampling 189 LASSO SVM, KNN,
HCs 101) External validation LDA, DT
4 Shi et al., 2022b 143 (PD 86, HCs 100 External validation 43 T-test, LASSO SVM
57)
5 Shi et al., 2022a 213 (PD123, 213 fivefold cross validation - T-tests, RFE SVM
HCs90) 10-fold cross validation
6 Pang et al., 2022 152 (PD 77, 107 Random sampling 45 LASSO, mRMR SVM
MSA-p 75)
7 Lietal., 2022 110 (PD 56, HCs 60 External validation 50 LASSO LR
54)
8 Kim et al., 2022 128 (PD 56, 90 Random sampling 38 Autocorrelation and KNN, SVM,
MSA-p 34, (PD 39 vs. (PD 17 vs. MSA-P 10) fisher score GP, RE DT,
MSA-c 21, PSP MSA-P 24) (PD 17 vs. MSA-c 6) algorithm MLP, ADA,
17) (PD 39 vs. MSA-c (PD 17 vs. PSP 5) GNB, QDA
15)
(PD 39 vs. PSP
12)
9 Kang et al., 2022 149 (PD 104, 104 Random sampling 45 LASSO MLR, SVM
HCs 45)
10 Guan et al., 2022 350 (PD 171, 244 External validation 106 RF RF
HCs 179)
11 Ben Bashat et al., 2022| 127 (PD 46, HCs 127 fivefold cross validation - PCA SVM
81)
12 Zhangetal, 2021 | 120 (PD 70, HCs 84 Random sampling 36 LASSO LASSO, RE
50) SVM
13 Tupe-Waghmare | 201 (PD 65, APS 160 Random sampling 41 RFECV RF
etal., 2021 61 (MSA 31, PSP (PD 13 vs. HCs 15)
30), HCs 75) (PD 13 vs. APS 13)
14 Sun et al, 2021 230 (PD 134, 185 Random sampling 45 LASSO SVM, LR,
HCs 96) MLP
15 Shi et al., 2021 100 (PD 59, HCs 80 Random sampling 20 T-test, LASSO LASSO
41)
16 Ren et al., 2021 190 (PD 95, HCs 126 Random sampling 64 LASSO, mRMR RE SVM,
95) KNN, LR
17 Lietal., 2021 164 (PD 82, HCs 164 fivefold cross validation - LASSO, Pearson LR
82) correlation analyses,
Multivariate analyses
18 Hu et al, 2021 90 (PD 60, MSA 63 Random sampling 27 LASSO, mRMR LASSO, LR
30)
19 Dhinagar et al., 2021 588 (PD 445, 424 Random sampling 164 RFE RE CNN
HCs 143) External validation
20 Cao et al,, 2021 116 (PD 67, HCs 71 Random sampling 45 Mann-Whitney LR
49) U-test
21 Shu et al,, 2020 336 (PD 168, 234 Random sampling 102 LASSO, mRMR, SVM, Bayes,
HCs 168) GBDT LR, RE DT
(Continued)
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Schedule B
References Total Sample size Verification Sample size in Variable Type of model
sample size| in training method validation set screening
set method
22 Pang et al., 2020 185 (PD 83, 129 Random sampling 56 T-tests, LASSO SVM
MSA-p 102)
23 Liu et al., 2020 138 (PD 69, HCs 96 Random sampling 42 LASSO LASSO
69)
24 Cao et al,, 2020 116 (PD 67, HCs 93 Random sampling 23 Mann-Whitney SVM, RF
49) U-test, LASSO
25 Xiao et al., 2019 140 (PD 87, HCs 140 sevenfold cross validation - ICC, RFE LR, SVM,
53) CNN
26 Wu et al,, 2019 230 (PD 113, 146 Random sampling 84 Autocorrelation and SVM, RF
HCs 117) External validation fisher score
algorithm
27 Shinde etal,, 2019 | 100 (PD 45, APS 69 Random sampling 31 Average information RE, CNN
20 (MSA 15, PSP | (PD 30 vs. HCs (PD 15 vs. HCs 10) gain
5), HCs 35) 25) (PD 15 vs. APS 6)
(PD 30 vs. APS
14)
28 Chengetal, 2019 | 164 (PD 87, HCs 164 threefold cross validation - ANOVA, RE, RFE SVM
77)

(A) The MDS PD criteria: the movement disorder society PD criteria; the UK PD SBB criteria: the UK PD society brain bank criteria.
(B) In article 8, 13, and 27, different research objects were used for training and verification, and the specific sample numbers were listed in the Table 2. In article 5, 11, 17, 25, and 28,

the method of cross-validation is adopted, so there is no specific sample number of validation set 3. Article 5 used the same dataset of articles 4 and 15. Articles 20 and 24 were based on

the same dataset. PCA, principle component analysis; RFE, recursive feature elimination; RFECV, recursive feature elimination with cross-validation; ICC, intraclass correlation coefficient;

ANOVA, analysis of variance; MSA-c, multiple system atrophy-cerebellar type; MSA-p, multiple system atrophy-parkinsonian type.

