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Introduction: Alzheimer’s disease (AD) is a leading cause of dementia, and it has

rapidly become an increasingly burdensome and fatal disease in society. Despite

medical research advances, accurate recognition of AD remains challenging.

Epidemiological evidence suggests that metabolic abnormalities are tied to higher

AD risk.

Methods: This study utilized case-control analyses with plasma samples and

identified a panel of 27 metabolites using high-resolution mass spectrometry in

both the Alzheimer’s disease (AD) and cognitively normal (CN) groups. All identified

variables were confirmed using MS/MS with detected fragmented ions and public

metabolite databases. To understand the expression of amyloid beta proteins in

plasma, ELISA assays were performed for both amyloid beta 42 (Aβ42) and amyloid

beta 40 (Aβ40).

Results: The levels of plasma metabolites PAGln and L-arginine were found to

significantly fluctuate in the peripheral blood of AD patients. In addition, ELISA

results showed a significant increase in amyloid beta 42 (Aβ42) in AD patients

compared to those who were cognitively normal (CN), while amyloid beta 40

(Aβ40) did not show any significant changes between the groups. Furthermore,

positive correlations were observed between Aβ42/Aβ40 and PAGln or L-arginine,

suggesting that both metabolites could play a role in the pathology of amyloid

beta proteins. Binary regression analysis with these two metabolites resulted in

an optimal model of the ROC (AUC = 0.95, p < 0.001) to e�ectively discriminate

between AD and CN.

Discussion: This study highlights the potential of advanced high-resolution mass

spectrometry (HRMS) technology for novel plasma metabolite discovery with

high stability and sensitivity, thus paving the way for future clinical studies. The

results of this study suggest that the combination of PAGln and L-arginine holds

significant potential for improving the diagnosis of Alzheimer’s disease (AD) in

clinical settings. Overall, these findings have important implications for advancing

our understanding of AD and developing e�ective approaches for its future clinical

diagnosis.
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1. Introduction

Alzheimer’s disease (AD) is a form of neurological dementia

that is progressive and irreversible; it has a significant negative

impact on people’s lives, society, and the economy (2021).

Numbers of biochemical processes are affected in AD pathologies,

which include the breakdown of amyloid precursor proteins,

the phosphorylation of tau proteins, oxidative stress, poor

energy, mitochondrial dysfunction, inflammation, membrane lipid

dysregulation, or disruption of neurotransmitter pathways (de

la Monte and Tong, 2014; Procaccini et al., 2016). It is

increasingly clear that many neurodegenerative diseases have

a pre-symptomatic phase, during which pathological changes

accumulate prior to the onset of symptoms (Golde, 2022).

Thereof, early diagnosis and therapy during the progression of

AD are critical and a rapid pace of development should be

adopted (Cummings et al., 2022). Nevertheless, the challenge

of obtaining a prompt and accurate diagnosis has hindered the

development of therapies for Alzheimer’s disease (AD). As reported

in a previous study, AD clinical trials are characterized by up

to 80% screen failure rates (Aisen et al., 2016). Biomarkers

enable the identification of the onset, profile, and severity of

neurodegeneration-related brain alterations in particular patients

who are in need of diagnosis, prognosis, and usage in clinical

trials—as both inclusion and outcome measures—as the fieldwork

to treat patients sooner and earlier (Bendlin and Zetterberg, 2022).

The National Institute on Aging and Alzheimer’s Association

(NIA-AA) has proposed a research framework for using A/T/N

biomarkers of β amyloid, tau, and neurodegeneration biomarkers

to define Alzheimer’s disease. These A/T/N biomarkers shall

also serve as continuous measures to reflect different cognitive

stages (Jack et al., 2018).

Currently, the availability of amyloid beta (A) PET and

cerebrospinal fluid (CSF) biomarker tests for amyloid beta peptides,

tau, and other neuroproteins (A/T/N classifiers) enables their

use to diagnose brain amyloid pathology. However, there is

still an unmet need for an accessible, radiation-free, minimally

invasive, economical, quick, and analytically validated diagnostic

approach to simplify clinical trial enrollment (Jack et al.,

2016). Besides, the biochemical and physiological changes in

the brain that characterize the illness beyond amyloid and

tau deposition are still poorly understood, even though AD

is currently characterized based on amyloid-plaque and tau

neurofibrillary tangle deposition inside the neocortex (Jack et al.,

2018).

Metabolome analysis has emerged as a novel strategy for the

development of disease biomarkers in diagnosis, as well as for

monitoring the progression of the disease with its underlying

pathophysiology (Trivedi et al., 2017). The metabolome is a

collection of small molecules that is produced by metabolic

processes, arranged in biochemical pathways. It is impacted by

various internal and external variables, including genetics (Holmes

et al., 2008). It has been indicated that metabolomics appears to be

of uttermost relevance in AD as several metabolic changes, such as

higher insulin and insulin resistance levels, are associated with an

increased risk of AD (Schrijvers et al., 2010). Thus, metabolites are

now crucial diagnostic indicators of dementia before memory loss,

defining its presence or absence.

As the plasma metabolome interacts and exchanges molecules

with every organ and tissue, including the brain, it reflects

various physiological and pathological changes. This makes it

a promising avenue for identifying biomarkers for a range

of disorders. Furthermore, interorgan communication is an

important and conserved mechanism that maintains body

homeostasis. Dysregulation of the systemic homeostatic system

would result in metabolic and neurological disorders (Vogt and

Bruning, 2013; Deleidi et al., 2015). Moreover, plasma is a bodily

fluid that is simple to obtain and causes minimal discomfort to

patients, which allows for the collection from large cohorts and

repeated sampling (Lawton, 2008). Therefore, it is worth studying

the systemic changes in blood metabolite levels associated with AD.

