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Aging is associated with declines in mitochondrial efficiency and energy

production which directly impacts the availability of adenosine triphosphate

(ATP), which contains high energy phosphates critical for a variety of cellular

functions. Previous phosphorous magnetic resonance spectroscopy (31P MRS)

studies demonstrate cerebral ATP declines with age. The purpose of this study

was to explore the functional relationships of frontal and posterior ATP levels with

cognition in healthy aging. Here, we measured frontal and posterior ATP levels

using 31P MRS at 3 Tesla (3 T) and assessed cognition using the Montreal Cognitive

Assessment (MoCA) in 30 healthy older adults. We found that greater frontal,

but not posterior, ATP levels were significantly associated with better MoCA

performance. This relationship remained significant after controlling for age, sex,

years of education, and brain atrophy. In conclusion, our findings indicate that

cognition is related to ATP in the frontal cortex. These preliminary findings may

have important implications in the search for non-invasive markers of in vivo

mitochondrial function and the impact of ATP availability on cognition. Future

studies are needed to confirm the functional significance of regional ATP and

cognition across the lifespan.
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Introduction

With the number of adults over the age of 65 in the
United States expected to double by 2050 (Ortman et al., 2014),
cognitive decline and transition to dementia is one of the most
prominent public health concerns. Even in the absence of clear
neurodegenerative disease, cognition declines in later life which
can impact the ability to carry out day-to-day tasks (Burke
and Barnes, 2006). Importantly, accumulating evidence indicates
changes in brain structure and function are associated with declines
in cognition and functional independence (Cabeza, 2002; Raz et al.,
2005). Further, cellular changes are a common feature of aging,
such as reduced mitochondrial efficiency and energy production
(Culmsee and Landshamer, 2006; Grimm et al., 2016; Dienel,
2019). Yet, the relations among reduced mitochondrial function,
cognition, and aging remains unclear. Therefore, it is critical to
understand how age-related changes in the brain contribute to
cognitive aging to identify potential intervention targets to sustain
or enhance cognition and functional independence in older adults.

It is well-documented that crystalized cognitive functions
(e.g., general knowledge and vocabulary) remain stable, and may
even improve, with advancing age (Salthouse, 2010). Conversely,
fluid cognitive functions, such as the ability to reason abstractly
and solve problems, are sensitive to age-related changes. Such
deficits are linked to age-related changes in speed of processing,
attention/working memory, and learning efficiency. These changes
are particularly prominent in executive functions (Salthouse et al.,
2003; Salthouse, 2010). Executive functions refer to a group of
higher-order cognitive processes such as updating, inhibition, and
set shifting that are critical for carrying out goal-directed behaviors
and adapting to novel situations (Miyake et al., 2000; Lezak
et al., 2004). Executive functions are heavily dependent on the
functional integrity of the prefrontal cortices (Cummings, 1993).
Convergently, decreases in brain volume, cortical thickness, and
gray matter in the frontal lobes are associated with advancing age,
and occur earlier and more severely than any other region of the
brain (Raz, 2000; Drag and Bieliauskas, 2010). These structural
changes are associated with significant changes in functional
activity. Functional magnetic resonance imaging (fMRI) studies
show age-related changes in frontal activation patterns (Gazzaley
et al., 2004; Reuter-Lorenz et al., 2000). In addition, aging is
associated with increased connectivity within frontal regions (Davis
et al., 2012), but reduced connectivity with more posterior regions
(Dennis et al., 2008). Further, fMRI and PET studies show age-
related changes in blood flow across frontal regions are associated
with declines on tasks of abstraction, inhibition, switching (Goh
et al., 2013), and semantic organization (Nyberg et al., 2010). In
addition, declines in mitochondrial function occurs as adults age,
which may in part account for age-related structural and functional
brain changes (Culmsee and Landshamer, 2006; Leuner et al., 2007;
Forester et al., 2010; Grimm et al., 2016).

