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Introduction: Drug-target interaction prediction is one important step in drug

research and development. Experimental methods are time consuming and

laborious.

Methods: In this study, we developed a novel DTI prediction method called

EnGDD by combining initial feature acquisition, dimensional reduction, and DTI

classification based on Gradient boosting neural network, Deep neural network,

and Deep Forest.

Results: EnGDD was compared with seven stat-of-the-art DTI prediction

methods (BLM-NII, NRLMF, WNNGIP, NEDTP, DTi2Vec, RoFDT, and MolTrans)

on the nuclear receptor, GPCR, ion channel, and enzyme datasets under

cross validations on drugs, targets, and drug-target pairs, respectively. EnGDD

computed the best recall, accuracy, F1-score, AUC, and AUPR under the

majority of conditions, demonstrating its powerful DTI identification performance.

EnGDD predicted that D00182 and hsa2099, D07871 and hsa1813, DB00599

and hsa2562, D00002 and hsa10935 have a higher interaction probabilities

among unknown drug-target pairs and may be potential DTIs on the four

datasets, respectively. In particular, D00002 (Nadide) was identified to interact with

hsa10935 (Mitochondrial peroxiredoxin3) whose up-regulation might be used to

treat neurodegenerative diseases. Finally, EnGDD was used to find possible drug

targets for Parkinson’s disease and Alzheimer’s disease after confirming its DTI

identification performance. The results show that D01277, D04641, and D08969

may be applied to the treatment of Parkinson’s disease through targeting hsa1813

(dopamine receptor D2) and D02173, D02558, and D03822 may be the clues

of treatment for patients with Alzheimer’s disease through targeting hsa5743

(prostaglandinendoperoxide synthase 2). The above prediction results need further

biomedical validation.

Discussion: We anticipate that our proposed EnGDD model can help discover

potential therapeutic clues for various diseases including neurodegenerative

diseases.

KEYWORDS

drug-target interaction, gradient boosting neural network, deep neural network, deep

forest, Parkinson’s disease, Alzheimer’s disease

1. Introduction

Identification of Drug-Target Interactions (DTIs) for various diseases is one key step

in drug research and development (Peng et al., 2015; Zhang et al., 2019; Chu et al., 2022;

Zhou et al., 2022; Liu et al., 2023), however, it is time-consuming, costly, and low-success

rate (Dickson and Gagnon, 2004; Kola and Landis, 2017; Peng et al., 2022b; Shen et al.,

2022). Drug repositioning (Wang and Zeng, 2013; Liang et al., 2022a; Tian et al., 2022b;

Sun et al., 2023) can find new indications from existing drugs and expand their scopes
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and uses. Drug repositioning demonstrates several advantages

compared to an entirely new drug design. First, it has less risk

related to subsequent efficacy trial failure. Second, drug research

and development time can be shortened because most of the

preclinical testing and safety assessment have already been done.

Finally, less investment is required because drug repositioning can

still provide significant data in preclinical, clinical phase I, and

clinical phase II stages. In summary, drug repositioning has been

widely applied to DTI inference (Tian et al., 2022a; Zhang et al.,

2022a).

To date, various drug repositioning methods (Chen et al., 2012,

2016) have been used to identify potential DTIs. These methods

can be roughly divided into three categories: docking simulation

(Guo et al., 2022; Peng et al., 2022a; Zhao et al., 2023), network-

based methods, and machine learning-based methods. Docking

simulation first obtains 3D structures of drugs and proteins and

then runs molecular simulations to compute the binding ability

for each drug-target pair (Li et al., 2006; Pujadas et al., 2008).

However, 3D structures of a few proteins are unknown (for

example, membrane proteins), thus it is not possible to detect

potential drugs interacting with these proteins (Opella, 2013).

Furthermore, docking simulation-based DTI identification can

be challenging.

