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Numerous genetic variants associated with Alzheimer’s disease (AD) have

been identified through genome-wide association studies (GWAS), but their

interpretation is hindered by the strong linkage disequilibrium (LD) among the

variants, making it difficult to identify the causal variants directly. To address this

issue, the transcriptome-wide association study (TWAS) was employed to infer

the association between gene expression and a trait at the genetic level using

expression quantitative trait locus (eQTL) cohorts. In this study, we applied the

TWAS theory and utilized the improved Joint-Tissue Imputation (JTI) approach

and Mendelian Randomization (MR) framework (MR-JTI) to identify potential AD-

associated genes. By integrating LD score, GTEx eQTL data, and GWAS summary

statistic data from a large cohort using MR-JTI, a total of 415 AD-associated

genes were identified. Then, 2873 differentially expressed genes from 11 AD-

related datasets were used for the Fisher test of these AD-associated genes. We

finally obtained 36 highly reliable AD-associated genes, including APOC1, CR1,

ERBB2, and RIN3. Moreover, the GO and KEGG enrichment analysis revealed

that these genes are primarily involved in antigen processing and presentation,

amyloid-beta formation, tau protein binding, and response to oxidative stress. The

identification of these potential AD-associated genes not only provides insights

into the pathogenesis of AD but also offers biomarkers for early diagnosis of

the disease.
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Introduction

Alzheimer’s disease (AD) is the most common form of dementia, accounting for
approximately 50–60% of dementia cases. As a progressive neurodegenerative disorder, AD
is characterized by a gradual loss of memory and cognition, with amyloid plaques and
neurofibrillary tangles being the primary pathological features (Hansson et al., 2018). The
recent data suggest that there are around 55 million people worldwide living with dementia,
and the prevalence of dementia is expected to triple by 2050 (Khan et al., 2020). This increase
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will impose a significant burden on both families and society,
making it crucial to analyze the pathogenic mechanism and identify
potential risk factors for AD diagnosis and treatment.

Genome-wide Association Studies (GWAS) have emerged as
a powerful tool for investigating complex diseases, leading to the
discovery of over 40 AD-associated risk alleles through large cohort
studies on AD (Jansen et al., 2019; Scheltens et al., 2021). However,
due to the strong linkage disequilibrium (LD) among variants,
the loci identified by GWAS cannot be interpreted directly, which
further obscures the causality between variants and phenotypes.
Therefore, GWAS data alone is insufficient for determining the
causal genes and underlying regulatory mechanisms. To fill this
gap, transcriptome-wide association studies (TWAS) are valuable
developed for studying potential gene regulatory mechanisms
associated with variable traits by integrating transcriptomic and
genetic data (Tang et al., 2021). Traditional TWAS analysis typically
involves three stages: (i) Construction of association between
single nucleotide polymorphisms (SNPs) and gene expression using
weighted calculations based on reference panels such as the GTEx
database or other cohort data containing both genotyping and
expression (known as the expression quantitative trait locus or
eQTL model). (ii) Filling the lacked gene expression data in
the large-scale GWAS cohort using the trained eQTL model.
(iii) Utilizing the filled gene expression data to infer associations
between gene expression and traits (Luningham et al., 2020).
To achieve more accurate results, several improved methods
have been developed based on the traditional TWAS approach,
including PrediXcan (Gamazon et al., 2015), S-PrediXcan (Barbeira
et al., 2018), UTMOST (Rodriguez-Fontenla and Carracedo, 2021),
CoMM (Yang et al., 2019), PMR-Egger (Yuan et al., 2020), moPMR-
Egger (Liu et al., 2021), VC-TWAS (Tang et al., 2021), TIGAR
(Nagpal et al., 2019). TWAS has proven successful in integrating
transcriptomic and genetic data to study various complex human
diseases, such as schizophrenia, breast cancer, prostate cancer, and
Crohn’s disease (Tang et al., 2021).