The Montreal Cognitive Assessment (MoCA) is a brief measure
of global cognitive function that is widely used in clinical settings
to screen for mild cognitive impairment and dementia (Nasreddine
et al., 2005). The MoCA assesses a broad array of cognitive domains
including attention/working memory, set-shifting, naming, letter
fluency, recent learning and memory, and visuospatial skills. Given
that a number of these domains fall under the umbrella of

executive functions, the MoCA is considered sensitive to fronto-
executive dysfunction. In fact, this tool shows adequate sensitivity
to executive dysfunction associated with normal aging, mild
cognitive impairment, and other forms of cognitive decline (Hoops
et al., 2009; Gluhm et al., 2013). Further, neuroimaging studies
demonstrate set-shifting (Zakzanis et al., 2005; Jacobson et al.,
2011), letter fluency (Phelps et al., 1997), and attention/working
memory (Gerton et al., 2004; Sun et al., 2005) performances on the
MoCA are largely associated with brain activity across frontal areas
of the brain, though, to a lesser extent, posterior regions are also
implicated.

Adenosine triphosphate (ATP) is a high energy phosphate
compound found in living cells and supports a variety of cellular
functions. In the brain, the majority of ATP is formed within the
mitochondria through oxidative phosphorylation. In turn, ATP
plays a vital role in neuronal activity and bioenergetics (Bratic and
Trifunovic, 2010). Phosphorous magnetic resonance spectroscopy
(31P MRS) is a non-invasive technique that allows for the in vivo
investigation of high energy phosphates, such as ATP (Buchli
et al., 1994; Ross and Sachdev, 2004; Cady, 2012). Considering
the relationship with neuronal activity (Raichle and Mintun, 2006;
Bélanger et al., 2011), ATP has been studied in the aging brain. Prior
work demonstrates ATP declines with age (Forester et al., 2010;
Schmitz et al., 2018). Critically, both whole-brain and frontal ATP
have been associated with poor performance on fronto-executive
tasks (Volz et al., 1998; Harper et al., 2016). Although promising,
the relative functional significance of frontal and posterior ATP on
cognition remains unclear.

The purpose of the current preliminary study was to
investigate the relationship between frontal and posterior ATP
levels with cognitive function in healthy older adults using a widely
administered index of cognitive function, the MoCA. The primary
31P MRS voxel of interest was placed in the frontal lobes. An
additional voxel was placed in the posterior cortex (i.e., parietal
lobe) to serve as a control. These selections were made because
frontal regions are more strongly related to cognition as assessed
by the MoCA than posterior regions (Julayanont and Nasreddine,
2017). The overall hypothesis was that changes in ATP within
specific brain regions will be functionally associated with cognition.
Specifically, since older adults evidence changes (1) on frontally
mediated tasks of executive functions as well as (2) in frontal brain
structure-function, and (3) the MoCA carries a high ‘executive’
load, it was predicted that ATP derived from frontal regions, but not
posterior regions, would be associated with cognitive performance.

Materials and methods

Participants

Data were collected at baseline from participants recruited
for the Efficient Brain Study, a Phase II cross-over clinical trial
investigating the impact of Fermented Papaya Product (FPP) on
brain mitochondrial function, neuroinflammation, and cognitive
function in older adults (NCT02771366). The sample included
30 healthy older adults ranging from 65 to 89 years old (see
Table 1) recruited at the University of Florida. Inclusion criteria
for this study included cognitively normal older adults (i.e.,
MoCA Total Score ≥ 22; Carson et al., 2018). Study participants
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TABLE 1 Study sample characteristics (n = 30).