Analytical techniques have significantly improved, with high-

resolution mass spectrometry (HRMS) instruments being readily

available for determining the majority of chemical compounds

(Niedzwiecki et al., 2020). Apart from determining the accurate

properties of these metabolites, collective quantification is of

great importance for metabolism study (Koek et al., 2011). The

most popular mass spectrometers for UHPLC-HRMS are Orbitrap

(OT) or TOF-based systems, as they enable the best MS data

acquisition. However, according to instrument investigation, the

resolution of a UHPLC-coupled OT instrument has been sacrificed

in favor of achieving greater separation with higher acquisition

rates (Kaufmann, 2018; de Souza et al., 2021). Furthermore, in

line with our previous research on the discovery of AD urine

metabolites, the OT systems for molecule detection displayed

impressive stability performance (Zhang et al., 2022). Moreover,

recent research that employs powerful bioinformatic techniques

and high-throughput measurements of hundreds of metabolites

has thoroughly documented the molecular alterations and disease-

related pathways (Chandler et al., 2016; Sales et al., 2017; Uppal

et al., 2017; Zhuang et al., 2021).

We performed a metabolomic analysis of the plasma of patients

with AD and CN using high-resolutionmass spectrometry (HRMS)

from these viewpoints. Our current investigation supports the

application of metabolomics analysis as a discrimination test

between AD and CN, which may provide new insight for future

clinical diagnosis.

2. Methods

2.1. Participant ascertainment and ethics
approval

During the visits to the Shanghai Baoshan Senior Care

Home, Baoshan District, No. 5425 Gonghe New Road, individuals

between 60 and 80 years of age were recruited as participants,

and a wide range of biospecimens and health indicators were

collected. Standard cognitive screening, which includes medical

history assessment, cognitive examination, and blood sampling,

was conducted for all patients with Alzheimer’s disease (AD).

Regular biomedical indicators were obtained for cognitively normal

(CN) individuals. The ethics committee of Shanghai Baoshan

Luodian Hospital approved this study prior to the acquisition of

clinical and genetic participants’ data (Approval number: LDYY-

KY-2020-04). The study was performed in accordance with the
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ethical standards laid down in the 1964 Declaration of Helsinki and

its later amendments.

2.2. ADAS-Cog assessment and
participants’ grouping

All study participants were fully informed of this research work,

and written informed consent was obtained from all participants.

The Alzheimer’s Disease Assessment Scale—Cognitive (ADAS-

Cog) Subscale test is a widely used cognitive test in research

studies and clinical trials (Kueper et al., 2018; Zhang et al., 2022)

and, therefore, was administered to evaluate the participants’

recognition ability before the wet-lab experiments. Scores on the

ADAS-Cog test range from 0 to 75, with a score above 18 indicating

recognition impairment and leading to enrollment in the AD

group. Conversely, a score below 18 indicates normal recognition

ability and leads to enrollment in the CN group.

2.3. Plasma samples collection

Briefly, blood was collected in the morning, following an

overnight fast of at least 8 h. EDTA blood tubes were used for

plasma collection, which were then centrifuged at a speed of 3,000 g

for 15min at room temperature. The resulting supernatant was

transferred and aliquoted into polypropylene tubes of 0.5mL and

stored at−80◦C until further use. Quality control (QC) plasma was

prepared by pooling an equal amount of individual plasma samples

and was utilized to assess downstream sample preparation and MS

measurements’ stability.

2.4. Plasma protein biomarkers
quantification

Plasma contents of total tau, APOE, amyloid beta-peptide 1-40,

and amyloid beta-peptide 1-42 were measured using commercial

ELISA kits according to the manufacturer’s instructions (Total Tau,

KHB0041, Invitrogen; APOE, ELH-ApoE4-1, RayBiotech; Amyloid

beta 1-40, RE59781, IBL, and Amyloid beta 1-42, KHB3544,

Thermo Fisher Scientific). Briefly, standard assays for detecting

radioimmunoprecipitation assay-soluble samples were applied to

the ELISA plates. After washing, a biotin-conjugated detection

antibody was applied. Then, the positive reaction was enhanced

with streptavidin–horseradish peroxidase and colored by 3,3
′

,5,5
′

-

tetramethylbenzidine. The absorbance at 450 nm was applied, and

the concentrations of four different proteins were calculated from

the standard curves. All measurements were carried out in one

round of experiments, and the results were read on a microplate

photometer (MultiskanTM FC, Thermo Fisher).

2.5. HRMS on untargeted metabolomics

The aliquoted frozen plasma sample was thawed and

centrifuged at 14,000 g for 5min. A measure of 300 microliters

of methanol was added to 100 µL aliquot of plasma samples,

vortexed for 5min, and centrifuged at 14,000 g for another

5min. The supernatant was transferred into a plastic tube,

evaporated to dryness under a stream of nitrogen at 40◦C, and

reconstituted in 100 µL of acetonitrile, which contains 5µg/mL 2-

Chloro-L-phenylalanine (Sigma-Aldrich). A 5.0-µL aliquot of the

reconstituted solution was injected into the UPLC MS system for

online data acquisition. The same sample preparation steps were

applied for QC samples. The plasma metabolites were separated on

a Waters HPLC Column (XSelect HSS T3, 2.1 X 100mm, 2.5µm,

MA, USA) that equilibrated at 37◦C. The mobile phase consisted of

0.1% formic acid in water (A) as the aqueous phase and 0.1% formic

acid in acetonitrile as the organic phase. The gradient elution (min,

B) was set as 20 min: 0.0–2.0, 5%; 2.0–6.0, 50%; 6.0–15.0, 95%;

15.0–18.0, 95%; and 18.0–20.0, 5%. The eluent flow rate was set to

0.3 mL/min.

Sample extracts were analyzed using UPLC interfaced with the

high-resolution MS system of Orbitrap (Dionex Ultimate 3000,

Q-Exactive Plus, Thermo Scientific) in the positive electrospray

ionization (ESI+) mode. The mass range was set to m/z 65–

975. For the MS scan, the MS resolution was set to 35,000 with

the automatic gain control (AGC) target set to 1 × 106 and the

maximum ions injection time was set to 100ms. For the MSMS

scan, the MS resolution was set to 17,500 with the automatic gain

control (AGC) target set to 1× 105, and themaximum ion injection

time was set to 50ms. The stepped normalized collision energy

(NCE) consisted of 20%, 25%, and 30% for ion fragmentation,

and the isolation window was narrowed to 1.0 m/z for improving

the MS feature identification. MS injection order followed the

previous batch sequence setting (Zhang et al., 2022). In brief, QC

samples were placed at the beginning, in between the samples,

and at the end of the whole batch to examine the stability of the

MS method.