In 2020, Zhou et al. (2020) presented a new method to optimize
TWAS, namely the Joint-Tissue Imputation (JTI) approach and a
Mendelian Randomization (MR) framework for causal inference
(MR-JTI). Traditional TWAS methods often fail to fully capitalize
on the shared biological characteristics across multiple tissues in
the GTEx dataset during the training of the prediction model.
Consequently, the prediction accuracy decreases. In contrast,
JTI effectively leverages the common regulatory architecture of
gene expression across multiple tissues. When the transcriptional
regulation of the target gene in simple tissue is specific, it will
automatically restore the model to a single tissue prediction model,
PrediXcan, thus improving tissue specificity in prediction. These
advancements make JTI a superior prediction method compared to
PrediXcan, BSLMM, TIGAR, and UTMOST models (Zhou et al.,
2013). Furthermore, JTI incorporates Mendelian Randomization
(MR) into its framework, significantly enhancing the evidence
level and credibility of association analysis. This integration helps
address false positive issues caused by horizontal gene pleiotropy
and potential confounding factors. In this study, we conducted
tissue-specific TWAS for AD across 13 brain regions and blood.
We utilized GWAS data and eQTL cohorts from GTEx (version
8) and employed the MR-JTI method. The experimental flow chart
detailing the process is depicted in Figure 1. Our findings provide

more reliable potential biomarkers and targets for investigating the
pathogenesis of AD.

Materials and methods

Public GWAS statistics data of AD

The GWAS summary statistics data for AD were obtained
from the published study in 2022, which included 111,326 AD
cases and 677,663 controls (Bellenguez et al., 2022). The data were
downloaded from the European Bioinformatics Institute GWAS
Catalog1 with accession number GCST90027158. For detailed
information about the sample collection, analysis methods, and
results, please refer to the original publication (Bellenguez et al.,
2022).

GTEx quantitative trait loci (eQTL) data

The GTEx project is the continuously updated public database
of human genetic resources. Its latest version V8, contains massive
sequencing data of 54 non-diseased tissue sites from 948 donors
(Consortium et al., 2017). Using the gene expression and genotype
data, the GTEx project performed the eQTL analysis of each tissue
site, and the eQTL models can be obtained from its website.2

Zhou et al. (2020) developed the joint-tissue imputation (JTI)
approach by considering the shared genetic regulation effects across
different tissues and the unique genetic regulation in the target
tissues. They trained the GTEx eQTL data with JTI to enhance the
prediction performance of instrumental variables for genes. The
JTI pre-training models was downloadable, including the eQTL
summary statistics and the SNP-SNP covariance matrices3 (Zhou
et al., 2020). Here, we obtained the trained pre-trained prediction
models for 13 brain regions and blood, including brain amygdala,
brain anterior cingulate cortex, brain caudate basal ganglia, brain
cerebellar hemisphere, brain cerebellum, brain cortex, brain frontal
cortex, brain hippocampus, brain hypothalamus, brain nucleus
accumbens basal ganglia, brain putamen basal ganglia, brain spinal
cord cervical, and brain substantia nigra.

Joint-tissue imputation (JTI) and
Mendelian randomization (MR)
integrative analysis (MR-JTI)

The TWAS analysis was performed by JTI using the pre-
training eQTL models and GWAS summary statistic data. The
P-values of genes in JTI analysis were adjusted using the p.adjust
function in R (version 4.1.3) with the false discovery rate (FDR)
method. Genes with FDR < 0.05 were identified as AD-associated
genes. While JTI established the relationship between gene
expression and AD, it remained unclear whether the differential

1 https://www.ebi.ac.uk/gwas/

2 https://www.gtexportal.org/home/

3 https://zenodo.org/record/3842289#.Y9iX_XZByyx

Frontiers in Aging Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1183119
https://www.ebi.ac.uk/gwas/
https://www.gtexportal.org/home/
https://zenodo.org/record/3842289#.Y9iX_XZByyx
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1183119 June 15, 2023 Time: 15:15 # 3

Wang et al. 10.3389/fnagi.2023.1183119

FIGURE 1

The work flow chart of the experiment.

TABLE 1 Details of AD related GEO datasets.