Mean (SD) Range

Demographics

Age 73.2 (5.88) 65–89

Education 15.8 (3.24) 12–20

Sex (F/M) 15/15 –

Ethnicity/Race (n)

White 27 –

Black 1 –

Latino 1 –

Other 1 –

MoCA performance

Total score 25.9 (2.25) 23–29

Tissue fractions

Frontal voxel

Cerebrospinal fluid (CSF) fraction 0.216 (0.052) 0.132–0.338

Gray matter (GM) fraction 0.305 (0.03) 0.230–0.364

White matter (WM) fraction 0.479 (0.04) 0.417–0.570

Posterior voxel

Cerebrospinal fluid (CSF) fraction 0.200 (0.57) 0.119–0.327

Gray matter (GM) fraction 0.293 (0.03) 0.236–0.353

White matter (WM) fraction 0.506 (0.04) 0.392–0.588

CSF corrected ratios

Frontal voxel

Adenosine triphosphate (ATP) 0.376 (0.050) 0.282–0.562

Inorganic phosphate (Pi) 0.101 (0.038) 0.033–0.206

Phosphocreatine (PCr) 0.300 (0.043) 0.222–0.387

Phosphomonoesters (PME) 0.140 (0.058) 0.039–0.279

Phosphodiesters (PDE) 0.270 (0.073) 0.117–0.417

Posterior voxel

Adenosine triphosphate (ATP) 0.362 (0.056) 0.262–0.472

Inorganic phosphate (Pi) 0.119 (0.085) 0.027–0.371

Phosphocreatine (PCr) 0.304 (0.056) 0.183–0.431

Phosphomonoesters (PME) 0.108 (0.076) 0.000–0.355

Phosphodiesters (PDE) 0.282 (0.122) 0.070–0.624

could not have a history of head injury or brain damage,
severe psychiatric disease or psychological disorder, no formal
diagnosis or evidence of dementia, or neurological brain disease.
This study was approved by the Western Institutional Review
Board (WIRB), and all participants provided written, informed
consent. At the baseline visit, participants completed a battery of
cognitive assessments, medical history and mood questionnaires,
and multimodal MRI/MRS scan. In this study, we used the MoCA
and 31P MRS data for our analyses.

Montreal Cognitive Assessment (MoCA)

The Montreal Cognitive Assessment (MoCA), a widely used
clinical tool to screen for non-normative cognitive decline, was
used as an index of global cognition in the current study

(Nasreddine et al., 2005). This tool assesses several cognitive
domains including attention, concentration, executive functions,
memory, language, visuospatial skills, abstraction, calculation, and
orientation. Total scores range from 0 to 30, with higher scores
reflecting better performance. One point was added to the scores
of participants who had 12 years of education or less.

MRS acquisition and analysis

Neuroimaging data were collected on a Phillips 3 T MRI at
the University of Florida McKnight Brain Institute. The scanning
session was split into two parts. During the first part, participants
were scanned using a dual-tuned (1H/31P) whole head quadrature
coil (Rapid Biomedical, Germany). A T1 weighted structural
image was acquired (1 mm3 isotropic voxel size, 240 × 240 mm
acquisition matrix, 160 sagittal slices, Turbo Field Echo) for
placement of the two 31P MRS voxels. The 31P MRS voxels
were 156 mL in volume (60 mm a-p direction × 65 mm
r-l direction × 40 mm f-h direction). For localized 31P MRS
acquisition an image-selected in vivo spectroscopy (ISIS) sequence
was used with adiabatic localization pulses. Parameters for the two
voxels were identical and as follows: TR = 4 s; TE = 0.10 ms; 4,096
spectral points; spectral bandwidth = 4500 Hz; 8 phase cycles; and
with −100 Hz offset which with 128 averages resulted in 8 min
40 s scan time for each voxel. The voxels were placed at midline
to sample from an equal portion of left and right hemisphere
and angled to provide sampling of the largest amount of brain
tissue while avoiding skull. See Figure 1 for representative voxel
placements.

Following 31P MRS acquisition, the head coil was switched to a
Phillips 32-channel head coil and the participant was repositioned.
A second T1 3D MPRAGE weighted structural image was acquired
with 1 mm3 isotropic voxel size, 240 × 240 mm acquisition matrix,
170 sagittal slices. Parameters for the two voxels were identical and
as follows: TE = 3.3 ms, TR = 7.2 ms, TI = 903.51062 ms.