2.6. Database search, data cleaning, and
evaluation

The MS data underwent processing using Thermo Compound

Discover 3.1 (Thermo Scientific, USA). An “Untargeted

metabolomics workflow” was used to extract MS features

and identify the nature of the compounds. In brief, MS raw files

including QCs, ADs, and CNs were introduced into the data study.

A specific sample type was selected for each of the individual raw

data. The custom “Workflow Tree” was optimized according to the

HRMS settings. Databases of mzCloud and mzVault were selected

for compound identification. Then, the analysis was submitted

to the job queue and resulted in a list with compound features,

MS intensities, retention time (RT), MSMS spectrum, and so on.

According to the database search results, MS features with more

than 20% missing values were removed as these signals’ quality

was deemed uncertain for further validation and quantification.

Also, those calculated MS intensities of lower than 10,000 were not

included as their plasma levels were too low to be quantified with

this method. To evaluate the stability of this untargeted approach,

the intensities of selected metabolites and the internal standard

(2-Chloro-L-phenylalanine) in all QC samples were analyzed.
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TABLE 1 Demographic characteristics of the AD and CN groups.

Characteristics AD group CN group

n 29 29

Gender, female/male (%) 63.3 58.6

Age 69.0± 3.60 72.1± 7.1

Education year (y) 4± 2 6± 3

ADAS-Cog score (Score range) 72.65± 5.56 (53–75) 6.48± 6.45 (0–16.5)

Results are expressed as mean± standard deviation.

TABLE 2 Plasma protein feature measurements by ELISA.

Protein
features
(unit)

AD group CN group p-value

Aβ40 (pg/mL) 333.908± 94.157 303.067± 114.857 0.142

Aβ42 (pg/mL) 9.422± 11.433 3.725± 2.722 0.001

TAU (pg/mL) 1,199.255± 959.953 2,217.143± 975.046 0.000

APOE

(ng/mL)

32,617.841±

9,475.138

66,157.364±

108,855.517

0.002

Aβ42/Aβ40 0.027± 0.029 0.013± 0.010 0.001

Results are expressed as mean ± standard deviation; a p < 0.05 indicates

statistical significance.

2.7. Metabolome-wide association study

Metabolome-wide association study (MWAS) was conducted

with Simca-P 14.1 software (Umetrics, Umea, Sweden) (Wheelock

and Wheelock, 2013). Data of normalized LC/MS peak areas were

imported for multivariate analysis. Principal component analysis

(PCA), partial least-squares discriminant analysis (PLS-DA), and

orthogonal partial least-squares discriminant analysis (OPLS-DA)

were performed separately for model development. The quality

of the model was tested by cross-validation and permutation

(Szymańska et al., 2012) and evaluated by the values of R2X, R2Y,

and Q2. By default, the model was run through seven rounds

of cross-validation to establish the optimal number of principal

components to minimize overfitting and the fact that both Q2 and

R2 were near to 1, which shows that the model is excellent (Liang

et al., 2011).

2.8. Metabolic pathway analysis

A metabolic pathway may be conceived of as a group of

metabolites that arise from various regions of the metabolome and

cooperate to control the processes of AD. Moreover, we looked

at regulatory signatures related to the AD disease process using

network extraction approaches. Thus, the Mummichog analysis

was carried out using MetaboAnalyst (version 5.0). To identify

m/z characteristics with a statistical significance of p < 0.05,

Student’s t-test analysis was performed. Features of m/z with

calculated significance were then matched to the metabolic models

of Kyoto Encyclopedia of Genes and Genomes (KEGG). Following

validation of them/z features that weremapped onto themetabolite

networks, statistically significant values were reported. We took

advantage of that technique to present further data on potential

metabolic variations between AD and CN.

2.9. Metabolites MS/MS validation and
semi-quantification

Metabolite annotation and identification were performed using

both spectra of MS and MS/MS, which were further validated with

the HMDB (https://hmdb.ca/) and PubChem (https://pubchem.

ncbi.nlm.nih.gov/) databases. The MS and MS/MS fragments were

all examined in each of the individual MS spectra. Discriminatory

features that were associated with the significantly enriched

pathways and a p < 0.05 were selected for semi-quantitation

analysis. The semi-quantification was performed by calculating the

relative responses (Rel. Res) of each metabolite, and the equation is

listed as follows:

Relative response(Rel. Res.)

= Intenstiy
validated metabolite

Internal standard (2− Chloro− L− phenylalanine)

Further, the calculated relative responses were used to

investigate the statistical differences between the AD and

CN groups.

2.10. Statistical analysis

Continuous variables were compared using Student’s t-test or

the Mann–Whitney U-test. The area under the receiver operating

characteristic curve [ROC (AUC)] was calculated to perform

the discrimination power of the potential biomarkers for AD.

Differential expression with metabolites and proteins between

the AD and CN groups was demonstrated as boxplots. The

correlation analysis was conducted between AD metabolites and

protein biomarkers. Analyses were performed using GraphPad

Prism (version 9.0.0, San Diego, USA). A p < 0.05 was considered

statistically significant.

3. Results

3.1. Demographics characteristics of
participants

Based on the results of the Alzheimer’s Disease Assessment

Scale—Cognitive (ADAS-Cog) Subscale, 29 participants scored

between 53 and 75 and were classified as belonging to the

Alzheimer’s disease (AD) group, with an average score of 72.65

± 5.56. Additionally, 29 participants scored between 0 and 16.5

and were included in the cognitively normal (CN) group, with an

average score of 6.48 ± 6.45. Among the study participants, 63.3%

of females were in the AD group, while 58.6%were in the CN group.