Network-based methods (Lotfi Shahreza et al., 2018)

provide an efficient way for DTI prediction. Network-based

methods integrate protein-protein similarity, drug-drug

similarity, and known DTIs in to a heterogeneous network

and develop network algorithms to find new DTIs (Chen

et al., 2012). For example, Chen et al. (2012) proposed a

random walk with a restart-based method. Mei et al. (2013)

developed a bipartite local model BLM-NII. Van Laarhoven

and Marchiori (2013) designed a computational model WNN-

GIP by combining weighted nearest neighbor with Gaussian

interaction profiles.

Machine learning-based methods use machine learning models

to capture relationships between drugs and targets. For example,

Precup et al. (2012), Buza and Peška (2017) designed K-nearest

neighbor models with hubness-aware regression technique to

alleviate the detrimental effect of bad hubs in a DTI network.

In particular, deep learning has obtained wide application in

DTI prediction. For example, Zong et al. (2017) developed a

deep learning model based on the topology of a multipartite

DTI network, Wang et al. (2018) used a deep ensemble

learning model with a stacked autoencoder, Öztürk et al. (2018)

designed a deep learning model with character representations,

You et al. (2019) exploited a deep ensemble learning method

with LASSO regression, Cheng et al. (2021) combined multi-

head self-attention and graph attention network, Lee and

Nam (2022) explored a sequence-based approach, Li et al.

(2022) designed a dual-stream graph neural network, Mukherjee

et al. (2022) used a deep graph convolutional network and

LSTM, Zhang et al. (2022b) exploited a graph neural network,

and Tayebi et al. (2022) designed a deep ensemble-balanced

learning model.

The above three types of methods effectively identify potential

DTIs. Network-based methods predict possible DTIs by combining

topological information and node features in a DTI network.

However, network-based methods cannot identify potential DTIs

for new drugs or targets. Machine learning-based methods

utilized feature information involved in drugs and targets and

can significantly improve DTI prediction performance. However,

machine learning-based methods are susceptive to data quality

and feature selection and need huge amounts of data. In this

study, we developed a novel DTI prediction method called

EnGDD by combining initial feature acquisition, dimensional

reduction, and DTI classification based on Gradient boosting

neural network (Grownet) (Badirli et al., 2020), Deep Neural

Network (DNN) and Deep Forest (DeepForest) (Zhou and Feng,

2019).

Parkinson’s Disease (PD) and Alzheimer’s Disease (AD)

are two common neurodegenerative diseases. PD is mainly

characterized by movement disorders, muscle stiffness, tremor,

and other symptoms. Its pathogenesis involves many aspects

including environment, genetics, and neurochemistry (Poewe et al.,

2017). AD has cognitive impairment, memory loss, language

impairment, and other symptoms. Its pathogenesis is still unclear.

Although a few drugs have been applied to their therapies,

new therapeutic clues are still essential to the two diseases

(Iraji et al., 2020; Yiannopoulou and Papageorgiou, 2020; Liang

et al., 2022b; Lin et al., 2022). Thus, we used the proposed

EnGDD method and found new therapeutic clues for PD

and AD.

2. Materials and methods

2.1. Data preparation

Yamanishi_08 has been widely used as a gold standard

dataset in the field of DTI prediction. It was collected from

the KEGG BRITE (Kanehisa et al., 2017), BRENDA (Schomburg

et al., 2004), SuperTarget (Günther et al., 2007), and DrugBank

(Wishart et al., 2008) databases. It was categorized into four

DTI datasets based on different target proteins, that is, nuclear

receptors (NR), G protein-coupled receptors (GPCR), ion channels

(IC), and enzymes (E). Chu et al. (2021) collected new drugs,

new targets, and new DTIs and further updated the four DTI

datasets. On the four datasets, there are 886 DTIs between

541 drugs and 33 targets, 5383 DTIs between 1680 drugs and

156 targets, 6385 DTIs between 765 drugs and 238 targets,

and 7371 DTIs between 1777 drugs and 1411 targets after

an update, respectively. We used the four datasets to capture

potential DTIs.