The AMARES (Advanced Method for Accurate, Robust, and
Efficient Spectral Fitting; Vanhamme et al., 1997) time domain
spectra fitting algorithm in the jMRUI software package was used
to analyze the 31P spectra (Stefan et al., 2009). All 31P MRS spectra
were zero filled with 4,096 points and a 13 Hz Lorentzian line
broadening (apodization) was applied before auto-phase shifting
to enhance SNR. PCr was adjusted to 0 ppm and constraints for
the chemical shifts of the other signals. Seven resonance peaks
were manually identified and quantified using previously published
estimates (Santos-Díaz and Noseworthy, 2020): gamma, alpha,
and beta nucleotide triphosphates (NTP), phosphocreatine (PCr),
phosphomonoesters (PME), phosphodiesters (PDE), and inorganic
phosphate (Pi). See Figure 2 for a representative output. In general,
NTPs provide energy and phosphate group for phosphorylation,
and are commonly regarded as ATP in the 31P MRS literature
(Forester et al., 2010; Ren et al., 2015; Das et al., 2020; Sassani et al.,
2020). Thus, in line with prior 31P studies, ATP was estimated by
calculating a ratio of summed NTP peaks (e.g., alpha-, beta-, and
gamma; ATP) to pooled total phosphorous (TP) within a specific
region (i.e., frontal and posterior ATP TP ratios).

To control for differing levels of brain atrophy, the acquisition
voxels were segmented into gray matter, white matter, and cerebral
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FIGURE 1

Example of voxel placements for panel (A) frontal and (B) posterior regions of the brain in left sagittal, coronal, and axial view. Yellow boxes
represent the location of the voxel collected.

spinal fluid (CSF) using the software SPM as implemented in the
software Gannet. Since we acquired two T1 structural scans we
used the higher quality 32-channel acquisition for segmentation
purposes (after transforming the 32-channel acquisition into the
space of the 31P acquisition using FSL FLIRT; Zhang et al., 2001;
Smith et al., 2004). All regression models were run using CSF
fraction or gray and white matter as a covariate. All models
significant with the CSF fraction approach were also significant
for the gray and white matter approach. Therefore, CSF fraction
was used as a covariate in subsequent analyses because it makes
fewer tissue-specific assumptions and is consistent with previously
published approaches in 31P MRS (Rijpma et al., 2018; Schmitz
et al., 2018).

Data analysis

First, a multiple linear regression was performed to examine
the relationship between demographic variables (age, education,
and sex) and MoCA scores (cognitive performance). Next, separate
multiple regressions were performed to examine the relationship
between age, CSF fraction, and ATP TP ratios (frontal, posterior).
Finally, separate multiple linear regressions were performed to
examine the relationship between ATP TP ratios (frontal, posterior)
and MoCA scores (overall cognitive performance), controlling
for age, education, sex, and CSF fraction. These analyses were
repeated in exploratory analyses with supplemental 31P metabolites
including Pi, PCr, PME, and PDE. All statistical analyses were
conducted using the Statistical Package for the Social Sciences
(SPSS) Version 25.

Results

MoCA scores as a function of
demographic variables

The relationship between MoCA scores and demographic
variables were investigated using multiple linear regression. The
results of this regression indicated the demographic variables did
not account for a significant proportion of variance in MoCA
performance (R2 = 0.015, F(3, 29) = 1.15, p = 0.349). No significant
predictors emerged.

31P Metabolites as a function of age

The relationship between frontal ATP TP ratios and age was
examined using multiple linear regression, while controlling for
CSF fraction. The overall model was significant (R2 = 0.14, F(2,
29) = 3.37, p = 0.049). At the trending level, CSF fraction was
positively related to age (β = 0.42, p = 0.058), while frontal ATP TP
ratios were not (β = 0.05, p = 0.825). Exploratory analyses indicated
that there was not a relationship between age and supplemental 31P
metabolites in the frontal voxel (all p’s > 0.150).