Although the average education year was longer in the CN group

(6y ± 3) than in the AD group (4y ± 2), there was no significant

difference between the two groups. The average ages of the AD and

CN groups were 69.0 years± 3.60 and 72.1 years± 7.1, respectively,
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TABLE 3 Mass spectrometric characteristics of plasma metabolites and internal standard.

No. Compound name HMDB ID KEGG ID PubChem CID Formula MW RT (min) [M+H]+ Identified MSMS fragment ions

1 Phenylacetylglutamine HMDB06344 C04148 92258 C13 H16 N2 O4 264.11083 5.554 265.1183 223/115/101

2 L-Arginine HMDB0000517 C00062 6322 C6 H14 N4 O2 174.11156 0.764 175.1191 175/116/130

3 Propionylcarnitine HMDB0000824 C03017 107738 C10 H19N O4 217.13121 0.977 218.1387 159/144

4 Creatine HMDB0000064 C00300 586 C4 H9 N3 O2 131.06952 0.834 132.0769 132/114/100

5 Creatinine HMDB0000562 C00791 588 C4 H7 N3 O 113.05909 0.821 114.0664 114/86/72

6 Indole-3-acetic acid HMDB0000197 C00954 802 C10 H9N O2 175.06323 7.021 176.0706 103/102/99

7 Pipecolic acid HMDB0000070 C00408 849 C6 H11N O2 129.07892 0.696 130.0863 130/110/84

8 Arachidonic acid HMDB0001043 C00219 444899 C20 H32 O2 304.23991 15.685 305.2473 93/117/105

9 Choline HMDB0000097 C00114 305 C5 H13N O 103.10007 0.791 104.1073 60/58

10 Indole-3-lactic acid HMDB0000671 C02043 92904 C11 H11N O3 205.07378 6.52 206.0812 188/160/130

11 Proline HMDB0000162 C00148 145742 C5 H9N O2 115.06354 0.842 116.0706 70/116/68

12 Acetylcholine HMDB0000895 C01996 187 C7 H15N O2 145.11017 0.832 146.1150 87/60/43

13 Betaine HMDB0000043 C00719 247 C5 H11N O2 117.0791 5.575 118.0863 56/59/119

14 Bilirubin HMDB0000054 C00486 5280352 C33 H36 N4 O6 584.26342 7.658 585.2705 285/539/253/286

15 Methyl indole-3-acetate HMDB0029738 NAa 74706 C11 H11N O2 189.07887 7.525 190.0861 130/172/101

16 Cortisol HMDB0000063 C00735 5754 C21 H30 O5 362.20892 7.307 363.2160 327/309/121

17 L-Histidine HMDB0000177 C00135 6274 C6 H9 N3 O2 155.06942 0.715 156.0767 125/84/79

18 Hypoxanthine HMDB0000157 C00262 135398638 C5 H4 N4 O 136.03844 1.241 137.0457 137/119/95/81

19 Hexanoylcarnitine HMDB0000756 NAa 6426853 C13 H25N O4 259.17816 6.122 260.1856 85/201/99

20 Uric acid HMDB0000289 C00366 1175 C5 H4 N4 O3 168.0283 1.239 169.0357 152/141

21 Ornithine HMDB0000214 C00077 6262 C5 H12 N2 O2 132.08996 0.696 133.0983 125/79/84

22 Uracil HMDB0000300 C00106 1174 C4 H4 N2 O2 112.02747 1.292 113.0348 96/70

23 Acetyl-L-carnitine HMDB0000201 C02571 7045767 C9 H17N O4 203.11572 0.891 204.1230 85/145

24 Decanoylcarnitine HMDB0000651 C03299 10245190 C17 H33N O4 315.24072 7.796 316.2482 85/257/155

25 Palmitoylcarnitine HMDB0000222 C02990 461 C23 H45N O4 399.33459 10.967 400.3419 85/341/239

26 5-Oxoproline HMDB0000267 C01879 7405 C5 H7N O3 129.04261 1.274 130.0500 84/85/131

27 Sphingosine 1-phosphate HMDB0000277 C06124 5283560 C18 H38N O5 P 379.24852 9.61 380.2557 346/223/101

28b 2-Chloro-L-phenylalanine NAa NAa 2761491 C9 H10 Cl N O2 199.04012 4.764 200.0472 154/183/118/165

aNA, not available.
bInternal standard.
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TABLE 4 Mass spectrometric signal intensities of 28 compounds in quality control (QC) samples across the analytical batch.

No. Compound Name HRMS signal intensity Calculated value

QC 1 QC 2 QC 3 QC 4 QC 5 QC 6 QC 7 QC 8 QC 9 Average SD CV%

1 2-Chloro-L-phenylalanine 9529581 9088904 9485429 8742235 9469332 9395555 9548525 8850665 8704423 9,201,628 355,641 3.9%