GEO accession Public data Tissues Control AD case References

GSE1297 July 2004 Hippocamp 9 22 Blalock et al., 2004

GSE4757 May 2006 Entorhinal cortex 0 10 Dunckley et al., 2006

GSE16759 January 2010 Parietal lobe tissue 4 4 Nunez-Iglesias et al., 2010

GSE36980 April 2013 Frontal cortex/Temporal
cortex/Hippocampus

18/19/10 15/10/8 Hokama et al., 2014

GSE110226 February 2018 Entire lateral ventricular choroid
plexus

6 7 Kant et al., 2018; Stopa et al., 2018

GSE118553 July 2019 Entorhinal cortex/Temporal
cortex/Frontal cortex/Cerebellum
brain region

37/52/40/38 24/31/23/22 Patel et al., 2019

GSE39420 January 2015 Posterior cingulate area 7 7 Antonell et al., 2013

GSE37263 April 2012 Temporal cortex 8 8 Tan et al., 2010

GSE4226 October 2006 Peripheral blood mononuclear cells 14 14 Maes et al., 2007; Maes et al., 2009

GSE4227 January 2009 Peripheral blood mononuclear cells 18 16 Maes et al., 2009; Maes et al., 2010

GSE4229 January 2009 Peripheral blood mononuclear cells 22 18 Maes et al., 2009

expression of these genes was the cause or the result of AD.
Consequently, the identified AD-associated genes were employed
for subsequent MR analysis to elucidate the causal relationship
between candidate genes and AD. To mitigate confounding effects,
LD scores were calculated. These LD scores were obtained using
the GCTA software, utilizing data from the 1000 Genomes Project,4

which created a catalog of common human genetic variation
by using openly consented samples from people who declared
themselves to be healthy. The MR-JTI analysis combined LD scores,

4 https://ctg.cncr.nl/software/MAGMA/ref_data/

GTEx eQTL data, and GWAS summary statistics to obtain potential
AD-associated genes.

Analysis of differentially expressed genes
in AD

Gene Expression Omnibus (GEO)5 database is a public
genomic database containing the entire gene expression data,

5 http://www.ncbi.nlm.nih.gov/geo
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FIGURE 2

Manhattan plots illustrating MR-JTI results in different brain regions and blood. The vertical axis is the corresponding “-log (P-value)” of each gene in
the JTI result; the higher the corresponding value of the gene point, the higher the association between the gene and AD. Brain amygdala (A); brain
cortex (B), brain nucleus accumbens basal ganglia (C), and blood (D).

chips, and microarrays. The 11 published datasets of AD-
associated were retrieved and downloaded from the GEO
database (Table 1). Differentially expressed genes (DEGs)
were identified using a P < 0.05 and | log fold-change
(FC)| > 1. The gene symbols of datasets were annotated
using DAVID online software.6 Finally, the AD-associated
genes identified by MR-JTI and the AD-associated DEGs were
tested by the Fisher test to confirm the notable intersection
genes.

Pathway and functional enrichment
analysis of AD-associated genes

The Kyoto encyclopedia of genes and genomes (KEGG)7

and Gene Ontology (GO)8 were used for the pathway and
functional enrichment analysis of AD-associated genes by R
package ClusterProfiler. The GO enrichment analysis includes
biological pathways (biological process, BP), cellular components
(CC), and molecular function (MF). Moreover, the R package
Circlize was used to visualize the high reliable genes and
the significantly enriched pathways (adjusted P < 0.05) in
which they were involved. Whether the high reliable genes
and these pathways have been confirmed to be associated
with immunity and AD were evaluated by manual literature
search. The high reliable genes were further compared with the
immune genes in innateDB9 (Breuer et al., 2013) and ImmPort10

6 https://david.ncifcrf.gov/tools.jsp

7 https://www.genome.jp/kegg/

8 http://geneontology.org

9 https://www.innatedb.com/

10 https://www.immport.org/home

(Bhattacharya et al., 2018) database to confirm their relationship
with immunity.