A similar multiple linear regression analysis examined the
relationship between posterior ATP TP ratios and age, while
controlling for CSF fraction. The overall model was significant
(R2 = 0.22, F(2, 29) = 5.16, p = 0.013). CSF fraction was positively
related to age (β = 0.47, p = 0.009). Posterior ATP ratios were not
related to age (β = 0.20, p = 0.238). Exploratory analyses indicated
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FIGURE 2

Representative 31P MRS spectra. From top to bottom: (residue) the difference between the estimated curve and the original curve; (individual
components) representation of 31P metabolite peaks including 1 = PME, 2 = Pi, 3 = PDE, 4 = PCr, 5 = gamma ATP, 6 = alpha ATP, 7 = beta ATP;
(estimate) spectrum generated after jMRUI/AMARES processing; (original) 31P spectrum obtained in the frequency domain in parts per million (ppm).

that there was not a relationship between age and supplemental 31P
metabolites in the posterior voxel (all p’s > 0.327).

MoCA scores as a function of 31P
metabolites

The relationship between frontal ATP TP ratios and MoCA
scores were examined using multiple linear regression, while
controlling for sex, age, education, and CSF fraction. The results
of this regression indicated ATP in this region accounted for a
significant amount of the variance in MoCA scores (R2 = 0.41,
F(5, 24) = 3.38, p = 0.020; See Figure 3A). Higher frontal ATP TP
ratios were related to better cognitive performance on the MoCA

(β = 0.49, p = 0.021), while controlling for CSF fraction (β = −0.68,
p = 0.003). Conversely, age (β = 0.05, p = 0.81), sex (β = 0.22,
p = 0.21), and education (β = 0.14, p = 0.41) were not related to
MoCA scores. In contrast, exploratory analyses indicated that there
was not a relationship between MoCA scores and supplemental 31P
metabolites in the frontal voxel (all p’s > 0.338).

A similar multiple linear regression analysis examined the
relationship between posterior ATP TP ratios and MoCA scores.
The results of this regression demonstrated that the five predictors
accounted for a significant amount of variance in MoCA scores
(R2 = 0.38, F(5, 24) = 2.91, p = 0.034; See Figure 3B). Among the
variables, CSF fraction (β = −0.50, p = 0.023) and, to a lesser extent,
sex (β = 0.38, p = 0.049), were significantly related to MoCA scores.
Posterior ATP TP ratios did not account for a significant amount
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FIGURE 3

Scatterplots of the relationship between ATP TP ratios and MoCA total scores. (A) Frontal ATP TP ratios; (B) Posterior ATP TP ratios; R2 reflects
variance explained from the partial correlation between regional ATP TP ratios and MoCA total scores; X-axis = standardized residual of ATP TP
ratios after controlling for age, sex, education, and CSF fraction; Y-axis = MoCA total scores.

of variance in MoCA performance (β = 0.32, p = 0.91), nor did
age (β = 0.14, p = 0.54) or years of education (β = 0.29, p = 0.14).
Exploratory analyses showed a similar non-significant relationship
between MoCA scores and supplemental 31P metabolites in the
posterior voxel (all p’s > 0.194).

Discussion

Aging is associated with declines in cognition and
mitochondrial function. However, the relationship between
mitochondrial function and cognition remains unclear. The
purpose of this preliminary study was to explore the functional
relationships of frontal and posterior ATP on cognition in a sample
of healthy older adults. We had two preliminary findings. First,
we did not find a significant relationship between 31P metabolites
and age, which is not consistent with previous studies (Ross
and Sachdev, 2004; Forester et al., 2010; Schmitz et al., 2018).
A potential explanation is range restriction due to a small sample
size suppressed a possible effect. Future studies are needed to
determine whether the relationship between 31P metabolites and
age is robust in more demographically heterogenous and larger
samples.