2 Phenylacetylglutamine 382822 383624 392065 384992 387027 384947 373850 393136 341656 380,458 15,589 4.1%

3 Indole-3-acetic acid 124032 119284 121262 120338 114885 122387 107521 115021 118044 118,086 5,021 4.3%

4 Hexanoylcarnitine 58657 60892 58681 54927 57700 55457 54468 52743 56352 56,653 2,543 4.5%

5 Bilirubin 406307 399800 418485 422007 452406 407273 422593 383009 399875 412,417 19,611 4.8%

6 Ornithine 298137 292367 312863 298005 286066 294694 333486 295200 315194 302,890 14,805 4.9%

7 Methyl indole-3-acetate 226667 226120 228808 211032 224630 215322 215505 197252 199534 216,097 11,740 5.4%

8 Indole-3-lactic acid 39725 40016 38566 37977 34284 39277 35479 37280 35526 37,570 2,066 5.5%

9 Decanoylcarnitine 332006 330514 312064 327887 363043 342753 352238 303945 309703 330,461 19,901 6.0%

10 Uracil 34652 38553 34294 38542 33435 37115 33404 38183 37381 36,173 2,199 6.1%

11 L-Arginine 227217 200801 213641 226435 234702 207762 248974 233852 227311 224,522 14,871 6.6%

12 Palmitoylcarnitine 162114 139816 153831 152894 151122 149560 151737 158446 128209 149,748 10,146 6.8%

13 Cortisol 46274 42796 42073 37517 40200 45271 41367 41043 38296 41,649 2,891 6.9%

14 Uric acid 1467068 1499030 1419389 1601035 1732179 1657507 1486082 1505374 1406219 1,530,431 110,221 7.2%

15 Creatinine 866914 768723 865649 884379 862536 876028 894620 948036 1007037 885,991 64,959 7.3%

16 Sphingosine 1-phosphate 262005 266871 262232 240920 252065 242596 248322 230150 207334 245,833 18,644 7.6%

17 Acetyl-L-carnitine 2827805 2551314 2853465 2304034 2525169 2693666 2380845 2599126 2319824 2,561,694 204,268 8.0%

18 5-Oxoproline 293296 320502 273675 304564 321100 360339 338945 350682 314297 319,711 27,519 8.6%

19 Creatine 624589 755177 749724 796530 718671 748896 850668 752585 845281 760,236 6,8172 9.0%

20 Choline 1237398 1109407 1409400 1374631 1411754 1559393 1309037 1272301 1384232 1,340,839 127,715 9.5%

21 Hypoxanthine 108960 94697 93750 104105 122321 122007 110056 108137 117448 109,053 10,494 9.6%

22 Acetylcholine 111943 106859 124111 104598 88129 86441 95092 109266 124226 105,629 13,823 13.1%

23 L-Histidine 183886 196229 236228 288127 257609 260952 214771 274265 297919 245,554 40,360 16.4%

24 Proline 2299600 1450474 2030671 1514785 2035300 2526576 2160492 2444573 2252567 2,079,449 376,999 18.1%

25 Propionylcarnitine 113886 123703 94571 103424 105471 86245 65572 76310 75260 93,827 19,463 20.7%

26 Betaine 93875 137794 131380 114206 88957 114522 79435 128731 74935 107,093 23,476 21.9%

27 Pipecolic acid 274335 664566 749064 714482 704826 731427 705162 669263 700309 657,048 145,963 22.2%

28 Arachidonic acid 112458 120743 139285 116542 97998 101572 66210 93987 70134 102,103 23,556 23.1%
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FIGURE 1

Bar column of average intensities and standard deviations of 28 compounds, including 27 metabolites and an internal standard of 2-Chloro-L-

phenylalanine in all QC samples across the entire MS-analytical batches.

FIGURE 2

Multivariate data analysis of plasma samples in the ESI-positive mode. (A) Principal components analysis (PCA) score plot of the QC, AD, and CN

groups. (B) Partial least-squares discriminant analysis (PLS-DA) score plot of the QC, AD, and CN groups. (C) Orthogonal partial least-squares

discriminant analysis (OPLS-DA) score plot of the QC, AD, and CN groups. (D) A three-dimensional plot of the OPLS-DA model.
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FIGURE 3

Summary of pathway analysis with MetaboAnalyst. (A) Pathway impact with significance (p < 0.05): arginine and proline metabolism, glycine, serine,

and threonine metabolism, arginine biosynthesis, Aminoacyle-tRNA biosynthesis, and beta-alanine metabolism. (B) Metabolite sets enrichment

overview.

with no significant difference in the age distribution between the

two groups (Table 1).

3.2. AD protein biomarkers measurements

The biomarkers for AD protein, such as Amyloid beta 1-

42 (Aβ42), Amyloid beta 1-40 (Aβ40), t-tau, and APOE, were

measured in both the AD and CN groups, and the Aβ42/Aβ40

ratio was calculated. The plasma concentration of Aβ42 was

noted to increase while the plasma concentrations of t-tau and

APOE were observed to decrease significantly (p < 0.0001) in

individuals with AD as compared to those without (CN). However,

no significant difference was found in Aβ40 levels between the AD

and CN groups. These observations are tabulated in Table 2 and are

depicted as comparative boxplots in Supplementary Figure 1.

3.3. MWAS results

Using a high-resolution MS platform for the purpose of

metabolome profiling, 612 distinct m/z characteristics with

projected formulas or chemical names were acquired, where only

those characteristics with an average batch determination rate of

80% or above were considered for further study (data are shown

in Supplementary Table 1). Subsequently, a selection of the relative

intensities was made, where those with CV% values <30% were

chosen as criteria for further investigation, ultimately narrowing

the list of chemicals down to 42. The databases of HMDB and

PubChem were then utilized to validate the compound resources

and MSMS fragmentation. This process resulted in the formation

of a final endogenous compound list of 27 metabolites for the

investigation of metabolite expression in both AD and CN groups

(Table 3). The CV% of QC results was analyzed to ensure a

convincing result in downstream analysis. As a result, the MS

areas of nine QC samples were calculated for 27 metabolites and

one internal standard, where the maximum value of the CV% is

23.1% for arachidonic acid and the minimum value of the CV%

is 3.9% for 2-Chloro-L-phenylalanine. On average, the CV% value

of the 28 compounds is 9.7%, indicating the MS measurement has

good stability (refer to Table 4). Additionally, a plot of the average

signal intensities and their standard deviations of 28 compounds

are depicted in Figure 1.

3.4. Discrimination model evaluation

A principal component analysis (PCA) model was conducted

with identified metabolites. The PCA (R2X = 0.331 Q2 = 0.081)

scores plot showed an approximate separation between the AD

and CN groups (Figure 2A), indicating a tendency of inter-group

clustering. Additionally, the partial least-squares discriminant

analysis (PLS-DA) model (R2X = 0.289, R2Y = 0.477, Q2 = 0.342)

and orthogonal partial least-squares discriminant analysis (OPLS-

DA)model (R2X= 0.297, R2Y= 0.456, Q2 = 0.35) were performed

to compare the AD and CN groups. The corresponding score

plots depicted in Figures 2B, C revealed a noticeable disjunction

between the two groups. Moreover, a three-dimensional (3D) plot

of the OPLS-DA model (Figure 2D) displayed a distinct separation

between the AD and CN groups. These outcomes indicate plasma

metabolic variations in AD patients.