2.2. Initial feature acquisition

ChemDes (Dong et al., 2015) and BioTriangle (Dong

et al., 2016) were used to extract the initial features of

drugs and targets. ChemDes (Dong et al., 2015) is a freely

available tool for molecular description and fingerprint

calculation. A drug can be first represented by a Simplified

Molecular Input Line Entry System (SMILES) string. SMILES

string is then converted into fingerprints via ChemDes. In
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FIGURE 1

The pipeline for drug-target interaction prediction based on Grownet, DNN, and DeepForest.
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TABLE 1 Performance of eight DTI prediction methods on CVd .

Metric Dataset EnGDD BLM-NII NRLMF WNNGIP NEDTP DTi2Vec RoFDT MolTrans

Precision

NR 0.8309 0.6959 0.7285 0.7336 0.8193 0.8198 0.7888 0.7590

GPCR 0.8686 0.8219 0.7090 0.6605 0.8808 0.8938 0.8278 0.7748

IC 0.8400 0.7640 0.6821 0.6840 0.8643 0.8874 0.7763 0.7314

E 0.7917 0.7675 0.4967 0.6212 0.8508 0.8599 0.7121 0.6289

Recall

NR 0.9057 0.5327 0.6973 0.7143 0.8795 0.8709 0.7750 0.8925

GPCR 0.9422 0.6746 0.7032 0.6384 0.8966 0.8905 0.8280 0.9132

IC 0.8142 0.5952 0.6705 0.6937 0.7330 0.7283 0.6488 0.8387

E 0.7789 0.5082 0.4780 0.6055 0.6168 0.6147 0.6089 0.8002

Accuracy

NR 0.8601 0.6408 0.6817 0.6909 0.8425 0.8395 0.7834 0.8026

GPCR 0.8998 0.7471 0.6552 0.6068 0.8876 0.8923 0.8280 0.8236

IC 0.8296 0.6758 0.6266 0.6486 0.8091 0.8180 0.7313 0.7627

E 0.7869 0.6528 0.4681 0.5807 0.7546 0.7575 0.6824 0.6615

F1-score

NR 0.8663 0.5992 0.7123 0.7235 0.8479 0.8442 0.7812 0.8193

GPCR 0.9039 0.7407 0.7060 0.6489 0.8885 0.8921 0.8278 0.8382

IC 0.8264 0.6684 0.6762 0.6885 0.7928 0.7993 0.7059 0.7804

E 0.7848 0.6070 0.4867 0.6128 0.7140 0.7160 0.6554 0.7035

AUC

NR 0.9351 0.7217 0.8243 0.8327 0.9178 0.9171 0.7835 0.8637

GPCR 0.9634 0.8850 0.7940 0.6991 0.9496 0.9549 0.8281 0.8902

IC 0.9025 0.8091 0.7471 0.7637 0.8897 0.8968 0.7314 0.8360

E 0.8697 0.7298 0.4412 0.6540 0.8473 0.8464 0.6829 0.7430

AUPR

NR 0.9367 0.7106 0.8289 0.8376 0.9125 0.9116 0.8382 0.8309

GPCR 0.9636 0.8618 0.8116 0.7275 0.9463 0.9534 0.8709 0.8590

IC 0.9200 0.7975 0.7634 0.7751 0.9033 0.9111 0.8003 0.8249

E 0.8855 0.7678 0.5230 0.6720 0.8579 0.8625 0.7582 0.7507

The bold value denotes the best performance in each row.

this study, we use ChemDes and describe each drug as a

1,538-dimensional vector.

BioTriangle (Dong et al., 2016) provides 14 types

of biological features to represent each target protein.

These features include amino acid composition, dipeptide

composition, tripeptide composition, CTD composition,

CTD transition, CTD distribution, M-B autocorrelation,

Moran autocorrelation, Geary autocorrelation, conjoint

triad features, quasi-sequence order descriptors, sequence

order coupling number, pseudo amino acid composition

1, and pseudo amino acid composition 2. In this

study, we use BioTriangle and describe each target as a

10029-dimensional vector.