Results

Identification of 415 AD-associated
genes by MR-JTI

To identify risk factors associated with AD, we performed
the TWAS analysis using JTI pre-training models and GWAS
summary statistic data from AD in 2022 (Zhou et al., 2020;
Bellenguez et al., 2022). JTI integrates shared genetic regulation
effects across multiple tissues and tissue-specific genetic regulation
effects, providing prediction models for each tissue. While AD
symptoms are primarily linked to hippocampal and frontal
cortex lesions, brain amyloid plaques and atrophy can occur
throughout the brain in AD patients (Khan et al., 2020).
Furthermore, there has been increased attention on the use
of blood biomarkers for AD diagnosis and early screening
(Blennow and Zetterberg, 2018). Consequently, we downloaded
the corresponding JTI pre-training model and performed TWAS
analysis to identify AD risk genes in 13 brain regions and
blood, respectively. After removing the duplicate genes, a
total of 670 potential genes (FDR < 0.05, Supplementary
Table 1) were obtained from 13 brain regions and blood.
Since JTI has finally established a relationship between gene
expression and AD, it is speculated that the expression pattern
of these risk genes is associated with the genetic risk of
AD.

However, we are uncertain whether the expression changes
of these AD-associated risk factors are the cause or outcome
of the disease. Therefore, the MR-JTI analysis was conducted
on the genes identified by JTI, integrating LD score, eQTL
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FIGURE 3

Enrichment analysis of AD-associated genes. (A) The GO enrichment analysis of 415 AD-associated genes, including molecular biological process
(BP), cellular components (CC), and function (MF). (B) The KEGG enrichment analysis of 415 AD-associated genes.

data, and GWAS summary statistic data. After removing the
duplicate genes, 415 AD potential causal risk genes (FDR < 0.05,
Supplementary Table 2) were identified from 13 brain regions and
blood (Supplementary Table 1). The Manhattan plot illustrates the
AD-associated risk factors in 13 brain regions and blood screened
by MR-JTI (Figure 2 and Supplementary Figure 1). Among the
top five genes in the brain amygdala region, RAB8B and HLA-
DOB have been confirmed to be involved in the pathogenesis of
AD (Figure 2A; Patel et al., 2021; Martinez et al., 2023). Strong
evidences indicates that abnormalities of CR1, APOC1, APOC2,
LACTB, and ABCA7 were closely related to AD (Figures 2B,
C; Karch and Goate, 2015; Shao et al., 2018; De Roeck et al.,
2019; Kulminski et al., 2022; Yu et al., 2022). It is worth noting
that the top five genes in the blood have been confirmed to be
associated with AD, including HAL-DQB2, PLCALM, APH1B,
CNN2, and CEACAM19 (Figure 2D; Logue et al., 2018; Seripa
et al., 2018; Gockley et al., 2021; Park et al., 2021; Zhang et al.,
2022b).

Enrichment analysis of AD-associated
genes

To further explore the relationship between the 415 genes
and AD, the pathway and functional enrichment analysis was
performed by GO and KEGG. The GO results revealed that
the 415 genes were enriched in immune-related pathways
(MHC class II protein complex assembly, leukocyte mediated
immunity, and T cell activation), ERK1 and ERK2 cascade,
Tau protein binding, and Ubiquitin binding, especially
enriched in amyloid-beta formation (including genes CLU,
APH1B, ABCA7, BIN1, and PICALM) (Figure 3A and
Supplementary Table 3). The results of KEGG functional
enrichment analysis showed that the AD-associated genes enriched
in antigen processing and presentation, lysosome, and Th1
and Th2 cell differentiation (Figure 3B and Supplementary
Table 4).
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FIGURE 4

Overlapping differentially expressed genes (DEGs) with causal genes in brain regions (A) and blood (B).

Fisher test for AD-associated genes and
DEGs

To enhance the reliability of screening AD-associated risk
factors, we conducted a Fisher test on 415 AD-associated
genes using differentially expressed genes (DEGs) in AD.
Firstly, we searched the GEO database and analyzed the
DEGs in 11 AD-related datasets, comprising eight different
brain region datasets and three peripheral blood datasets
(Table 1). A total of 2737 unique DEGs (P < 0.05 and
| log2FC| > 1) were identified from eight AD-related GEO
datasets of brain regions (Supplementary Table 5), and 147
unique DEGs (P < 0.05 and | log2FC| > 1) were screened
from three peripheral blood GEO datasets (Supplementary
Table 5). Venn analysis of 378 AD-associated genes in the
brain regions and 2737 DEGs in the brain regions showed
that there were 34 common highly reliable genes associated
with AD (Figure 4A and Supplementary Table 6). These genes
contain APOC1, CR1, CISD1, and others. Additionally, there
were two common highly reliable genes associated with AD
that were shared between the 72 AD-associated genes in the
blood and the 147 DEGs in the blood (Figure 4B), including
LAT2 and NDUFS2. Their roles in AD pathology are listed in
Table 2.