(WH) was asked to assist in the decision-making process. RQS is
a radiomics-specific quality assessment tool that scores the quality
of the original study design based on 16 items (e.g., whether
the image acquisition method and data were described in detail,
whether measures were taken to prevent overfitting or multiple
segmentation, whether the study was prospective, and whether the
model was validated and how it was validated). Each criterion is
assigned a numerical value that corresponds to the impact of the
study on radiomics research, and the total score ranges from —8 to
36, which is then converted into a percentage score (0-100%). This
score represents the rigor of model development and the evaluation
of the study’s impact on the field.

2.5. Outcome measures

The primary outcome measure of our systematic review is
the c-index, which reflects the overall accuracy of the ML model.
However, when there is a severe imbalance in the number of cases
between the observation group and the control group, the c-index
may not be sufficient to reflect the accuracy of the ML model for
disease diagnosis. As a result, our primary outcome measures also
included sensitivity and specificity.

2.6. Statistical analysis

Our analysis consists of three parts: (a) Diagnosis of Parkinson’s
disease [comparing PD patients and healthy controls (HC)], (b)

Frontiers in Aging Neuroscience

Differential diagnosis of Parkinson’s disease (comparing idiopathic
PD patients and APS patients), and (c) Parkinson’s disease subtypes
(comparing TD and PIGD). This study reported the c-index with
a 95% confidence interval (CI), which reflected the accuracy of
ML models. In cases where the original literature lacks a 95%
confidence interval or standard error of the c-index, they were
estimated by the formula proposed by Debray et al. (2019). The
meta-analysis of sensitivity and specificity requires the diagnostic
fourfold table (true negatives, true positives, false negatives,
and false positives), but few original studies directly reported a
diagnostic fourfold table. Thus, we need to calculate the fourfold
table by combining sensitivity and specificity with the number
of cases. However, in cases where sensitivity and specificity are
missing, Origin 2020 was used to extract them from the ROC curve.

A random effects model was used to perform the meta-analysis
of the overall accuracy of the ML model, as reflected by the c-index,
while a bivariate mixed effects model was used for the meta-analysis
of the sensitivity and specificity (Reitsma et al., 2005). Statistical
analysis was performed using Stata 15.0 (Stata Corporation, USA).
A p-value < 0.05 was considered statistically significant.

3. Results

3.1. Study selection
Figure 1 illustrates the PRISMA flow diagram of the study

selection. The search identified 67 studies from PubMed, 117
studies from Embase, 14 studies from Cochrane, and 75 studies

frontiersin.org
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from Web of Science. Following the exclusion of 121 duplicate
studies, 43 studies were screened based on their titles or abstracts.
Ultimately, a total of 28 articles (Cheng et al., 2019; Shinde et al,,
2019; Wu et al., 2019; Xiao et al.,, 2019; Cao et al., 2020, 2021; Liu
et al., 2020; Pang et al., 2020, 2022; Shu et al., 2020; Dhinagar et al.,
2021; Hu et al,, 2021; Li et al., 2021, 2022; Ren et al., 2021; Shi et al.,
2021, 2022a, 2022b; Sun et al., 2021, 2022; Tupe-Waghmare et al,,
2021; Zhang et al,, 2021; Ben Bashat et al., 2022; Guan et al., 2022;
Kang et al., 2022; Kim et al., 2022; Shiiba et al., 2022; Zhao et al,,
2022) were deemed eligible and included in this meta-analysis.