2.3. Dimensional reduction

The dimensions of the extracted drug and target features

are high and there is a large amount of robust information.

We reduce the feature dimensions using Principal Component

Analysis (PCA). PCA is a common machine learning algorithm

mainly used for dimensionality reduction and feature extraction.

It can map raw high-dimensional data into low-dimensional

space while preserving main information and structure

of data, thus making the prediction model more efficient

and accurate. Finally, drugs and targets can be denoted as

two d-dimensional vectors. In addition the two vectors are

concatenated and each drug-target pair is represented using a

2d-dimensional vector x.

2.4. DTI classification

We first compute interaction probability for each drug-

target pair using Grownet, DNN, and DeepForest, respectively.

The probability is then integrated by the soft voting and

each drug-target can be classified. The details are shown

in Figure 1.
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FIGURE 2

The ROC and PR curves of eight models under CVd. Subfigures (A–D) denote the ROC curves of all methods on the nuclear receptor, GPCR, ion

channel, and enzyme datasets. Subfigures (E–H) denote the precision-recall curves of all methods on the nuclear receptor, GPCR, ion channel, and

enzyme datasets under CVd.

2.4.1. Gradient boosting neural network
Gradient boosting machine (Friedman, 2001; ZhouZhou

et al., 2021) is a function estimation approach based on

numerical optimization and obtains wide application (Peng

et al., 2021). Grownet (Badirli et al., 2020) is a gradient

boosting framework with shallow neural networks. As shown

in Figure 1, Grownet uses shallow neural networks as basic

learners and propagates information from the previous classifier to

the next one.

At each layer, the learner is trained based on DTI features.

The final output is one weighted sum of outputs from all learners:∑k=K
k=1 αkfk(x) where K denotes the number of learners.

For a drug-target pair xi with a 2d-dimensional feature in a DTI

dataset D =
{(
xi, yi

)n
i=1 | xi ∈ R

2d, yi ∈ R

}
, Grownet obtains its

label through K additive functions by Equation (1):

ŷi = F (xi) =

K∑

k=0

αkfk (xi) , fk ∈ F (1)

whereF and αk denote the space of multilayer perceptrons and

the step size, respectively. fk is a shallow neural network with linear

activation function in the output layer.

Let ŷ
(t−1)
i =

∑t−1
k=0 αkfk (xi) denote the output at the

(t − 1)th layer for xi, we minimize the following loss function

by Equation (2):

L
(t) =

n∑

i=0

l
(
yi, ŷ

(t−1)
i + αtft (xi)

)
(2)

Thus, the objective function is simplified by Equation (3):

L
(t) =

n∑

i=0

hi
(
ŷi − αtft (xi)

)2
(3)

where ŷi = −gi/hi, gi and hi denote the first-order and

second-order gradients of the objective function at xi, respectively.

2.4.2. Deep neural network
Deep neural networks have been broadly applied in the field

of bioinformatics. In this section, we designed a DNN to classify

unknown drug-target pairs. The constructed DNN comprises an

input layer, multiple hidden layers, and a larger output layer. For

a drug-target pair xi with 2d-dimensional features, the input layer

feeds xi to the network.

We minimize the following binary cross-entropy function to

quantify how many of the predicted labels differ from the real ones

by Equation (4):

L = −
1

n

n∑

i=1

[yi log ŷi + (1− yi) log(1− ŷi)]. (4)

where yi and ŷi denote true labels and the predicted interaction

probability of xi. We use the Adam algorithm (Kingma and Ba,

2014) to train the DNN. The training is implemented with 100

epochs and each epoch has a mini-batch with the size of 64.

The final output layer with a single neuron and the sigmoid

function is used to output an interaction probability for xi by

Equation (5):

yi =
1

1+ e−xi
(5)
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TABLE 2 Performance of eight DTI prediction methods on CVt.