To provide insights for further research on the function
of these highly reliable genes in AD, the relationship between
the pathways involved in the highly reliable genes and AD
was evaluated through manual literature search (Figure 5).
The results showed that most of these pathways have either
been previously reported or are potentially associated with the
pathology of AD, including MHC protein complex assembly,
and antigen processing and presentation. Furthermore, it
was found that the majority of these pathways were related
to immunity. To confirm whether these pathways are
indeed immune-related, an additional literature search was
conducted.

Discussion

With the increase in human life expectancy and the
intensification of the aging society, the prevalence of AD is also
on the rise (Alzheimer’s Association, 2021). However, due to the

complex etiology and unknown pathogenesis of AD, effective
intervention measures in the clinic are lacking. Additionally,
there is a lack of effective targets, creating obstacles for drug
discovery. Therefore, we performed TWAS using JTI to identify
more potential AD risk factors. A total of 670 AD potential
risk genes were identified from 13 brain regions and blood, and
further causal inference with MR-JTI identified 415 AD-associated
risk genes. Currently, the mainstream view is that one of the
causes of AD is the deposition of β-amyloid protein (Aβ) and
Tau protein resulting in the death of massive neurons (Masters
and Selkoe, 2012). These 415 risk genes also enriched in related
pathways, including amyloid-beta formation and Tau protein
binding. These pathways involve CLU, APH1B, ABCA7, BIN1,
PICALM, and MARK4, all of which have been widely proven
to be closely related to the pathogenesis of AD by GWAS and
numbers experiments (Jansen et al., 2019; Nott et al., 2019; Li
et al., 2021; Schwartzentruber et al., 2021). For example, ABCA7
may stimulate cholesterol efflux from cells into lipoprotein particles
and further inhibiting/clearing Aβ aggregates and influencing
the risk of AD (Chan et al., 2008; Wildsmith et al., 2013).
Phosphorylated MARK4 was highly expressed in AD brain tissue,
and it could phosphorylate tau at Ser262/356, contributing to
tau accumulation, toxicity, and subsequent neurodegeneration
(Oba et al., 2020; Waseem et al., 2021). Notably, many genes
enriched in immune-related pathways, mainly involving the
members of the histocompatibility Complex, Class II, such as HLA-
DQA2, HLA-DOB and HLA-DRB1 (Supplementary Tables 3, 4).
Some of them have been proven to be contributed to the
onset of AD, such as HLA-DRB1, HLA-DQA1, and HLA-DQB1
(McGeer et al., 1988; Payton et al., 2006; Mansouri et al., 2015;
Zhang et al., 2022b).

To obtain more reliable AD risk factors, the DEGs in AD
were used to conduct the Fisher test on 415 AD-associated
risk genes. The 34 common genes were obtained in the brain
regions, and two common genes in the blood. The deposition
of β-amyloid protein in the brain plays a crucial role in
the pathogenesis of AD. Generally, under normal physiological
conditions, the production and clearance of Aβ maintain a
dynamic balance. However, under pathological conditions, Aβ

production increases or clearance decreases, disrupting the balance
and leading to excessive deposition of Aβ in the brain. This,
in turn, triggers a series of pathological processes, such as
mitochondrial dysfunction, oxidative stress, and neurofibrillary
tangles (Selkoe, 1993). Here, several risk factors that affect
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TABLE 2 The details of highly reliable common genes in AD.

Gene symbol Full name Function in AD References

APOC1 Apolipoprotein C1 APOC1 gene polymorphisms associated with AD risk. Kulminski et al., 2022

APOC2 Apolipoprotein C2 TOMM40-APOE-APOC2 regulatory region methylation status
associated with AD.