3.2. Study characteristics

The characteristics of the studies included in this research are
shown in Table 1 and Supplementary Table 4. The original 28
studies were published between 2019 and 2022, with 27 of them
from Asia (Cheng et al., 2019; Shinde et al., 2019; Wu et al., 2019;
Xiao et al., 2019; Cao et al, 2020, 2021; Liu et al., 2020; Pang
et al., 2020, 2022; Shu et al., 2020; Hu et al., 2021; Li et al., 2021,
2022; Ren et al,, 2021; Shi et al., 2021, 2022a, 2022b; Sun et al.,
2021, 2022; Tupe-Waghmare et al., 2021; Zhang et al., 2021; Ben
Bashat et al., 2022; Guan et al., 2022; Kang et al., 2022; Kim et al,,
2022; Shiiba et al.,, 2022; Zhao et al., 2022) and one from North
America (Dhinagar et al., 2021). The study comprised a total of
6,057 participants, with 3,422 patients diagnosed with PD, 1,983
healthy controls, and 652 cases of APS (476 with MSA and 176
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with PSP). Among these studies, 22 focused on the diagnosis of
PD (Cheng et al., 2019; Shinde et al., 2019; Wu et al., 2019; Xiao
et al., 2019; Cao et al., 2020, 2021; Liu et al., 2020; Shu et al., 2020;
Dhinagar et al., 2021; Li et al., 2021, 2022; Ren et al., 2021; Shi et al.,
2021, 2022a, 2022b; Sun et al., 2021, 2022; Zhang et al., 2021; Ben
Bashat et al., 2022; Guan et al., 2022; Kang et al., 2022; Shiiba et al.,
2022), while six studies focused on the differential diagnosis of PD
and APS (Pang et al., 2020, 2022; Hu et al., 2021; Tupe-Waghmare
et al.,, 2021; Kim et al., 2022; Zhao et al., 2022). In addition, two
studies addressed the differential diagnosis of PD with or without
depression (Li et al., 2021; Zhang et al, 2021), and one study
fixated on the differential diagnosis of TD and PIGD (Sun et al,
2021). There were 14 ML models, including SVM (Support Vector
Machine), CNN (Convolutional Neural Network), LR (Logistic
Regression), LDA (Linear Discriminant Analysis), RF (Random
Forest), LASSO (Least Absolute Shrinkage and Selection Operator),
DT (Decision Tree), KNN (K-Nearest Neighbor), ANN (Artificial
Neural Network), GNB (Gaussian Naive Bayes), GP (Gaussian
Process), Bayes (Bayesian Network), ADA (Adaptive Boosting),
and QDA (Quadratic Discriminant Analysis).

3.3. Quality analysis

Figure 2 illustrates the RQS scores and relative scores of
all 28 studies included in this research, as evaluated by the
two reviewers (JB and XW). The mean RQS score for the
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FIGURE 3

Meta-analysis results of c-index for PD diagnosis based on radiomics-based machine learning (Validation set). Due to the large amount of relevant

data involved, the results of the verification set are presented in two parts, and the forest plot for the training set is provided in the Supplementary

material.

TABLE 2 Meta-analysis results of sensitivity and specificity for PD diagnosis based on radiomics-based machine learning.

Training set

Validation set

Number| Sen (95% Spe (95% Number| Sen (95% Spe (95%
(o)) Cl) Cl) Cl)
SVM 16 0.90 [0.83~0.94] 88.7 0.94 [0.84~0.98] 94.5 20 0.85 [0.79~0.90] 59.0 0.90 [0.84~0.94] 66.9
LR 11 0.88 [0.70~0.96] 97.1 0.88 [0.72~0.95] 96.5 12 0.81 [0.70~0.89] 85.6 0.84 [0.71~0.92] 85.7
RF 5 097 [0.70~1.00] 982  |0.97 [0.54~1.00] 98.8 11 0.79 [0.69~0.87] 716 0.81[0.68~0.90]  77.0
LASSO 3 0.81~0.94 NA 0.75~0.96 NA 5 0.91 [0.77~0.97] 67.0 0.90 [0.58~0.98] 82.5
ANN 2 1.00 NA 1.00 NA 2 1.00 NA 1.00 NA
CNN 2 0.80~0.86 NA 0.83~0.88 NA 3 0.56~0.86 NA 0.67~0.70 NA
KNN 1 0.74 NA 0.74 NA 1 0.55 NA 0.64 NA
DT 1 0.69 NA 0.92 NA 1 0.59 NA 0.92 NA
Bayes 1 0.76 NA 0.92 NA 1 0.77 NA 0.96 NA
LDA NA NA NA NA NA 4 0.97 [0.86~1.00] 93.7 0.92 [0.80~0.97] 233
Overall 42 0.91 [0.86~0.94] 954 0.93 [0.87~0.96] 95.8 60 0.86 [0.81~0.89] 81.4 0.87 [0.83~0.91] 82.0