3.5. Pathway analysis

The impact pathway was analyzed using MetaboAnalyst 5.0

(http://www.metaboanalyst.ca/). The results indicated that 27

endogenous metabolites were of close relevance to five biological

pathways presenting statistical significance, which included the

following: (1) arginine and proline metabolism, (2) glycine,
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TABLE 5 KEGG-enriched molecular pathway with identified metabolites.

No. Pathway name Match status Matched metabolites p-value Impact

1 Arginine and proline metabolism 4/38 L-Arginine, creatine, L-proline, and L-ornithine 0.0009 0.25841

2 Glycine, serine, and threonine metabolism 3/33 Choline, betaine, and creatine 0.0068 0.05034

3 Arginine biosynthesis 2/14 L-Arginine and L-ornithine 0.0119 0.13705

4 Aminoacyl-tRNA biosynthesis 3/48 L-Histidine, L-arginine, and L-proline 0.0191 0.00000

5 beta-Alanine metabolism 2/21 Uracil and L-histidine 0.0260 0.00000

6 Glutathione metabolism 2/28 5-Oxoproline and L-ornithine 0.0445 0.00709

7 Glycerophospholipid metabolism 2/36 Choline and acetylcholine 0.0700 0.02582

8 Histidine metabolism 1/16 L-histidine 0.1799 0.22131

9 Purine metabolism 2/65 Hypoxanthine and urate 0.1878 0.01651

10 Pantothenate and CoA biosynthesis 1/19 Uracil 0.2100 0.00000

11 Sphingolipid metabolism 1/21 Sphingosine 1-phosphate 0.2295 0.02434

12 Lysine degradation 1/25 L-pipecolic acid 0.2671 0.00000

13 Porphyrin and chlorophyll metabolism 1/30 Bilirubin 0.3117 0.05288

14 Biosynthesis of unsaturated fatty acids 1/36 Arachidonate 0.3618 0.00000

15 Arachidonic acid metabolism 1/36 Arachidonate 0.3618 0.3135

16 Fatty acid degradation 1/39 L-Palmitoylcarnitine 0.3856 0.00000

17 Pyrimidine metabolism 1/39 Uracil 0.3856 0.0743

18 Tryptophan metabolism 1/41 Indole-3-acetate 0.4009 0.00000

19 Steroid hormone biosynthesis 1/85 Cortisol 0.6597 0.02729

serine, and threonine metabolism, (3) arginine biosynthesis, (4)

aminoacyle-tRNA biosynthesis, and (5) beta-alanine metabolism.

The p-values obtained for these metabolites were as follows:

0.0009, 0.0068, 0.0119, 0.0191, and 0.0260, respectively. The

KEGG pathway produced a bubble plot, which is shown in

Figure 3A, while the metabolic features’ enrichment result is

displayed in Figure 3B. All pathways and their related metabolites

are summarized in Table 5.

3.6. Potential plasma metabolic biomarkers
of the AD and CN groups

Within the selected 27 endogenous metabolites, 14 compounds

exhibited different regulation trends between the AD and CN

groups. Specifically, phenylacetylglutamine and L-arginine were

upregulated in the AD group compared with the CN group;

acetyl-L-carnitine, sphingosine 1-phosphate, palmitoylcarnitine,

5-oxoproline, uracil, uric acid, hypoxanthine, L-histidine,

decanoylcarnitine, ornithine, betaine, and cortisol exhibited

downregulation in the AD group compared with the CN group.

The expressions of metabolites that were upregulated and

downregulated are presented as boxplots in Figure 4. However, the

remaining 13 components showed no significant change between

the AD and CN groups, and corresponding boxplots are included

in Supplementary Figure 2.

3.7. Discrimination and correlation analysis
with plasma biomarkers

The AUCs were utilized in this study to evaluate the diagnostic

potential of various biomarkers. A value between 0 and 1 for the

AUCs indicated the level of diagnostic accuracy ranging from no

to great discrimination. The AUC values >0.8 were identified for

phenylacetylglutamine (PAGln) and L-arginine, with AUC (PAGln)

= 0.91 (95% confidence interval CI, 0.84, 0.99) and AUC (L-

arginine) = 0.83 (95% confidence interval CI, 0.73, 0.93). To

enhance the discrimination power of the model, a binary logistic

regression was used with PAGln and L-arginine, which resulted in

a model with an AUC of ROC of 0.95 (95% confidence interval CI,

0.90, 1.00). Figure 5A illustrates the ROC curves of the potential

metabolic biomarkers. In addition, ROC analysis was performed to

compare the discrimination ability between potential proteins and

MS-discoveredmetabolites using Aβ42 and the ratio of Aβ42/Aβ40,

respectively, with AUC (Aβ42)= 0.76 (95% confidence interval CI,

0.64, 0.89) and AUC (Aβ42/Aβ40)= 0.70 (95% confidence interval

CI, 0.56, 0.83). Furthermore, the ROC curves of potential protein

biomarkers are shown in Figure 5B. Pearson analysis indicated a

positive correlation between Aβ42/Aβ40 and either PAGln or L-

Arg. For Aβ42/Aβ40 and PAGln, r = 0.5396, p < 0.0001, while

for Aβ42/Aβ40 and L-Arg, r = 0.3240, p < 0.05. Both correlation

analyses indicated a statistically significant relationship between

novel metabolites and the classical protein ratio (Figure 6).
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FIGURE 4

Boxplots showed upregulated plasma metabolites of (A) phenylacetylglutamine and (B) L-arginine (p < 0.0001). Boxplots showed downregulated

plasma metabolites of (C) acetyl-L-carnitine, (D) sphingosine-1-phosphate, (E) palmitoylcarnitine, (F) 5-oxoproline, (G) uracil (p < 0.0001), (H) uric

acid (p < 0.001); (I) hypoxanthine (p < 0.01); (J) L-histidine, (K) decanoylcarnitine, (L) ornithine, (M) betaine, and (N) cortisol (p < 0.05). Plots show

data points from the minimum value to the maximum value for each group. Light pink dots represent AD patients, sky blue dots represent CN

individuals, and dots were vertically aligned on the boxes for each group.

