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Pain is common and frequent in many neurodegenerative diseases, although

it has not received much attention. In Huntington’s disease (HD), pain is often

ignored and under-researched because attention is more focused on motor and

cognitive decline than psychiatric symptoms. In HD progression, pain symptoms

are complex and involved in multiple etiologies, particularly mental issues such

as apathy, anxiety and irritability. Because of psychiatric issues, HD patients rarely

complain of pain, although their bodies show severe pain symptoms, ultimately

resulting in insufficient awareness and lack of research. In HD, few studies

have focused on pain and pain-related features. A detailed and systemic pain

history is crucial to assess and explore pain pathophysiology in HD. This review

provides an overview concentrating on pain-related factors in HD, including

neuropathology, frequency, features, affecting factors and mechanisms. More

attention and studies are still needed in this interesting field in the future.
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Introduction

Neurodegenerative diseases are critical problems that seriously affect the social economy
and patients’ quality of life. Huntington’s disease (HD) is a genetic neurodegenerative
disease represented by progressive dysfunction, including motor damage and psychiatric
impairments (Dale and van Duijn, 2015; Maiuri et al., 2019), and has a 50% risk of
being inherited by children (McColgan and Tabrizi, 2018). The average lifespan of HD is
approximately 20 years from initial symptoms to death. To date, the main studies and
treatments of HD focus on motor and cognitive problems, thereby ignoring pain issues, even
though some patients complain about painful indications.

Pain is an unpleasant feeling or emotional injury, often identified through oral
description, questionnaires or pain evaluation (de Tommaso et al., 2016a; Buhmann et al.,
2020). Pain is a troublesome problem and has been extensively studied in Alzheimer’s disease
(AD), Parkinson’s disease (PD) and motor neuron diseases (MND), with prevalence of 38–
75%, 68–95% and 19–85%, respectively (de Tommaso et al., 2016a). Surprisingly, few articles
about pain in HD have been reported, as pain is not considered a major theme because HD
patients prefer to consult about motor issues rather than sensory problems. It is well-known
that pain occurs in patients with normal sensory systems once they receive direct or indirect
damage (Yam et al., 2018; Tsuda, 2021). Because of neurodegeneration, HD patients show
sensory dysfunctions and abnormal pain behaviors that are rarely mentioned (de Tommaso
et al., 2016a). In addition, chorea and cognitive symptoms deteriorate significantly as HD
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progresses, and patients with mental problems, such as issues with
memory, emotion, and social cognition, find it difficult to describe
their painful suffering, resulting in pain issues being greatly ignored
and overlooked (Snowden, 2017; Achterberg et al., 2021).

This review intends to discuss research on pain in HD,
including neuropathology, prevalence, symptoms, impacting
factors and possible mechanisms. Overall, more studies and
explorations of pain in HD are urgently required in the future.

Epidemiology

It is difficult to obtain an exact prevalence estimation because
HD is a rare disease with a great diversity of influencing factors.
Because of geographical differences, epidemiological investigations
often show under- or over-assessment of the total population
(Snowden, 2017). Present data indicate that the average HD
prevalence is approximately 5–10/100,000 in the UK but much
higher in Scotland and England (Evans et al., 2013). The highest
reported in North America is 13.7/100,000 (Fisher and Hayden,
2014; McColgan and Tabrizi, 2018). HD prevalence is higher in
Europe than in Asia, at approximately 0.1–0.7/100,000 (Pringsheim
et al., 2012; Sipila et al., 2015; Xu and Wu, 2015). In addition,
lower prevalence is observed in black species rather than white
and mixed species (McColgan and Tabrizi, 2018). The prevalence
difference between ethnic groups might be closely associated
with different HTT genotypes (Xu and Wu, 2015; Baig et al.,
2016).

Neuropathology

Huntingtin protein (Htt, 350kD) is abundantly expressed in
the central nervous system, and its mutation can trigger HD.
In general, there are approximately 17–20 CAG repeats in the
Htt gene on chromosome 4 (Wyant et al., 2017). Abnormal
CAG length is considered to be responsible for genic mutation
and HD occurrence. Due to CAG expansion, the causative gene
is considered to have neuronal toxicity and cause HD disease
(McColgan and Tabrizi, 2018). There is a great correlation between
CGA length, morbidity and progression: longer CGA repeats are
usually linked with earlier onset and a higher rate. HD cases were
reported to have more than 35 repeats, and people with a CAG size
of 30–35 are deemed to gain little HD (Rubinsztein et al., 1996).
Nevertheless, mutant gene carriers with more than 39 CAG repeats
are predicted to develop disease and exhibit symptoms within
several years (Rubinsztein et al., 1996; McColgan and Tabrizi, 2018;
Figure 1).