When the number of models is less than four, it is not possible to perform a meta-analysis using a bivariate mixed-effects model. Therefore, we only recorded the corresponding exact values and
range. Number: the number of models included in various model types. SVM, support vector machine; LR, logistic regression; RF, random forest; LASSO, least absolute shrinkage and selection
operator; ANN, artificial neural network; CNN, convolutional neural network; KNN, K-nearest neighbor; DT, decision tree; Bayes, Bayesian network; LDA, linear discriminant analysis.

studies was 10.64 (range 8-15), while the mean relative score
was 29.56% (range 22.22-41.67%). All the studies reported
well-documented image acquisition protocols and performed
feature selection and data dimensionality reduction to reduce
model overfitting. For model evaluation, most studies provided
discriminant statistics (e.g., ROC curve, c-index, AUC) and their
statistical significance (e.g., p-value, confidence interval), while
calibration statistics were less frequently mentioned. Ten studies
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(Cao et al,, 2020, 2021; Pang et al., 2020, 2022; Shu et al., 2020;
Hu et al, 2021; Li et al., 2021; Zhang et al., 2021; Sun et al,
2022; Zhao et al,, 2022) conducted multivariate analyzes of non-
radiomics features, such as plasma FAM19A5, demographic and
clinical characteristics, impaired sense of smell, and cognitive
impairment, which provided more comprehensive integrated
models. One study (Ben Bashat et al, 2022) also examined
and discussed biological correlations; demonstrating phenotypic
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Meta-analysis results of c-index for differential diagnosis between PD and APS based on radiomics-based machine learning (Validation set).

differences that could be related to underlying gene-protein
expression patterns broadens the perception of radiomics and
biology. Nine studies (Liu et al, 2020; Shu et al., 2020; Cao
et al., 2021; Ren et al., 2021; Shi et al., 2021; Guan et al., 2022;
Li et al,, 2022; Shiiba et al., 2022; Zhao et al,, 2022) conducted
cut-off value analysis to assess the risk of model diagnostic
prediction accuracy. However, only five studies evaluated the
potential clinical utility of the model by decision curve analysis
(Wu et al, 2019; Shu et al., 2020; Hu et al., 2021; Ren et al.,
2021; Zhao et al., 2022), and none performed a cost-effectiveness
analysis. Since there is currently no clear gold standard for
the clinical diagnosis of PD, it is challenging to evaluate the
degree of consistency between the model and the current "gold
standard" method.

Only one study has compared the diagnostic accuracy of
ML models based on magnetic resonance imaging (MRI) with
those based on dopamine transporter single-photon emission
tomography (DAT-SPECT) imaging (Ben Bashat et al, 2022).
Additionally, only two studies have prospectively validated the use
of radiomic biomarkers (Sun et al., 2022; Zhao et al., 2022). No
studies have investigated the stability of radiomics signatures across
different scanners or time points. In terms of open science and data,
most studies do not provide open-source code directly. The quality
evaluation scores are shown in Supplementary Table 3.

3.4. Meta-analysis

3.4.1. Diagnosis of PD
In terms of the diagnosis of PD, 42 ML models in the training
set reported a c-index, with a pooled c-index of 0.862 (95% CI:
0.833-0.891). In the validation set, 78 ML models reported a
c-index, with a pooled c-index of 0.871 (95% CI: 0.853-0.890).
There were 42 fourfold tables for diagnosis that were
available and could be directly or indirectly extracted in
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the training set, and the pooled sensitivity and specificity
(95% CI 0.86-0.94) and 0.93 (95% CI 0.87-
0.96), respectively. There were 60 models in the validation

were 0.91

set, and the sensitivity and specificity for disease diagnosis
were 0.86 (95% CIL: 0.81-0.89) and 0.87 (95% CIL: 0.83-
0.91), respectively, as depicted in Figure 3, Table 2 and
Supplementary Table 5.

Among all the ML models constructed, support vector machine
(SVM) and logistic regression (LR) showed ideal predictive
performance in the training and validation sets with a larger sample
size. Meanwhile, attention should also be paid to other models,
such as CNN and LASSO, which demonstrated good diagnostic
performance, despite a limited number of these models included in
this study. Including more models in future studies can help verify
their diagnostic potential.