4. Discussion

There is an unmet demand for an examination that is simple,

less intrusive, and affordable in the clinical diagnosis of AD.

Untargeted metabolomics presents enormous potential in the

exploration of newmolecules implicated in the pathogenesis of AD.

Using high-resolution mass spectrometry, we found that AD was

closely linked to increased plasma levels of phenylacetylglutamine

(PAGIn) and L-arginine (L-Arg). Furthermore, the AD group

showed lower levels of metabolites of fatty acyls, sphingolipids, and

steroids, in addition to other organic acids.

PAGIn, a gut microbiota-derived metabolite, which is

derived from the essential amino acid phenylalanine, has been

extensively studied as a toxin in chronic kidney disease and

adverse cardiovascular events (Aronov et al., 2011; Poesen

et al., 2016; Nemet et al., 2020; Yu et al., 2021). Emerging

evidence have demonstrated that gut microbiota dysbiosis is

functionally connected to brain immune dysfunctions (Sampson

and Mazmanian, 2015). Also, the increased permeability of the

gut and blood–brain barrier induced by microbiota dysbiosis may

mediate or affect AD pathogenesis or other neurodegenerative

disorders (Jiang et al., 2017). A metabolic profiling study on
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FIGURE 5

(A) ROC curves with metabolite features of L-arginine, PAGIn, and binary logistic regression of two metabolites (PAGIn + L-Arg) and (B) ROC curves

with protein features of Aβ42 and the ratio of Aβ42/Aβ40.

FIGURE 6

(A) Linear regression analysis between PAGIn and Aβ42/Aβ40. (B) Linear regression analysis between L-Arg and Aβ42/Aβ40.

Parkinson’s disease (PD) using a mass spectrometry-based

approach found that PAGIn was significantly elevated in the PD

group as compared to the healthy controls, and its metabolic

disturbances suggested that proteolytic metabolism was highly

activated in PD (Shao et al., 2021). Nevertheless, limited findings

have shown the dysregulation of plasma PAGIn in AD. This is our

first observation documenting that plasma PAGIn is significantly

elevated in AD patients, presenting an excellent discriminating

power as a potential metabolite biomarker. Studies suggest that

stochastic AD is associated with atherosclerosis, redox stress,

inflammatory processes, and/or abnormal neurotransmitter and

glucose metabolism in the brain (Yi et al., 2009). Thus, it is

probable that PAGIn is involved in one or more pathophysiological

processes, as previously stated. However, the underlying causes of

PAGIn in Alzheimer’s disease still require clarification.

L-Arg is a semi-essential amino acid that can be metabolized

to form numerous bioactive molecules. Its involvement in AD

is largely based on scattered information from a single pathway

(Malinski, 2007). In a study examining arginine metabolism,

researchers investigated three areas of the human brain: the

superior frontal gyrus (SFG), the hippocampus (HPC), and the

cerebellum (CE) in AD patients. They found that L-Arg was

significantly elevated in the SFG area of AD patients, while L-

ornithine (a product of arginase) showed a dramatic reduction

in all three areas in AD (Liu et al., 2014). Interestingly, these

findings were consistent with our results in the plasma metabolite

investigation. The box plots illustrated that L-Arg was significantly

elevated in the AD group, while its byproduct, L-ornithine, notably

decreased in the AD group (Figures 4A, L). Furthermore, research

has indicated that L-Arg has several direct and indirect effects on

human vasculature, suggesting that it may play a crucial role in

the pathogenesis of both atherosclerosis and AD. For instance, L-

Arg has been found to be involved in diverse physiological and

pathological processes, including neurotransmission (Chen and

Chang, 2002), neurogenesis and neuroplasticity (Marcinkowska

et al., 2022), cellular redoxmetabolism and redox stress (Perry et al.,

2002; Tonnies and Trushina, 2017), inflammation (Wijnands et al.,

2015), and regulation of cerebral blood flow (Matsuda et al., 2007).

In our previous study utilizing AD urine samples, an increase

in potential diagnostic metabolites of uric acid, creatine, and

choline was observed in the AD group as compared to the CN

group. Conversely, in plasma samples, while uric acid displayed
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a decreasing trend, both creatine and choline indicated no

significant differences between the two groups (Zhang et al.,

2022). The variability in the concentration of biomarkers in

body fluids is due to the kidney’s crucial role in reabsorbing

certain substances from urine back into the bloodstream. Recent

research also demonstrated a correlation between blood biomarker

concentration with urinary biomarkers (Ho et al., 2015; Kukova

et al., 2019). It appears that these metabolites undergo dynamic

fluctuations during certain stages of Alzheimer’s disease.

Besides, different biomarkers may denote the progression of

Alzheimer’s disease (Teunissen et al., 2022).

In addition, we investigated the AD biomarkers of Aβ40,

Aβ42, APOE4, and TAU in blood to find their association with

reported results (Rachakonda et al., 2004; Niedzwiecki et al., 2020;

Thijssen et al., 2022). It has been suggested that the plasma ratio

of Aβ42/Aβ40 is often used to discriminate amyloid PET positive

and negative individuals across the clinical AD continuum (De

Meyer et al., 2020; Verberk et al., 2020). In a case–control study,

researchers used the ratio of Aβ42/Aβ40 in the discrimination test

and acquired a good AUC(ROC), which is above 0.8 (Thijssen

et al., 2022). Based on our ELISA results, we performed the

discrimination test of ROC with Aβ42 and the Aβ42/Aβ40, which

resulted in AUC (Aβ42) as 0.76 and AUC (Aβ42/Aβ40) as 0.70, and

this was kept in line with reported cases.