HD is a brain-derived degenerative disease with widespread
and progressive brain shrinkage, structural decline and functional
impairment, especially in the striatum (Reiner et al., 1988;
Fjodorova et al., 2015; Reiner and Deng, 2018). Although the
striatum is the initial pathological site, there is still progressive
damage in different cortical layers of the HD brain, from posterior
to anterior, that generates symptoms during the whole lifespan
(Rosas et al., 2002; Nana et al., 2014; Jimenez-Sanchez et al., 2017).
Other areas, including the hippocampus, thalamus, and cerebellum,
also undergo various levels of neuronal loss on the basis of HD

stages. In addition, HD patients also display other symptoms,
such as weight loss, muscle defects, and cardiac damage (Arenas
et al., 1998; Gilbert, 2009). In general, males and females are
impacted equally, and the average age of HD onset with symptoms
is approximately 20–65 years, lasting about 20 years and then
developing severe intellectual disability and eventually leading to
death (Snowden, 2017; Wyant et al., 2017).

CAG length can expand when passed down from parents
to children, especially when delivered through males, therefore
leading to a high probability of HD symptoms appearing in
childhood and adolescence prior to age 21, which is identified
as Juvenile Huntington’s disease (JHD)(Reyes Molon et al., 2010;
Quigley, 2017). JHD develops and progresses more rapidly than
adult HD because of the extensive CAG repeats with a high
mutation rate and longer length compared with their parents
(Quarrell et al., 2012). Motor impairments remain the main
symptoms in JHD, including chorea, gait changes, speech deficits
and so on (Robertson et al., 2012; Snowden, 2017). Cognitive
decline and psychiatric factors are also manifested in JHD,
such as learning and memory problems, anxiety, aggression and
depression, speech and language impairments (Fusilli et al., 2018;
Cronin et al., 2019; Lesinskiene et al., 2020). Due to a series of
functional deficiencies, suicide frequently occurs in JHD.

Pain-related neuropathology

Mutant huntingtin (mHtt) can cause severe neuronal
dysfunction, especially in medium spiny neurons (MSNs) in
the striatum area, which is selectively susceptible to mHtt
(Bohanna et al., 2008; Sprenger et al., 2019). Both autopsy reports
and magnetic resonance imaging (MRI) have revealed tremendous
atrophy in the striatum and cortical white matter (Bohanna et al.,
2008; Tabrizi et al., 2011; McColgan and Tabrizi, 2018). Striatal
degeneration can appear in the early HD phase, sometimes 10–
15 years earlier than clinical detection (Paulsen et al., 2008; Wolf
et al., 2013). It is well known that the striatum is a crucial part of the
“pain matrix” and deals with various pain-related processes, such
as sensorial discrimination, emotional processing, and cognitive
evaluation (Fenton et al., 2015; Frediani and Bussone, 2019; Faraj
et al., 2021). The striatum is principally responsible for affective-
or cognitive- pain dimensions (Thompson and Neugebauer, 2019;
Zhou et al., 2019; Tan and Kuner, 2021), which are crucial to
determining the level of suffering from uncomfortable pain and
then remembering, integrating and responding appropriately
(Price, 2000; Nees and Becker, 2018). In addition, unusual sensory
activation of the cortex has been discovered in HD (Boecker
et al., 1999). Other brain areas associated with the “pain matrix”
that are responsible for multiple pain dimensions include cortex,
insula, thalamus, and somatosensory cortices (Apkarian et al.,
2005; Perrotta et al., 2012; Cardenas Fernandez, 2015). Relevant to
previous studies, different levels of atrophy have been discovered in
the “pain matrix” regions of HD patient brains. Disease progression
is greatly linked with the atrophy level in the HD brain (Bohanna
et al., 2008; Coppen et al., 2016, 2018; Wilson et al., 2018; Johnson
and Gregory, 2019). The basal ganglia are closely related to acute
and chronic pain and show some changes in pain processing. In the
mid stage of HD, an obvious delay in pain progression was found
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FIGURE 1

HD is caused by mutant Htt due to the increase in CAG repeats, which can lead to abnormal extension of polyglutamine (polyQ).

at the spinal cord level compared with the general population
(De Tommaso et al., 2011; Perrotta et al., 2012; de Tommaso et al.,
2016b). Overall, dysfunction at any degree and in any area has the
possibility of causing unmodulated, transient or sustained pain.