3.4.2. Differential diagnosis PD and APS

Regarding the differential diagnosis between PD and APS,
a total of 41 ML models reported a c-index, with a pooled
c-index of 0.866 (95% CI: 0.843-0.889) in the training set, while
in the validation set, 43 ML models reported a c-index, with
a pooled c-index of 0.879 (95% CI: 0.854-0.903). The training
set of 41 models had a pooled sensitivity and specificity of 0.86
(95% CI: 0.84-0.88) and 0.80 (95% CI: 0.75-0.84), respectively.
Conversely, the validation set had a pooled sensitivity and
specificity of 0.87 (95% CI: 0.85-0.89) and 0.82 (95% CI: 0.77-
0.86), respectively. These results are detailed in Figure 4, Table 3
and Supplementary Table 6. Notably, the SVM model showed
good discrimination accuracy even with a relatively large number
of models included in the analysis.

3.4.3. Differential diagnosis of PD and MSA

The pooled c-index, sensitivity, and specificity for differential
diagnosis between PD and MSA were 0.857 (95% CI: 0.827-
0.887), 0.86 (95% CI: 0.83-0.88), and 0.82 (95% CI: 0.77-0.87)
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TABLE 3 Meta-analysis results of sensitivity and specificity for differential diagnosis between PD and APS based on radiomics-based machine learning.

ANN

Yun Soo Kim (2022) 0.79 (0.65,0.83) 3.12
0.92 (0.83, 1.01) 5.58
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Subtotal (I-squared = 52.5%, p = 0.147)
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Overall (I-squared = 61.0%, p = 0.003)

NOTE: Weights are from random effects analysis

0.83(0.77, 0.88) 100.00

Training set Validation set
Sen (95% Spe (95% Sen (95% Spe (95%
Cl) Cl) Cl) Cl)
SVM 10 0.88 [0.82~0.92] 62.5 0.83 [0.75~0.89] 69.7 10 0.86 [0.80~0.90] 0.0 0.84 [0.77~0.89] 0.0
LR 2 0.76~0.93 NA 0.91~1.00 NA 2 0.89~0.94 NA 0.78~1.00 NA
RF 3 0.81~0.88 NA 0.63~0.89 NA 4 0.84 [0.73~0.92] 0.0 0.86 [0.61~0.96] 54.7
LASSO 1 0.91 NA 0.95 NA 1 0.83 NA 1.00 NA
ANN 3 0.77~0.81 NA 0.51~0.84 NA 3 0.79~0.88 NA 0.59~0.91 NA
CNN 4 0.90 [0.83~0.95] 0.0 0.88 [0.71~0.95] 91.0 3 0.91~1.00 NA 0.50~0.90 NA
KNN 3 0.81~0.90 NA 0.49~0.87 NA 3 0.79~0.90 NA 0.56~0.83 NA
DT 3 0.81~0.88 NA 0.56~0.84 NA 3 0.80~0.88 NA 0.51~0.82 NA
ADA 3 0.80~0.89 NA 0.49~0.82 NA 3 0.79~0.88 NA 0.54~0.80 NA
QDA 3 0.81~0.91 NA 0.60~0.85 NA 3 0.81~0.91 NA 0.63~0.85 NA
GNB 3 0.82~0.92 NA 0.54~0.89 NA 3 0.80~0.94 NA 0.57~0.87 NA
GP 3 0.78~0.88 NA 0.66~0.90 NA 3 0.78~0.90 NA 0.74~0.91 NA
Overall 41 0.86 [0.84~0.88] 21.8 0.80 [0.75~0.84] 75.1 41 0.87 [0.85~0.89] 0.0 0.82 [0.77~0.86] 18.4
ADA, adaptive boosting; QDA, quadratic discriminant analysis; GNB, Gaussian naive Bayes; GP, Gaussian process.
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in the training set, which contained 27 models, respectively.
In the validation set, which included 31 models, the pooled
c-index, sensitivity, and specificity were 0.878 (95% CI: 0.852-
0.905), 0.85 (95% CI: 0.82-0.88), and 0.82 (95% CI: 0.77-0.87),
respectively. These results are presented in Figure 5, Table 4 and
Supplementary Table 7.

3.4.4. Differential diagnosis between PD and PSP
The pooled c-index, sensitivity, and specificity for differential

diagnosis between PD and PSP in the training set of 10 models

were 0.871 (95% CI: 0.826-0.915), 0.87 (95% CI: 0.82-0.90), and
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0.63 (95% CI: 0.53-0.71), respectively. In the validation set, the
pooled c-index, sensitivity, and specificity were 0.863 (95% CI:
0.808-0.918), 0.88 (95% CI: 0.82-0.92), and 0.68 (95% CI: 0.54-
0.79), respectively. These findings are presented in Figure 6, Table 5
and Supplementary Table 8.