Shao et al., 2018

ASPHD1* Aspartate beta-hydroxylase
domain containing 1

N/A

AZGP1 Alpha-2-glycoprotein 1,
zinc-binding

Proteomics analysis of 2D-DIGE and iTRAQ labeling technology showed
that AZGP1 was differentially expressed in blood serums of AD.

Shen et al., 2017; Zhang
et al., 2022a

BEST3* Bestrophin 3 N/A

C1QTNF4* C1q And TNF Related 4 N/A

CISD1 CDGSH Iron sulfur domain 1 Mitochondrial dysfunction plays an important part in the pathology of
several diseases, including AD. The mitochondrial protein CISD1 has
emerged as the mitochondrial target of thiazolidinedione drugs such as
the antidiabetic pioglitazone.

Geldenhuys et al., 2014

CNTNAP1 Contactin associated protein 1 CNTNAP1 associates with γ-secretase in detergent-resistant membranes
and affect Aβ from its precursor protein processing. It may be a potential
therapeutic target for AD.

Hur et al., 2012

CR1 Complement C3b/C4b receptor 1 CR1 is one of the most important risk genes for late-onset AD, it plays
multiple roles in the onset of AD, such as Aβ clearance,
neuroinflammation, and tauopathy.

Zhu et al., 2015

CTSH Cathepsin H CTSH highly expression in AD patients and AD animal models and
CTSH knockout significantly increased phagocytosis of Aβ peptides.

Li et al., 2023

DNA2* DNA replication
helicase/nuclease 2

N/A

DNAH11* Dynein Axonemal heavy chain 11 N/A

DOC2A Double C2 domain alpha DOC2A may be one of predictive biomarkers for AS Zhou et al., 2022

ERBB2 Erb-B2 receptor tyrosine kinase 2 ErbB2 modulates the proteostasis of APP-CTFs in AD by regulating
autophagic flux and it is expected to be a potential therapeutic target for
AD.

Wang et al., 2017

ERC2 ELKS/RAB6-interacting/CAST
family member 2

ERC2 was upregulated expression in AD patient and mice model. Lyons et al., 2022

GPR17 G protein-coupled receptor 17 Inhibition of GPR17 with cangrelor ameliorates cognitive impairment
and synaptic deficits induced by Aβ1-42 in mice.

Jin et al., 2021

HLA-DQB1 Major histocompatibility
complex, class II, DQ Beta 1

HLA-DQB1 gene polymorphism associated with AD risk. Mansouri et al., 2015

HLA-DRA Major histocompatibility
complex, class II, DR alpha

HLA-DRA was highly expression in AD pathological brain samples,
which may contribute the increased intracranial inflammation in AD.

Yokoyama et al., 2016

HLA-DRB1 Major histocompatibility
complex, class II, DR beta 1

HLA-DRB1 gene polymorphism associated with AD risk. Lu et al., 2017

IBSP* Integrin binding sialoprotein N/A

IL34 Interleukin 34 IL-34 injures the formation of macrophages and reduces their ability to
uptake pathological forms of Aβ.

Zuroff et al., 2020

INO80E* INO80 complex subunit E N/A

IQCK IQ motif containing K IQCK were increased expression in AD brains and amyloid plaques, and
it may play a pathogenic role in either Aβ generation or amyloid plaque
deposition in AD.

Wang et al., 2022

KCNC2* Potassium voltage-gated channel
subfamily C member 2

N/A

MAPT-AS1* MAPT antisense RNA 1 N/A

NSF N-Ethylmaleimide sensitive
factor, vesicle fusing ATPase

Tau interacts with and dose-dependently reduces the activity of NSF, thus
affecting memory formation.

Prikas et al., 2022

OARD1* O-Acyl-ADP-ribose deacylase 1 N/A

PRSS35* Serine protease 35 N/A

(Continued)
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TABLE 2 (Continued)

Gene symbol Full name Function in AD References

RAB8B Ras-related protein Rab-8B Rab8b may be involved in the pathogenesis of AD by affecting autophagy
maturation.