Our second major finding was that we found frontal, but
not posterior, ATP was associated with MoCA total scores.
Specifically, higher availability of frontal ATP was associated with
better performance on the MoCA. This relationship persisted
after controlling for demographic characteristics (i.e., age, sex, and
education) and age-related atrophy (i.e., CSF voxel). However,
other frontal 31P metabolites were not related to MoCA
performance. These findings are partially consistent with previous
31P MRS research, which has demonstrated associations between
ATP (i.e., frontal or whole brain) and cognition (i.e., executive
functions) (Volz et al., 1998; Harper et al., 2016). We expanded on
this previous research in several ways. In terms of methodology, we
examined ATP in two regions of the brain within the same sample.
Most importantly, we demonstrated the differential relationship
between regional ATP and cognition in older adults. This pattern
of results is consistent with the “last in, first out” hypothesis,

which suggests brain regions last to develop show increased
vulnerability to the aging process (Raz, 2001). Specifically, there
are preferential volumetric and functional changes in the frontal
lobes relative to other regions of the brain in aging (Gazzaley
et al., 2004; Dennis et al., 2008; Davis et al., 2012; Reuter-
Lorenz et al., 2000), which correspond to declines in executive
functions (Drag and Bieliauskas, 2010). Speculating beyond the
results of this study, 31P MRS markers of ATP within a focal
brain region may map onto the functional role of that region in
mediating cognition. An alternative explanation for our findings
is that other factors impacted this observed relationship, despite
our efforts to control for potential covariates. For example, aging
is accompanied by changes in metabolic and/or cardiovascular
health, (e.g., glycemic control, hypertension), which have been
shown to have negative effects on the brain and cognition (Suji
and Sivakami, 2004; Tzourio et al., 2014). Together, this may
raise the question as to whether metabolic and/or cardiovascular
health may attenuate or exacerbate the relationship between ATP
and cognition. Future work may benefit from examining the
relationship between metabolic and cardiovascular risk on ATP, and
its resulting impact on cognition.

In the broader context, plasticity of mitochondria is
compromised in aging, which directly disrupts homeostatic
regulation of the fusion-fission cycle that allows mitochondrial
functional and genetic complementation, and the proper
distribution of newly synthesized mitochondria during cell
division. This is further compounded by altered mitochondrial
biogenesis and degradation (Berman et al., 2008). In turn, there
is an accumulation of damaged or dysfunctional mitochondria
in cells, which are then rendered unable to execute vital cellular
functions, such as production of ATP (Bratic and Trifunovic, 2010).
Our findings demonstrate that ATP is associated with behavior,
and specifically cognition, in a sample of healthy older adults.
Clinically relevant, dysfunctional or damaged mitochondria are
implicated in pathological aging processes, including Alzheimer’s
disease (AD) (Bertoni-Freddari et al., 2004). As with normal aging,
the use of 31P MRS to investigate brain-behavior relationships and
progression of clinical symptoms has been vastly underutilized
(Ross and Sachdev, 2004). Additional investigation is warranted
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to determine the clinical utility of regional ATP as marker of
preclinical AD risk in healthy older adults. Such an approach
may elucidate potential mitochondrial mechanisms contributing to
normal and pathological aging processes.

There are limitations to this study. First, our sample included
a small population (n = 30) that was mostly white and well-
educated participants who were cognitively normal. While our
findings make a relevant contribution to our understanding of
the aging brain, they should also be viewed as preliminary
due to limits in overall sample size and the findings should
be confirmed in a larger sample with a less homogeneous
demographic population. Second, our results are limited to
cognition as indexed by a global cognitive screener. Even so,
the MoCA is a widely used clinical tool that has adequate
psychometric properties and sensitivity to cognitive changes in
several clinical populations as well as aging. Therefore, learning
whether there is a relationship between 31P metabolites and
MoCA total scores is highly clinically relevant. Future studies are
needed to confirm the functional significance of regional ATP and
cognition. Third, the current study used a cross-sectional design.
Thus, the longitudinal course of these observed relationships is
unknown. Future research should explore the stability of these
relationships and its relationship to the progression of cognitive
decline over time.

In conclusion, this study adds to the growing body of
literature examining the associations between 31P metabolites
and cognition in older adults. Importantly, we provide evidence
that frontal, but not posterior, ATP is associated with global
cognition, even after controlling for well-known predictors of
cognition including age, education, sex, and brain atrophy.
These findings may have important implications in the
search for non-invasive markers of in vivo mitochondrial
function and the impact of ATP on behavior across the
lifespan.
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