Pain-related prevalence

Pain has been studied and reported in AD, PD and other
neurological disorders. However, pain in HD has rarely received
attention, with only a few studies concerning pain issues. Several
clinical studies have shown that pain in HD patients is greatly
ignored and treated insufficiently, hence it is becoming a seriously
undervalued issue (Andrich et al., 2009; de Tommaso et al., 2016a).

Pain development is closely influenced by psychological
features, including depression, anxiety, apathy and irritability.
Psychiatric symptoms occur frequently during all HD periods,
especially the late stage, with an onset of approximately 33–76%
(van Duijn et al., 2007, 2014). Some early studies reported that
HD patients with depression had obviously painful symptoms; the
greater the levels of anxiety and depression, the greater the severity
of pain (Albin and Young, 1988; Arran et al., 2014). One study
with 1474 HD gene carriers found that the pain prevalence ranged
from 32% in the early period to 50% in the late period (Underwood
et al., 2017), which was similar to another small sample study
with a pain prevalence ranging from 11–62% (De Tommaso et al.,
2011; Calvert et al., 2013). Another meta-analysis reported that
the average pain prevalence in HD was about 41%, ranging from
36 to 46% (Sprenger et al., 2019). Recently, a worldwide pain-HD
investigation showed that in HD mutation carriers, 34% had pain
intervention, 17% underwent painful conditions, and 13% were
treated with analgesics. For HD carriers without mutation, 42% had
pain intervention and pain frequency was 12% in the middle period
and 15% in the late period (Sprenger et al., 2021). The average
prevalence of JHD in total HD cases is approximately 5–10% (Reyes
Molon et al., 2010; Quigley, 2017; Lesinskiene et al., 2020).

Pain-related symptoms

As an essential non-motor feature, pain has been undervalued
and not linked with HD for a long time until a brief report in 1988
said that two HD cases had strong sensory symptoms. One patient

described an unusual sensory feeling as intermittent “bee-sting
pain”, which occasionally occurred on any body part, lasting several
seconds or minutes. The pain frequency and intensity became
worse in the following months, and rare therapeutic approaches
could reduce his pain (Albin and Young, 1988). Another HD victim
also suffered an uncomfortable sensation and intermittent, sharp-
tingling pain in her arms and legs. She continued to complain
of severe “lancinating pain” and auditory abnormality. Both
eventually committed suicide (Albin and Young, 1988). These two
cases only represent a small part of the HD population, indicating
the essential role of sensory problems in HD, which cannot be
overlooked. Some other studies have also shown abnormal sensory-
induced potentials in HD patients (Oepen et al., 1981; Ehle et al.,
1984). A marathon runner experienced serious muscle pain after
running, which continued for several weeks and worsened his
performance (Kosinski et al., 2007). In addition, a study with 90
sample, aimed to study pain in premanifest period HD and found
that approximately 49% of them used narcotics, but only 14% used
narcotics in the general population (Sprenger et al., 2019). The
high use of narcotics indicates that pain is indeed a severe but
unrecognized symptom in HD.

Studies concentrating on pain in HD display controversial
results. In a study of HD with 19 cases, 11 patients estimated a
high pain score, but only 3 of them obtained analgesia treatment
(McColgan and Tabrizi, 2018). Another study with 28 HD samples
reported that HD patients display a slowing pain development,
and only 3 mild-stage patients expressed pain responses after
laser stimuli (De Tommaso et al., 2011). Cognitive deficiency
includes damage to language, memory, attention and decision-
making, which could result in abnormal behavior in HD patients
(Singh and Agrawal, 2021). Slow pain progression might disturb
sensory information integration and then lead to insufficient or
inaccurate behavior in response to painful issues. An increasing
number of studies have shown that HD patients experience pain
but show a deficit in pain recognition. Because of motor and
cognitive deficits, later-stage HD patients rarely complain of pain
even with serious pain symptoms, suggesting the possibility of
pain signal transfer delay or dysfunction (Albin and Young,
1988; Andrich et al., 2009; Baez et al., 2015). In addition to
cognitive deficits, there are other behavioral abnormalities in HD,
including emotional damage (psychosis, depression, anxiety) and
empathy deficits, which cause negative pain recognition (Baez et al.,
2015). The painful stimuli may interrupt sensorimotor information
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integration (Fil-Balkan et al., 2018; Millian-Morell et al., 2018) and
lead to global deterioration of HD (De Tommaso et al., 2011; de
Tommaso et al., 2016a).