Human APOE is a glycoprotein that is highly expressed

in stressed neurons, astrocytes, microglia, vascular mural cells,

and choroid plexus cells. It has been suggested that low plasma

levels of APOE are linked to an elevated risk of developing

future Alzheimer’s disease and all forms of dementia in the

general population (Rasmussen et al., 2015). Also, lower plasma

concentrations of APOE were supported by the finding that APOE

levels are negatively correlated with Aβ levels in multiple brain

regions when analyzed in non-demented individuals (Shinohara

et al., 2013). In this study, AD patients held lower APOE levels as

compared to the CN participants, which presented a similar trend

with reported cases.

Research suggested that Tau protein lost its ability to bind to

microtubules, and therefore, its normal role of keeping the well-

organized cytoskeleton is no longer effective (Kolarova et al., 2012).

One prospective study indicated that high plasma Tau was found

in patients with AD dementia compared with cognitively normal

individuals and patients withMCI (Mattsson et al., 2016). However,

another study revealed a significant decrease in plasma levels of

total tau among individuals with MCI compared with cognitively

normal controls, with a further highly significant reduction in AD

patients compared with both MCI and normal controls (Sparks

et al., 2012).

In our study, we observed a decrease in plasma t-tau levels in

the AD group, which differs from the trends observed in other

research groups (Mattsson et al., 2016; Shen, 2020). Another study

that tested the alteration of plasma tau in AD found that plasma

tau partly reflects AD pathology, but there is a considerable overlap

with normal aging, especially in individuals without dementia

(Mattsson et al., 2016). Recent studies suggested that elevated levels

of tau in the blood are not specific to AD, which could also be

found in other neuron degeneration conditions, such as Parkinson’s

disease, frontotemporal dementia, or amyotrophic lateral sclerosis

(ALS) (Neumann et al., 2006; Boeve et al., 2022; Pan et al.,

2022). Thus, future studies should test longitudinal plasma tau

measurements in AD.

Nevertheless, the exciting and rapid developments in plasma-

based assays hold promise for prescreening in research (reducing

the need for, and associated costs with, lumbar punctures and PET

scans), once properly validated, which would fulfill the diagnostic

purposes in clinical practice. In this study, we employed the high-

resolution mass spectrometer to screen the plasma metabolites,

with the optimized and stabilized LCMS method, and we were able

to determine hundreds of features that enable us to perform the

discovery study. We found that both PAGIn and L-Arg showed

pretty good discriminate power in separating AD patients from CN

individuals, which exerted their underlying possibilities in clinical

diagnosis. In addition, the combination group of PAGIn and L-

Arg enhanced the diagnostic power from ROC (AUC) 0.91 to ROC

(AUC) 0.95, thus improving the accuracy in AD discrimination

with this test.

Epidemiological studies in different populations showed an

independent relationship between the development of dementia

and the incidence of cardiovascular diseases (CVD), implying

the presence of shared biological processes (Cortes-Canteli and

Iadecola, 2020; Stakos et al., 2020). Our results indicate that

both plasma PAGIn and L-arginine are significant in separating

Alzheimer’s disease (AD) from cognitively normal individuals.

However, limited investigations suggest that PAGIn and L-arginine

are associated with AD but not CVD in plasma investigation. It

is interesting to observe that, using mass spectrometry in one

measurement, PAGIn and L-arginine were found to be significantly

elevated in AD.

Besides, we introduced the discrimination analysis with Aβ42

and Aβ42/Aβ40. The best ROC of the protein biomarker is Aβ42

with an AUC of 0.76, which was in line with the literature.

Moreover, protein–metabolite interactions are of importance in

cellular procedure, since these compounds could serve as co-

factors for proteins to mediate protein function. This has not been

investigated in our previous studies on Alzheimer’s disease. It is

interesting to note the positive correlations between Aβ42/Aβ40

with PAGIn or L-Arg with statistical significance. This suggests

that PAGIn and L-Arg hold great promise in the diagnosis of

Alzheimer’s disease. These findings should be further validated in

future tests using clinical specimens.

However, our study has some limitations. First, it is restricted

by the lack of access to pathology reports and APOE genotype

information, which impacts the scope of clinical parameters that

can be included in this article. In future research, MRI could

be used to visualize decreased gray matter (GM) volume in AD

patients or a positron emission tomography (PET) scan could be

conducted to detect amyloid deposition in AD patients, as these

methods are considered the “gold standard” for assessing AD states

in clinical settings, and would support the diagnosis of metabolite

biomarker studies. Second, the observational nature of the study

design means that the causal links between two metabolites (PAGln

and L-Arg) and AD cannot be established. Instead, a functional

metabolomics technique must be used to uncover the underlying

pathways. Third, our study was conducted at a single location and

had a biased patient selection; the sample size was also small, which

means that further validation at other research centers and larger

sample sizes are required. Finally, absolute quantitation analysis of
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differential metabolites was not performed due to a limited plasma

sample, which should be done in future cohort studies to validate

the findings.

5. Conclusion

In conclusion, our study showed that AD patients had

an altered peripheral metabolism as compared to cognitively

normal participants. We demonstrated the added advantage

of examining metabolic expression signatures and constructing

a comprehensive picture of metabolic change by examining

categorization and regulatory signatures. Not only could studying

additional signatures highlight potential predictive and regulatory

indicators but could also uncover essential features that may have

been overlooked when only investigating expression signatures.

Particularly, PAGIn and L-Arg have been identified as potential

essential features in metabolic alteration and showed an excellent

discrimination ability in AD diagnosis. Our study also highlights

a significant association between the AD protein ratio of

Aβ42/Aβ40 and PAGIn or L-Arg. These findings indicate that

protein biomarkers correlated with metabolites can strengthen AD

diagnosis. Future studies will be required to corroborate these

results and to clarify the specific roles of these metabolites in AD

metabolic change.
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