Metric Dataset EnGDD BLM-NII NRLMF WNNGIP NEDTP DTi2Vec RoFDT MolTrans

Precision

NR 0.6357 0.5926 0.6543 0.6994 0.6350 0.6592 0.5270 0.6481

GPCR 0.8700 0.7324 0.6186 0.6834 0.8852 0.9054 0.6407 0.6863

IC 0.8542 0.7832 0.6589 0.6844 0.8954 0.9122 0.7274 0.6890

E 0.8101 0.8487 0.5696 0.6759 0.8709 0.8770 0.6923 0.6366

Recall

NR 0.2285 0.4223 0.5502 0.6549 0.2570 0.2774 0.3453 0.8787

GPCR 0.6670 0.5579 0.5982 0.6794 0.5571 0.5797 0.3999 0.8498

IC 0.7937 0.7310 0.6284 0.6730 0.6995 0.7094 0.6134 0.8681

E 0.7892 0.6222 0.5479 0.6745 0.6370 0.6578 0.5708 0.8028

Accuracy

NR 0.5440 0.5358 0.6412 0.6706 0.5579 0.5679 0.5552 0.6974

GPCR 0.7836 0.6316 0.5823 0.6531 0.7421 0.7593 0.6043 0.7222

IC 0.8286 0.7225 0.6144 0.6499 0.8088 0.8205 0.6957 0.7300

E 0.8020 0.7256 0.5263 0.6320 0.7714 0.7829 0.6604 0.6663

F1-score

NR 0.3226 0.4715 0.5954 0.6734 0.3508 0.3780 0.3810 0.7440

GPCR 0.7498 0.6312 0.6065 0.6799 0.6740 0.7000 0.4839 0.7542

IC 0.8215 0.7555 0.6427 0.6782 0.7824 0.7958 0.6624 0.7650

E 0.7992 0.7175 0.5583 0.6746 0.7350 0.7509 0.6249 0.7068

AUC

NR 0.5798 0.5582 0.7625 0.7997 0.6363 0.6543 0.5521 0.7340

GPCR 0.8788 0.7403 0.6589 0.7679 0.8577 0.8659 0.5994 0.8077

IC 0.8981 0.8887 0.7141 0.7597 0.8989 0.9076 0.6956 0.7975

E 0.8750 0.8234 0.5531 0.7417 0.8472 0.8526 0.6601 0.7644

AUPR

NR 0.5863 0.6169 0.6910 0.7834 0.6175 0.6389 0.5938 0.6742

GPCR 0.8724 0.7713 0.6624 0.7625 0.8615 0.8745 0.6666 0.8130

IC 0.9101 0.8969 0.7142 0.7589 0.9068 0.9174 0.7667 0.7707

E 0.8954 0.8753 0.6113 0.7641 0.8691 0.8764 0.7385 0.7866

The bold value denotes the best performance in each row.

2.4.3. Deep forest
To solve complex tasks, learning models increasingly go

deep (Cai et al., 2021; Li et al., 2022). Non-neural network

style-based deep models demonstrate powerful learning

abilities when they can go deep. DeepForest (Zhou and Feng,

2019) is a non-neural network style deep learning model

and is constructed upon multi-grained cascade framework. It

demonstrates the powerful classification performance and less

training time.

In this study, we used DeepForest with no more than

20 layers to classify unobserved drug-target pairs. We choose

random forests (Qi, 2012; Biau and Scornet, 2016) and extra

trees (Geurts et al., 2006) as basic classifiers in DeepForest.

Random forest (Qi, 2012; Biau and Scornet, 2016) is a non-

parametric and interpretable classification model. It is an ensemble

of many random decision trees and has a better performance

in classification tasks with complex data structure, small sample

size, and high-dimensional feature space. An extra tree (Geurts

et al., 2006) is an ensemble of unpruned decision trees. It

can better reduce variance by completely randomly selecting

cut-points and minimizing classification bias by using whole

learning samples.