There are still some other interesting findings concerning
specific pain in HD. It has been reported that a series of
abnormal pain events occur and change as the disease develops,
including back pain, headache, limb pain, abdominal pain
(Sprenger et al., 2021). In an elderly study, the relationship
between gastroesophageal inflammation and HD was explored.
Many HD patients have gastritis or esophagitis symptoms but
without complaints, which has an obvious relationship with the
duration and severity of HD (Andrich et al., 2009). The increase
in abdominal pain might be highly related to the gastroesophageal
disturbances in the end HD stage. Additionally, fractures seem to
increase as HD progresses, which might be linked with bone density
alteration (Carroll et al., 2015).

Pain-related affecting factors

The correlation between pain and HD is interesting, involving
a series of affecting factors. First, HD itself may cause pain
and is rarely treated, partly due to the insufficient awareness
of pain from physicians, which is supported by the incoherence
between painful conditions and analgesic use (Sprenger et al.,
2021). Second, neuronal loss or dysfunction could also cause a
lack of self-awareness in HD, making it difficult to gather pain-
related data through self-evaluation (Madariaga et al., 2021). Third,
the incoherence between pain and HD might be clarified by basal
ganglia disturbance, which could increase pain severity but with
less or no pain behavior, probably owing to disorders in sensation,
motor function and/or cognition (Borsook et al., 2010). Fourth,
emotional factors are critical and closely linked with pain behavior
in the HD population. A high frequency of emotional issues, such
as depression and anxiety, are popular in the HD manifest periods
(Sprenger et al., 2021). Finally, different pain criteria could cause
different pain assessment data, which might underestimate the pain
prevalence in the HD population. For example, specific dystonia is
not considered a painful symptom, but it frequently appears and
triggers pain in HD progression (Buhmann et al., 2020).

As HD progresses, an increasing number of affecting factors
appear and are present, such as sex, illness stage, daily exercise,
medicine and so on, and these factors interact with one another.
Therefore, systematic studies are required to explore the detailed
relationship between pain and HD in the future.

Pain-related potential mechanisms

As a typical genetic disease, HD is primarily characterized
by motor and psychiatric dysfunction, and rarely focuses on
pain abnormalities. Here, we outline some potential mechanisms
associated with pain in HD, summarized in Figure 2.

Brain degeneration and dysfunctions

The well-known characteristics of HD is progressive brain
and basal ganglia atrophy, involving many functional regions and

leading to motor and cognitive dysfunction as well as dementia and
psychosis. Studies have reported that many regions of the brain are
influenced in HD, including gray matter volume decrease, cortical
thinning, and striatum deterioration.

Brain structures, such as the cortex, thalamus, cerebellum,
and hippocampus, are essential areas related to pain sensory,
function and functionally integrate with each other to modulate
pain processing. However, the particular parts of brain atrophy
associated with pain in HD are seldom considered. The brain
regions involved in pain and HD are summarized and listed below
(Table 1).

Spinal cord and peripheral nervous
systems dysfunctions

As major pain regulation areas, spinal cord (SC) and peripheral
nervous systems (PNS) play vital roles in pain processing and
transduction, also showed morphological and functional disorders
in HD. SC gradual atrophy were detected and confirmed in
manifest HD patients, as well as in the early stage (Muhlau
et al., 2014; Wilhelms et al., 2017). One postmortem study
detected the expression and location of mHTT in the SC of
HD patients and found that mHTT preferred to express in the
spinal gray matter (Sciacca and Cicchetti, 2017). The deterioration
of gray matter and white matter in SC were also observed in
HD mice. The expression of mHTT in oligodendrocytes resulted
in myelination abnormalities, which can be rescued by mHTT
reduction (Ferrari Bardile et al., 2021). The SC impairments in HD
inevitably brought many sensory issues, such as pain. Abnormal
pain signals in SC were observed along with a dysfunction of pain
signal transportation, which finally induced sensory alternation
in HD patients (De Tommaso et al., 2011; Perrotta et al., 2012).
At SC level, mHTT could result in significant changes of pain
behavior and pain-related cytokine in HD mice (Lin et al.,
2018).

