AUTHOR=Bedoya-Guzmán Ferley A. , Pacheco-Herrero Mar , Salomon-Cruz Ivan Daniel , Barrera-Sandoval Angela Maria , Gutierrez Vargas Johanna Andrea , Villamil-Ortiz Javier Gustavo , Villegas Lanau Carlos Andres , Arias-Londoño Julián David , Area-Gomez Estela , Cardona Gomez Gloria Patricia TITLE=BACE1 and SCD1 are associated with neurodegeneration JOURNAL=Frontiers in Aging Neuroscience VOLUME=15 YEAR=2023 URL=https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2023.1194203 DOI=10.3389/fnagi.2023.1194203 ISSN=1663-4365 ABSTRACT=Introduction

Proteolytic processing of amyloid protein precursor by β-site secretase enzyme (BACE1) is dependent on the cellular lipid composition and is affected by endomembrane trafficking in dementia and Alzheimer's disease (AD). Stearoyl-CoA desaturase 1 (SCD1) is responsible for the synthesis of fatty acid monounsaturation (MUFAs), whose accumulation is strongly associated with cognitive dysfunction.

Methods

In this study, we analyzed the relationship between BACE1 and SCD1 in vivo and in vitro neurodegenerative models and their association in familial AD (FAD), sporadic AD (SAD), and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) using microscopy, biochemical, and mass SPECT approach.

Results

Our findings showed that BACE1 and SCD1 immunoreactivities were increased and colocalized in astrocytes of the hippocampus in a rat model of global cerebral ischemia (2-VO). A synergistic effect of double BACE1/SCD1 silencing on the recovery of motor and cognitive functions was obtained. This neuroprotective regulation involved the segregation of phospholipids (PLs) associated with polyunsaturated fatty acids in the hippocampus, cerebrospinal fluid, and serum. The double silencing in the sham and ischemic groups was stronger in the serum, inducing an inverse ratio between total phosphatydilcholine (PC) and lysophosphatidylcholine (LPC), represented mainly by the reduction of PC 38:4 and PC 36:4 and an increase in LPC 16:0 and LPC 18:0. Furthermore, PC 38:4 and PC:36:4 levels augmented in pathological conditions in in vitro AD models. BACE1 and SCD1 increases were confirmed in the hippocampus of FAD, SAD, and CADASIL.

Conclusion

Therefore, the findings suggest a novel convergence of BACE-1 and SCD1 in neurodegeneration, related to pro-inflammatory phospholipids.