As shown in Figure 1, each cascade layer in DeepForest

comprises five random forests and five extra trees. Each predictor

consists of 100 decision trees. In each layer, each predictor

computes a ratio of a given DTI feature belonging to a positive or

negative class. The predicted probabilities from all learners produce

a class vector. The vector in addition to the raw DTI feature vector

is used as input in the next layer.

In particular, similar to DNN, deep forest utilizes a

cascade structure. In the structure, each level receives

features from its preceding level, and outputs the results to

the next level. Therefore, although the proportion of a 20-

dimensional class vector in the input layer may be relatively

smaller, its proportion in a DTI feature vector will increase

with the deepening of the number of layers. Therefore,

the 20-dimensional class vector cannot be drowned out

in DeepForest.
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FIGURE 3

The ROC and PR curves of eight models under CVt. Subfigures (A–D) denote the ROC curves of all methods on the nuclear receptor, GPCR, ion

channel, and enzyme datasets. Subfigures (E–H) denote the precision-recall curves of all methods on the nuclear receptor, GPCR, ion channel, and

enzyme datasets under CVt.

2.4.4. Ensemble learning
Ensemble learning demonstrates better classification

performance than a single classifier. Thus, we combined Grownet,

DNN, and DeepForest and developed a hybrid model for DTI

identification based on the soft voting approach by Equation (6):

Score = αCGrownet + βCDNN + γCDeepForest (6)

where CGrownet , CDNN , and Cdeepforest represent DTI prediction

results from Grownet, DNN, and DeepForest, respectively. α, β ,

and γ denote the corresponding weights. In particular, one drug-

target pair is labeled as positive if its interaction score is greater than

0.5; otherwise, the pair is classified as negative.

3. Results

3.1. Evaluation metrics

In the experiments, precision, recall, accuracy, F1 score, AUC,

and AUPR were used to measure the classification performance

of our proposed EnGDD method. Higher values indicate better

prediction ability for the above metrics. The experiments were

repeated 20 times and their average values were selected as

the final results. The former four metrics are defined by

Equations (7)–(10):

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

F1− Score =
2 · Precision · Recall

Precision+ Recall
(10)

where TP, FP, FN, and TN indicate true positives, false positives,

false negatives, and true negatives.

AUC denotes the area under the receiver operating

characteristic (ROC) curve and AUPR denotes the area under the

Precision-Recall (PR) curve.

3.2. Experimental settings

PaDEL in ChemDes was used to extract drug features.

The number of drug features obtained from PaDEL were as

follows: 120 constitutional descriptors, 346 autocorrelation

descriptors, 42 basak descriptors, 6 BCUT descriptors, 96

burden descriptors, 56 connectivity descriptors, 489 E-state

descriptors, 3 Kappa descriptors, 15 molecular property

descriptors, 6 quantum chemical descriptors, and 265

topological descriptors. All features in BioTriangle were

applied to depict target proteins. Finally, we obtained one

100-dimensional feature for drugs and targets after dimensional

reduction, respectively.

In addition, to obtain more accurate and stable prediction

results, we used grid search to set the final parameters in

the ensemble model. Grid search is a common hyperparameter

optimization method and can be used to determine the final

parameters in a model. We used it to traverse the parameter

space and try all possible hyperparameter combinations. The
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TABLE 3 Performance of eight DTI prediction methods on CVdt.