In SC and PNS, it was reported that glia cells participated
in pain responses mainly through regulating pain signals
transmission, neuroinflammation and neuron-glia interactions.
Glial cells were highly involved in the development of HD
processing. The special expression of mHTT in glial cells
contributed to normal function lose and neuropathic pathology
(Wilhelms et al., 2017; Wilton and Stevens, 2020). Both in HD
patients and animal models, the cell morphology, metabolism
and functions of astrocyte were greatly changed as well as their
interactions with neurons (Skotte et al., 2018; Osipovitch et al.,
2019). In addition, the abnormal expression of mHTT in astrocytes
is greatly related with HD pathology motivation (Diaz-Castro et al.,
2019; Wood et al., 2019). The cell size and structural changes of
microglial were explored in HD, along with motility and migration
disorders. Meanwhile, microglia cells in HD showed upregulated
levels of inflammatory cytokines, contributed to pain processing
and abnormity (Diaz-Castro et al., 2019; Liu et al., 2019). In
HD mice, phenotypic and molecular studies revealed that the
structural and functional deficits of oligodendrocyte appeared in
HD early stage, causing severe oligodendrocytes’ dysfunctions,
including thinner myelin sheaths, remyelination impairments and
less response to demyelinating injury (Teo et al., 2016, 2019).
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FIGURE 2

A summary of potential pain-related molecular mechanisms, cellular processes and clinical symptoms in HD progress.

Gene expression dysfunctions

One of the main pathological mechanisms in HD is
transcription disorder. Many genes showed expression changes
in HD (Lee et al., 2013; Sipione et al., 2016). Mutant Htt can
interact with transcription factors, such as p53, CREB and PGC-
1a, and disrupt cell survival, energy metabolism and protein
expression (Jiang et al., 2006; Chaturvedi et al., 2012; Kim et al.,
2016; Aravindan et al., 2020). As a key neurotrophic factor, the
transcription, expression and transport of BDNF, which is essential
for striatal neuron survival, are badly impaired in HD (Hong
et al., 2016). Therefore, the stratum becomes the most vulnerable
region due to a low level of BDNF (Park, 2018). In addition,
synaptic dysfunction of the cortical- striatum is due to deficiency
in the BDNF pathway via p75 (postsynaptic receptor), which is also
thought to act with TrkB in HD (Pan et al., 2018).

Huntington-associated protein 1 (HAP1) is the earliest protein
found to interact with Htt and contributes to cargo (vesicle,
receptor, and neurotrophic factor) trafficking, the function of which
is interfered with by mHtt (Jimenez-Sanchez et al., 2017), including
the synthesis and release of BDNF in the cortex and the retrograde
transport of TrkB in the striatum (Park, 2018). HAP1 is highly
involved not only in HD but also in pain progression, and enriched
in the spinal dorsal horn and dorsal root ganglia (Islam et al.,
2017, 2020), which are considered the “primary sensory center”.
In our study, we found that HAP1 could regulate Cav1.2 surface
expression, which in turn influenced neuronal excitability, BDNF
secretion, and inflammatory responses and ultimately modulated
pain progression (Pan et al., 2023). HAP1 deficient mice exhibited
mechanical allodynia and hyperalgesia inhibition in acute and
chronic pain models (Gloor et al., 2022).

Neuronal and synaptic dysfunctions

Neuronal abnormality is one of the initial pathological
changes in HD, along with synaptic plasticity alteration, involving
many factors, such as gene transcription, protein expression and
transmission (Jimenez-Sanchez et al., 2017). As a scaffold protein,
Htt contributes to vesicle transport through microtubules and
motor proteins, while mHtt can inhibit the axonal delivery of
cargoes and organelles, reduce neurotransmission and hinder
signaling (Jimenez-Sanchez et al., 2017; Snowden, 2017; McColgan
and Tabrizi, 2018). Axonal delivery is important for cargo transfer
to membranes and expression. However, the transport of many
aborted receptors, including GABAA (γ-aminobutyric acid type A),
AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid),
and NMDA (N-methyl-d-aspartate) receptors, is found in HD,
disrupting synaptic plasticity and excitability. Some studies have
found that GABAergic neurons are reduced in neuropathic pain,
and that elevated levels of GABAergic mediators and GABAA
receptors might reverse and attenuate pain (Knabl et al., 2008; St
John Smith, 2018). In HD, redundant neurotransmission induced
by NMDA receptors could cause neuronal death, specifically
in striatal neurons. The function of NMDA receptors has
been studied in multiple pain models, playing a pivotal role
in attenuating central sensitization and pain hypersensitivity
after stimulation (Kreutzwiser and Tawfic, 2019; Shin et al.,
2020). Stimulated NMDA receptors can lead to calcium influx,
which is critical for synaptic plasticity. AMPA receptors can
regulate synaptic strength and plasticity and alleviate different
types of pain hypersensitivity, including neuropathic (Wang
et al., 2021), neuroinflammatory (Kopach et al., 2018), chronic
(Bliss et al., 2016) and postoperative (Kopach et al., 2018;
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TABLE 1 The brain regions involved in pain and HD.