Martinez et al., 2023

RGS5* Regulator Of G protein signaling
5

N/A

RIN3 Ras and Rab interactor 3 Upregulation of RIN3 induces endosomal dysfunction in AD. Shen et al., 2020

SEZ6L2* Seizure related 6 homolog like 2 N/A

SLC4A8* Solute carrier family 4 member 8 N/A

SNX32 Sorting Nexin 32 SNX32 was associated with increased risk of AD. Kibinge et al., 2020

LAT2 Linker for activation of T cells
family member 2

LAT2 may be a key target related to AD immunity. Li et al., 2022

NDUFS2* NADH: ubiquinone
oxidoreductase core subunit S2

N/A

*Novel potential AD-related genes identified by MR-JTI and there is no report on the function of this gene in AD.

FIGURE 5

Correspondence between highly reliable genes and enriched pathways. From the outer circle to inner circle, the first circle represents an index
containing 20 genes and 95 pathways (enriched by the 415 potential AD-associated genes with adjusted P < 0.05); the second circle denotes the
gene or pathway type; the third circle is whether the gene/pathway has been reported to be related to AD; the fourth circle indicates whether the
gene/pathway is immune-related. Gray lines indicate the correspondence between genes and pathways.

Aβ deposition and formation were also identified, including
CNTNAP1, CR1, CTSH, and IL34 (Table 2). CR1, encoding
a type-I transmembrane glycoprotein, is one of the most
important risk genes for late-onset AD, playing multiple roles

in the onset of AD, such as Aβ clearance, neuroinflammation,
and tauopathy (Zhu et al., 2015). Additionally, autophagy
disorders were proved to be associated with AD, and our
study also identified autophagy-related genes, including ERRB2
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and RAB8B, which have been preliminarily confirmed to be
associated with the pathogenesis of AD (Wang et al., 2017; Martinez
et al., 2023). Growing evidence from clinical and pathological
studies indicates the important relationships between the ongoing
deterioration of brain cholesterol metabolic disturbance and AD
pathophysiology (Vestergaard et al., 2010). APOC1 and APOC2,
both belonging to the apolipoprotein family, and their gene
polymorphisms have been reported to be associating with the
onset of AD by many studies (Cervantes et al., 2011; Kulminski
et al., 2022). In summary, 21 out of 36 highly reliable genes can
participate in the pathology of AD through various mechanisms.

More importantly, we have identified many new AD risk factors
(Table 2), and their specific involvement in AD has not been
clearly reported. By analyzing the relationship between highly
reliable genes and enrichment pathways, clues were provided for
future research on the functions of these newly identified genes
in AD (Figure 5). Most of these pathways have been either
been reported or potentially associated with the pathology of
AD, including multiple innate and adaptive immune pathways,
cell death regulation, DNA repair, cell adhesion, lipoprotein
metabolism, protein endocytosis and exocytosis. Therefore, these
pathways deserve special attention in future AD research. The
newly identified AD risk genes may participate in the occurrence
and development of AD through these pathways. For instance,
several studies have reported abnormal structure and function
of mitochondria in the AD brain, leading to abnormal energy
metabolism (Kerr et al., 2017). This abnormal energy metabolism
can impact the synaptic plasticity of neurons, thereby affecting
memory and learning. CISD1 and DNA2 were reported to be
related to mitochondrial function (Geldenhuys et al., 2014; Ding
and Liu, 2015), but further detailed and in-depth research is
needed to understand their involvement in AD. This implies that
significant efforts are still required to explore and investigate the
risk factors of AD.

Although many AD-associated targets have been identified by
GWAS, high-throughput sequencing, molecular epidemiology, and
other methods in the past few decades, it is still a drop in the
bucket to improve the awareness of the pathogenesis of AD and
the diagnosis and treatment of AD. In this study, we utilized
the improved TWAS method, MR-JTI, to integrate and analyze
LD score, GTEx eQTL data, and GWAS summary statistic data.
A total of 415 AD-associated genes were identified, and the 36 more
reliable AD risk was further confirmed by using 11 AD-associated
datasets and the Fisher test. The identification of these genes is
not only the verification of reported AD-associated genes but also
provides new potential AD biomarkers for follow-up research.
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