Metric Dataset EnGDD BLM-NII NRLMF WNNGIP NEDTP DTi2Vec RoFDT MolTrans

Precision

NR 0.8286 0.7487 0.7885 0.7223 0.8157 0.8160 0.7772 0.7620

GPCR 0.8699 0.8518 0.7625 0.6591 0.8840 0.8980 0.8401 0.8091

IC 0.8638 0.8707 0.8207 0.6949 0.8823 0.9051 0.8351 0.7734

E 0.8196 0.8308 0.7365 0.6414 0.8727 0.8832 0.7652 0.7867

Recall

NR 0.9294 0.7344 0.7692 0.7242 0.8814 0.8739 0.7878 0.9066

GPCR 0.9675 0.7288 0.8500 0.6324 0.9214 0.9304 0.8758 0.8831

IC 0.9670 0.8068 0.9228 0.6770 0.9121 0.9309 0.8777 0.8851

E 0.9430 0.8208 0.8374 0.6259 0.8453 0.8788 0.8098 0.8142

Accuracy

NR 0.8682 0.7075 0.7527 0.6826 0.8406 0.8379 0.7806 0.8102

GPCR 0.9113 0.7862 0.7600 0.6012 0.9002 0.9123 0.8545 0.8369

IC 0.9072 0.8342 0.8360 0.6461 0.8951 0.9166 0.8522 0.8119

E 0.8676 0.8003 0.7346 0.5954 0.8609 0.8813 0.7806 0.7965

F1-score

NR 0.8758 0.7407 0.7783 0.7229 0.8469 0.8436 0.7820 0.8270

GPCR 0.9161 0.7853 0.8038 0.6452 0.9023 0.9139 0.8575 0.8440

IC 0.9125 0.8373 0.8687 0.6856 0.8969 0.9178 0.8558 0.8249

E 0.8769 0.8253 0.7837 0.6333 0.8587 0.8810 0.7868 0.7999

AUC

NR 0.9457 0.8575 0.9062 0.8163 0.9110 0.9123 0.7806 0.8645

GPCR 0.9753 0.9363 0.9105 0.6923 0.9608 0.9672 0.8545 0.9060

IC 0.9786 0.9779 0.9712 0.7610 0.9603 0.9710 0.8522 0.8806

E 0.9559 0.9303 0.8867 0.6808 0.9323 0.9448 0.7806 0.8663

AUPR

NR 0.9451 0.8671 0.9138 0.8431 0.8946 0.8962 0.8356 0.8116

GPCR 0.9748 0.9001 0.9328 0.7263 0.9591 0.9659 0.8890 0.8885

IC 0.9811 0.9519 0.9788 0.7711 0.9619 0.9716 0.8870 0.8518

E 0.9618 0.9372 0.9160 0.7024 0.9355 0.9485 0.8351 0.8622

The bold value denotes the best performance in each row.

optimal parameter combination is then selected as the final

parameters of the ensemble model. Experimental settings in

DNN were the same as Zhou et al. (2021). For Deepforest,

we set max_layers = 20, n_estimators = 5, n_trees = 100,

predictor = “forest”, and max_depth = None. For Grownet,

we set lr = 0.05, num_nets = 20, batch_size = 64, boost_rate

= 1.0, epochs_per_stage = 1, correct_epoch = 1, and L2 =

0.001.

Three 5-fold cross validations (CVs) were performed to assess

the DTI prediction performance of EnGDD:

1. Five-fold CV on drugs (CVd, DTI prediction for new drugs):

80% of drugs were randomly selected as training data and the

remaining 20% was taken as test data in each round.

2. Five-fold CV on targets (CVt , DTI prediction for new targets):

80% of targets were randomly selected as training data and the

remaining 20% is taken as test data in each round.

3. Five-fold CV on drug-target pairs (CVdt , DTI prediction for

drug-target pairs): 80% of drug-target pairs were randomly

selected as training data and the remaining 20% is taken as test

data in each round.

There are a few positive DTIs and it is a lack of negative DTIs

on the four DTI datasets. If negative DTIs are not reasonably

selected, it is easy to cause overfitting. Undersampling is an

approach that deals with the data imbalance problem, and has

been used to address situations where the number of samples

in one category of data is far less than that in the other

categories. Consequently, we used an undersampling approach

to balance the datasets. That is, the ratio of positive drug-target

pairs to negative drug-target pairs is set to 1 to solve the data

imbalance problem.