Brain regions Connections with pain Connections with HD Clinical signs/meanings

Prefrontal cortex Involved in acute and chronic pain,
neuropathic pain, regional pain

(Seminowicz and Moayedi, 2017; Ong
et al., 2019; Huang et al., 2020)

Deterioration and dysfunction
(Gomez-Anson et al., 2009; Gray et al.,

2013; Matsui et al., 2014, 2015)

Signs: back pain, migraine, headache, trigeminal pain,
complex regional pain syndromes

Meanings: primary control center for descending pain
modulation and pain relief (Seminowicz and Moayedi, 2017;

Ong et al., 2019)

Anterior cingulate cortex Involved in acute and chronic pain,
neuropathic pain, inflammation pain
(Bliss et al., 2016; Li et al., 2021; Wang

et al., 2021)

Degeneration and neuron loss (Thu et al.,
2010; Hobbs et al., 2011; Kim et al., 2014)

Signs: central sensitization, anxiety, neuropathic pain,
visceral pain, inflammatory pain, transferred pain
Meanings: contributes to multiple pains, mediates

pain-related sensory and emotional responses (Li et al.,
2021; Smith et al., 2021; Xiao et al., 2021)

Amygdala Involved in acute and chronic pain,
neuropathic pain, central pain,

comorbid pain (Zhu et al., 2019; Hua
et al., 2020; Neugebauer et al., 2020)

Reduced volume, poor motor and
cognitive function (Mason et al., 2015;
Lamirault et al., 2017; Ahveninen et al.,

2018; Alexander et al., 2020)

Signs: visceral pain, muscle pain, neuropathic pain, arthritis
pain, emotional-painful disorders: anxiety, depression,

addiction, suicide
Meanings: important for emotional pain dimension and

modulation (Neugebauer, 2015; Thompson and
Neugebauer, 2017; Neugebauer et al., 2020)

Hippocampus Involved in chronic pain, cancer pain,
inflammation pain, neuropathic pain
(Li et al., 2020; Liu et al., 2021; Mai

et al., 2021)

Reduced volume, synaptic and memory
impairment (Harris et al., 2019; Wilkie
et al., 2020; Glikmann-Johnston et al.,

2021)

Signs: tactile allodynia, subacute and chronic back pain,
abnormal mood, memory, cognition, stress responses,

inflammation pain
Meanings: mediates pain processing, pain-related attention,
anxiety, stress (Vasic and Schmidt, 2017; Liu et al., 2018; Wei

et al., 2021)

Gray matter Involved in chronic pain, muscle pain,
osteoarthritis pain (Malfliet et al., 2018;
Barroso et al., 2020; You and Jackson,

2021)

Neuronal loss, atrophy and dysfunction
(Faria et al., 2016; Johnson and Gregory,

2019; Sweidan et al., 2020; De Paepe et al.,
2021)

Signs: central sensitization, pain sensitivity, pain cognitions
disability, chronic spinal pain, osteoarthritis pain,

musculoskeletal pain
Meanings: mediates and reflects pain sensation, descends
pain processing (Malfliet et al., 2018; Barroso et al., 2020;

Ninneman et al., 2022)

Striatum Involved in acute and chronic pain,
inflammation pain, neuropathic pain
(Barcelo et al., 2012; Jin et al., 2020)

Atrophy, neuronal loss and
neurocognitive dysfunction (Sepers et al.,
2018; Wilkes et al., 2019; Bulk et al., 2020;

Lemoine et al., 2021)

Signs: Persistent pain, anxiety, sleep loss, anxiety, low back
pain, pain-related fear

Meanings: pain inhibition, takes part in the pain modulatory
system (Martikainen et al., 2015; Krause et al., 2019; Boccella

et al., 2020; Jin et al., 2020)

Khan et al., 2019; Kopach and Voitenko, 2021) pain. However,
the balance between presynaptic, postsynaptic and extra-synaptic
activities is altered in HD, termed excitotoxicity (Jimenez-Sanchez
et al., 2017).