3.4.5. Differential diagnosis between different
motor subtypes of PD

Regarding the differential diagnosis between TD and PIGD
motor subtypes, there were three models in the training set and
validation set, respectively. The pooled c-index was 0.892 (95% CI:
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TABLE 4 Meta-analysis results of sensitivity and specificity for differential diagnosis between PD and MSA based on radiomics-based machine learning.

Training set

Spe (95%
cl)

Sen (95%
(e])]

Validation set

Sen (95%
Cl)

Spe (95%
cl)

SVM 8 0.89 [0.81~0.93] 66.5 0.86 [0.81~0.90] 0.0 8 0.86 [0.79~0.90] 0.0 0.84 [0.76~0.90] 0.0
LR 2 0.76~0.93 NA 0.91~1.00 NA 2 0.89~0.94 NA 0.78~1.00 NA
RF 2 0.81~0.88 NA 0.63~0.89 NA 2 0.79~0.88 NA 0.68~0.90 NA
LASSO 1 0.91 NA 0.95 NA 1 0.83 NA 1.00 NA
ANN 2 0.77~0.81 NA 0.73~0.84 NA 2 0.79~0.88 NA 0.75~0.91 NA
KNN 2 0.81~0.89 NA 0.49~0.87 NA 2 0.79~0.89 NA 0.56~0.83 NA
DT 2 0.81~0.86 NA 0.56~0.84 NA 2 0.80~0.87 NA 0.51~0.82 NA
ADA 2 0.80~0.88 NA 0.49~0.82 NA 2 0.79~0.88 NA 0.54~0.80 NA
QDA 2 0.81~0.91 NA 0.60~0.85 NA 2 0.81~0.91 NA 0.63~0.85 NA
GNB 2 0.82~0.90 NA 0.54~0.89 NA 2 0.80~0.91 NA 0.63~0.87 NA
GP 2 0.78~0.88 NA 0.79~0.90 NA 2 0.78~0.90 NA 0.82~0.91 NA
Overall 27 0.86 [0.83~0.88] 32.1 0.82 [0.77~0.87] 63.9 27 0.85[0.82~0.88] 0.0 0.82[0.77~0.87] 2.0

0.855-0.929) in the training set and 0.822 (95% CI: 0.724-0.920)
in the validation set. The pooled sensitivity and specificity for TD
subtype were between 0.85-0.88 and 0.77-0.82, respectively. For
PIGD subtype, the pooled sensitivity and specificity were between
0.75-0.88 and 0.66-0.83, respectively. These results are presented
in Supplementary Tables 9, 10.

3.5. Overfitting evaluation

For the diagnosis and differential diagnosis of PD, no overfitting
was observed for the ML models. Meanwhile, in the respective
differential diagnoses, no overfitting was observed for the most
commonly used ML model when there were relatively sufficient
models. The detailed information is shown in Supplementary
Tables 5-9.

4. Discussion

Our results indicated that radiomics

demonstrated excellent diagnostic accuracy in PD diagnosis, with a
pooled sensitivity and specificity of 0.91 and 0.93 in the training set,

meta-analysis

and 0.86 and 0.87 in the validation set, respectively. Furthermore,
radiomics-based ML has good discrimination performance in
differentiating PD from APS and classifying PD subtypes.

In recent years, researchers have made significant progress
in exploring biomarkers for the diagnosis of Parkinson’s disease
(PD) (Parkinson Progression Marker Initiative, 2011; Tolosa et al.,
2021). A meta-analysis of ML based on blood gene features for
the prediction of idiopathic PD exhibited a sensitivity of 0.72 and
specificity of 0.67 (Falchetti et al., 2020). Kalyakulina et al. (2022)
conducted a meta-analysis of ML based on DNA methylation
for the differentiation between PD cases and controls, with a
classification accuracy of 0.76 using uncoordinated data and over
0.95 using coordinated data. di Biase et al. (2020) review reported
an accuracy of over 0.83 for PD diagnosis using ML based on gait
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feature testing. Kwon et al. (2022) review demonstrated that the
integration of clinically relevant biomarkers such as metabolomics,
proteomics, and microRNA omics data from cerebrospinal fluid
can serve as a powerful method for identifying PD and MSA.
The aforementioned research results demonstrate that diagnostic
models based on different variables have good performance in PD
diagnosis. However, there have been no studies on the evaluation
or integration of radiomics. Furthermore, the differentiation of
PD and atypical parkinsonian syndromes (APS), as well as the
classification of PD subtypes is rarely discussed. Previous studies
have used conventional neuroimaging methods such as PET
(Brajkovic et al., 2017), MRI, and molecular imaging (Atkinson-
Clement et al., 2017; Loftus et al., 2023) for PD diagnosis based on
visual assessment or statistical parameter mapping (SPM) analysis.
Despite their high diagnostic accuracy, combining radiomics with
artificial intelligence can save time and energy, reduce examination
costs, and even improve diagnostic accuracy (Wu et al., 2019).
Previous studies have demonstrated that clinical factors,
such as olfactory function (Alonso et al, 202lab), speech
features, motor data, handwriting patterns, cardiac scintigraphy,
cerebrospinal fluid (CSF), and serum markers, are closely
associated with the diagnosis and severity assessment of Parkinson’s
disease (PD) and should not be disregarded when constructing
diagnostic models (Mei et al., 2021; Rana et al., 2022). Halligan
et al. (2021) have recommended that multivariable models
should include clinical imaging biomarkers to evaluate their
cumulative contribution to overall outcomes. A review by Zhang
(2022) has shown that multimodal data, based on ML using
imaging and clinical features, can enhance the accuracy of PD
diagnosis and early detection. Additionally, Makarious et al.
(2022) have demonstrated in their review that multimodal data-
combined ML models is superior to single biomarker mode,
and the model has been validated in the PD Biomarker
Program (PDBP) dataset. The ten studies included in this meta-
analysis (Cao et al., 2020, 2021; Pang et al, 2020, 2022; Shu
et al, 2020; Hu et al, 2021; Li et al, 2021; Zhang et al,
2021; Sun et al, 2022; Zhao et al., 2022) also revealed that
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FIGURE 6
Meta-analysis results of c-index for differential diagnosis between PD and PSP based on radiomics-based machine learning (Validation set).

TABLE 5 Meta-analysis results of sensitivity and specificity for differential diagnosis between PD and PSP based on radiomics-based machine learning.

Training set Validation set

Cl) Cl) Cl) Cl)
SVM 2 0.79~0.91 NA 0.37~0.75 NA 2 0.82~0.91 NA 0.75~0.79 NA
RF 1 0.87 NA 0.69 NA 1 0.88 NA 0.69 NA
ANN 1 0.80 NA 0.51 NA 1 0.80 NA 0.59 NA
KNN 1 0.90 NA 0.76 NA 1 0.90 NA 0.72 NA
DT 1 0.88 NA 0.67 NA 1 0.88 NA 0.60 NA
ADA 1 0.89 NA 0.65 NA 1 0.87 NA 0.62 NA
QDA 1 0.87 NA 0.71 NA 1 0.89 NA 0.68 NA
GNB 1 0.92 NA 0.59 NA 1 0.94 NA 0.57 NA
GP 1 0.79 NA 0.66 NA 1 0.81 NA 0.74 NA
Overall 10 0.87 [0.82~0.90] 0.0 0.63 [0.53~0.71] 0.0 10 0.88 [0.82~0.92] 0.0 0.68 [0.54~0.79] 0.0
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comprehensive classification models, which combine clinical
features and radiomics, have better predictive performance.
Therefore, future radiomics analysis should incorporate other
relevant variables to build more reliable models, and radiomic
features can be added to existing diagnostic models to improve their
diagnostic accuracy.

This study is the first systematic review and meta-analysis of
radiomics-based ML in the diagnosis of PD and the differentiation
of PD from APS. This study revealed that the main brain
regions commonly used for diagnosis of PD were located in
the substantia nigra-corpus striatum system, and some related
areas such as the cerebral cortex. This was consistent with the
pathological mechanism and features of PD. Some non-motor
symptoms (olfactory disorder, depression, cognitive impairment,
etc.) as non-radiomics variables for ML models had good value
in diagnosing PD. Furthermore, we found that the major brain
regions currently and commonly used to differentiate PD from
APS were located in the basal ganglia system, especially the
putamen area. UPDRS scores, as non-radiomics variables for
ML model, were of good value in distinguishing PD from
APD. The radiomics features commonly used to build ML
models include first-order properties, shape features, and textural
features [such as Gray Level Co-occurrence Matrix (GLCM),
Gray Level Difference Matrix (GLDM), Gray-Level Run-Length
Matrix (GLRLM)], etc.