Immune dysfunctions

Activated glial cells interact with neurons and affect
pain processing by releasing neurotransmitters, molecules,
inflammatory cytokines and chemokines. Immune dysfunction is
an important factor in neurodegenerative disease. In HD, changes
in immune cells and inflammatory responses have been discovered
in the brain and peripheral system, indicating a potential role in
pathogenesis (Andre et al., 2016). Increasing evidence has shown
increased levels of proinflammatory mediators in early and late HD
patients (Trager et al., 2014; Andre et al., 2016). When mHtt was
chosen to be expressed in astrocytes, no notable changes appeared
in glia or neurons, but mice showed pathological symptoms in
the late stage. HD astrocytes present defects in the secretion of
chemokines CCL5, BDNF and low levels of K+ channels, which
can regulate neuronal excitability (Hong et al., 2016; Saba et al.,
2020). In HD, nuclear factor-κB (NF-κB) acts as an inflammatory
indicator and regulates the expression of various inflammatory

cytokines, including IL-1 and TNF-α (Yusuf et al., 2021). NF-
kB signals increase and evoke inflammatory responses in HD
myeloid cells (Trager et al., 2014). In PNS, mutant huntingtin
could influence inflammatory responses through NF-kB signaling
inhibition. Downregulation of NF-κB attenuates inflammatory
gene expression and suppresses inflammatory pain responses
(Xiang et al., 2019; Yang et al., 2020; Kato et al., 2021). Microglial
activation was discovered in the brains of HD patients and mice
and is involved in neuronal degeneration. In addition, microglia
expressing mHtt also exhibit decreased migration (Kwan et al.,
2012; Crotti et al., 2014). Moreover, bone marrow transplantation
could inhibit pathology by increasing the levels of cytokines
and chemokines in HD mouse models (Jimenez-Sanchez et al.,
2017).

Mitochondrial dysfunctions

Mitochondria are involved in ATP production, calcium
balance, and protein synthesis, which influence neuronal survival,
growth and apoptosis (Dai et al., 2020; Doyle and Salvemini, 2021).
Some studies have suggested that mitochondrial abnormalities
are found in HD and are probably involved in the pain
process (Jimenez-Sanchez et al., 2017). Some studies found
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that huntingtin mutation could cause mitochondrial calcium
imbalance by binding with the outer membrane, interrupting
the axonal transport of mitochondria and ultimately reducing
ATP production (Shirendeb et al., 2011; Reddy and Shirendeb,
2012). Ca2+ is an essential signaling molecular, the abnormal
activities of which play complex roles in HD (Jimenez-Sanchez
et al., 2017), thereby leading to abnormal pain responses
indirectly or directly. The fusion-fission cycles of mitochondria
are regulated by dynamin-related protein 1 (Drp1), the deficiency
of which can inhibit mHtt-evoked mitochondrial toxicity and
delay HD development (Zhan et al., 2018; Dai et al., 2020).
Drp1 and its associated mitochondrial malfunction have been
reported to influence the pathological process of neuropathic
pain (Jimenez-Sanchez et al., 2017; Zhan et al., 2018; Kun
et al., 2019). Because of mitochondrial dysfunction, HD patients
and models exhibit reactive oxygen species (ROS) (Jimenez-
Sanchez et al., 2017), which have been observed and function
in neuropathic pain (Flippo and Strack, 2017; Dai et al.,
2020).

Ion channels dysfunctions

Ion channels are considered as major targets for regulating
pain sensation, due to their notable distribution in sensory
neurons and key tissues. A lot of pain-related ion channels have
been discovered and identified as potential pathogenic factors
in HD, including transient receptor potential (TRP) channels,
calcium (Ca+) channels, potassium (K+) channels, acid sensing ion
channels (ASICs).