We attempted to categorize models by type to determine
the best model, but the number of some models, such as CNN,
is limited due to their recent emergence, newer technology in
deep learning (DL), and possible biases (Ching et al, 2018;
Choi et al, 2020). DL has demonstrated greater potential for
super-large datasets containing thousands or millions of cases
(Camacho et al, 2018), whereas research datasets typically
contain only hundreds of patients, making ML more suitable
and cost-effective for building models for research purposes
(Zhang et al, 2022). In our study, DL also demonstrated
good diagnostic prediction performance, but we cannot draw
definitive conclusions due to the limited number of the included
studies. Further research is needed to endorse these findings.
However, the SVM model still demonstrates excellent robustness
even when the number of samples is relatively abundant.
Additionally, we found that MRI was the main tool that used
radiomics to predict PD diagnosis in clinical practice. In future
work, incorporating data from various imaging modalities can
further enhance the diagnostic capabilities for the disease. Our
findings may advance the field of digital therapy and provide
theoretical evidence for developing ML models for diagnosing
PD in the future.

However, this study has certain limitations. Firstly, Currently,
radiomics lacks a standardized operational guideline, which leads
to variations in the process of region of interest (ROI) delineation
and texture feature extraction among researchers. Even when
multiple researchers are involved, it appears challenging to
eliminate the impact of these variations. Additionally, the use of
diverse dimensionality reduction methods or variable selection
methods may contribute to high heterogeneity in radiomics studies
targeting the same clinical question. Therefore, these factors
may introduce a significant heterogeneity in systematic reviews
related to radiomics. It is difficult to avoid such heterogeneity
until standardized operational guidelines are widely adopted.
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Secondly, we observed that the included studies seemed to have
relatively low scores, mainly due to the fact that the RQS scale is
more inclined toward critical research on radiomics. Additionally,
the RQS scale may be unsuitable for some models in clinical
practice, making it difficult for some studies to obtain high
RQS scores. Moreover, many related studies currently have a
retrospective design, are single-center studies, and use internal
validation or resampling methods (cross-validation), resulting in
poor generalizability of the models and limiting the integration of
ML models with clinical environments. Therefore, in the future,
images from different hospitals and research centers are needed
to externally validate the prediction model, making it adapt to
a wider range of clinical scenarios. Furthermore, not all models
are suitable for clinical practice, so the clinical effectiveness of
diagnostic models must be strictly evaluated based on current
diagnostic standards.

Imaging plays an indispensable role in the clinical diagnosis
and treatment process. However, the interpretation of imaging
data currently relies primarily on the expertise of clinical
experts. In this regard, developing an intelligent radiomics
reading tool based on standardized criteria would provide
significant assistance to novice clinicians, especially in the
diagnosis and treatment of complex diseases. This assistance
in radiomics-based interpretation is crucial for clinical practice.
Furthermore, promoting the development of radiomics can
bring substantial value to the initial screening and diagnosis
of many diseases, particularly in economically and medically
underdeveloped regions.

However, radiomics currently faces several inevitable
challenges and problems, with significant biases present in
certain aspects of the radiomics implementation process. The
development of radiomics did not adequately consider excessive
parameter tuning, nor did it involve repeated measurements at
different time points on the same patient (although this incurs
certain costs, it is necessary for the development of such a tool).
Moreover, the delineation of the ROI heavily relies on the expertise
and knowledge of clinical experts. Therefore, in the development
process, it is essential to incorporate ROI delineation from
clinicians at different levels to generate imaging data, followed by
the extraction of radiomics features using specific software. We
have observed strong correlations among some of the extracted
radiomics variables, making the selection of modeling variables a
challenging task. Hence, it is crucial to compare different methods
and identify the optimal variable selection approach to build ML
models while avoiding overfitting. Additionally, in the process
of constructing ML models, it may be advantageous to prioritize
logistic regression (LR) as it offers good visualization and relatively
straightforward predictive line plots. We hope that better standards
for radiomics and ML will be established in the future, such as
the standardization of image acquisition, segmentation, feature
extraction, statistical analysis, and reporting formats, to achieve
reproducibility and facilitate clinical application.

5. Conclusion

Our study suggested that radiomic-based ML exhibited high
sensitivity and specificity in diagnosing Parkinson’s disease (PD),
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discriminating PD and atypical parkinsonian syndromes (APS),
and distinguishing different subtypes of PD. This approach can
serve as a potential method for screening, detecting, and diagnosing
PD, making a significant contribution to clinical decision-making
systems. However, due to the current lack of standardized
operational guidelines, radiomics still faces numerous challenges in
its current applications.
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