TRP channels are ubiquitously diffused in CNS, PNS and
SC as well as dorsal root ganglia (DRG). TRP channels are
mainly expressed in membranes of neurons and non-neuronal
cells, mediating ion homeostasis and emerging as crucial pain
transducers (Nilius and Owsianik, 2011; Moore et al., 2018;
Lee et al., 2021). It had reported that TRP subfamilies TRPC
(canonical) and TRPV (vanilloid) were associated with HD.
Decreased level of endogenous TRPC1 was explored in HD striatal
neurons, together with increased level of TRPC5 glutathionylation,
leading to neurons apoptosis in HD mice (Hong et al., 2015,
2020). Furthermore, pharmacological experiments demonstrated
the potential effects of TRPV1 channel in HD models, suggesting
the possible contribution of TRPV1 in HD dysfunctions (Lastres-
Becker et al., 2003).

Calcium channels have fundamental roles in neuronal
health and functions and have a series of subtypes according
different structures, pharmacological and physiological properties.
L-type channels are abundantly expressed in CNS and SC,
regulating Ca2+ influx and neuronal sensitization (Roca-
Lapirot et al., 2018; Hopp, 2021). Its subtype Cav1.2 was
highly involved in HD, whose expression and functions were
interfered by mHTT (Miranda et al., 2019). The store-operated
Ca2+ entry (SOCE), a major Ca2+ entry pathway, was greatly
increased in HD and attributed to Ca2+ homeostasis disorder
by activating mHTT indirectly (Czeredys, 2020). Besides, the
interaction between mHTT and inositol-1,4,5-triphosphate
receptors (IP3Rs) can lead to abnormally Ca2+ levels in R6/2
HD mouse, containing high intracellular Ca2+ level and low

mitochondrial Ca2+ level (Mackay et al., 2018; Schrank et al.,
2020). Furthermore, ryanodine receptor (RyR) associated Ca2+

abnormity had been investigated and documented in HD (Dridi
et al., 2020).

Potassium (K+) channels are functional for pain processes by
regulating pain transmission and modulation, whose dysfunction
can induce a series of pain problems (Tsantoulas, 2015; Busserolles
et al., 2016). In HD, K+ channels also have important roles in
physiological and pathological conditions. Glia cells express many
rectifying K + channel (Kir) subfamilies and function in HD
processes (Zhang et al., 2018). In R6/2 and Q175 HD mouse
models, Kir4.1 decrease can cause disturbances of astrocyte–
mediated K+ homeostasis (Tong et al., 2014; Nwaobi et al., 2016).
Evidence indicated that both HD patients and models showed
obvious decrease of Kir4.1 level in astrocytes, leading to a high K+

extracellular concentration and neuronal damages (Nwaobi et al.,
2016; Wang et al., 2022). Furthermore, KATP channels had been
indicated to associate with abnormal neuronal firing in HD mice
(Atherton et al., 2016; Rallapalle et al., 2021).

Additionally, acid sensing ion channels (ASICs) are highly
expressed in nervous system, and greatly involved in both pain
processing and HD development (Deval and Lingueglia, 2015;
Sluka and Gregory, 2015; Zhou et al., 2016; Zhu et al., 2022).

Conclusion and future perspectives

HD, as a classic neurodegenerative disorder, provides scientists
with ideas for many interesting studies on social, financial and
medical issues. Pain is one of the major features, a subjective
and direct way to express discomfort and suffering. As HD
progresses, pain can be produced directly by many elements,
such as neuron loss, atrophy, muscle decline, and bone density
reduction; however, subjective pain behavior might be limited
or concealed owing to motor and sensory dysfunction and
cognitive deficiency. Because of cognitive problems, HD patients
suffer from pain but rarely complain, resulting in pain that
is limited and neglected, therefore leading to underestimation
and no treatments. As a result of insufficient attention, special
evaluations and therapeutic guidelines are unavailable, and clinical
treatments for pain are limited to analgesics and anti-inflammatory
agents without a full speculation of potential mechanisms.
However, in many other diseases, particularly AD and PD,
specific scales and treatments are used and applied to pain issues,
which are considered fully as a major symptom instead of a
secondary problem.

This review notes that the major issues related to pain are
medical neglect and carelessness, as attention and treatment are
mostly focused on motor-related symptoms. Hence, health doctors
and caregivers should pay more attention to pain problems during
HD progression, especially in the later stage. The correlation
between HD and pain should be further investigated. Current
studies and evidence associated with pain in HD suggest a huge
challenge and opportunity for scientists in the neuronal-pain field.
Future studies should focus on pain-related factors and intrinsic
mechanisms, pay more attention to specific scales, equipment,
treatments and identify effective therapeutic methods for HD
patients undergoing pain conditions.
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