3.3. Comparison with seven
state-of-the-art DTI prediction methods

We compared the proposed EnGDD algorithm with

seven state-of-the-art DTI prediction models to measure

the classification ability of EnGDD, i.e., BLM-NII, NRLMF,

WNNGIP, NEDTP, DTi2Vec, RoFDT, and MolTrans. To identify

potential DTIs, BLM-NII (Mei et al., 2013) used a bipartite
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FIGURE 4

The ROC and PR curves of eight models under CVdt. Subfigures (A–D) denote the ROC curves of all methods on the nuclear receptor, GPCR, ion

channel, and enzyme datasets. Subfigures (E–H) denote the precision-recall curves of all methods on the nuclear receptor, GPCR, ion channel, and

enzyme datasets under CVdt.

local model and neighbor interaction profiles, NRLMF (Liu

et al., 2016) designed a neighborhood regularized logistic

matrix factorization method, WNNGIP (Van Laarhoven and

Marchiori, 2013) combined a weighted nearest neighbor

profile and Gaussian interaction profile, NEDTP (An and

Yu, 2021) is a heterogeneous network embedding framework,

DTi2Vec (Thafar et al., 2021) integrated network embedding

and ensemble learning, RoFDT (Wang et al., 2022) proposed a

rotation forest model. Huang et al. (2021) proposed a molecular

interaction transformer (MolTrans) to capture possible DTIs.

MolTrans first designed an augmented transformer encoder to

extract the semantic relationships among sub-structures from

unlabeled biomedical data and then used a knowledge inspired

sub-structural pattern detection method for more accurate

DTI prediction.

Table 1 illustrates the DTI prediction performance of EnGDD

and the other seven DTI prediction models under CVd. From

Table 1, we observed that although EnGDD computed smaller

precisions onGPCRs and ion channels thanMolTrans. It computed

better accuracy, F1-score, AUC, and AUPR than the other

seven DTI prediction models. In particular, EnGDD obtained

the best AUCs and AUPRs on nuclear receptors, GPCR, ion

channels, and enzymes among the eight DTI prediction models.

It computed AUCs of 0.9351, 0.9634, 0.9025, and 0.8697 on the

four datasets, outperforming 1.85%, 0.88%, 0.63%, and 2.58%

than the second-best approach, respectively. It calculated AUPRs

of 0.9367, 0.9636, 0.9200, and 0.8855 on the four datasets,

better 2.58%, 1.06%, 0.97%, and 2.60% than the second-best

approach, respectively. Figure 2 shows the ROC and PR curves of

the eight DTI prediction models and corresponding AUCs and

AUPRs on four DTI datasets. The above results demonstrate that

EnGDD obtained powerful DTI prediction performance under

CVd and can be applied to effectively find potential targets for

new drugs.

Table 2 shows the DTI inference performance of the eight

DTI prediction models under CVt . The results from Table 2

shows that EnGDD computed lower performance on nuclear

receptors than WNNGIP. It may be caused by a small sample

size on nuclear receptors. It significantly outperformed WNNGIP

on GPCRs, ion channels, and enzymes, which contain larger

samples. In addition, althoughDTi2Vec computed better precision,

AUC, and AUPR than EnGDD on ion channels, the differences

are very small. It may be caused by its different data structure.

Figure 3 gives the ROC and PR curves of the eight models and

corresponding AUCs and AUPRs on the four DTI datasets. In

summary, EnGDD can be used to screen potential drugs for

new targets.

Table 3 gives DTI prediction results of the eight models

under CVdt . The results from Table 3 demonstrate that although

EnGDD computed sightly lower precisions, accuracies, and F1-

scores than DTi2Vec, it obtained the best recalls, AUCs, and

AUPRs on the four DTI datasets. AUC and AUPR are two

more important evaluation metrics. EnGDD computed the best

AUCs of 0.9457, 0.9753, 0.9786, and 0.9559, outperforming

3.53%, 0.83%, 0.07%, and 1.16% than the second-best approach

on the four datasets, respectively. It achieved the best AUPRs

of 0.9451, 0.9748, 0.9811, and 0.9618, better 3.31%, 0.91%,

0.23%, and 1.38% than the second-best approach, respectively.

Figure 4 shows the ROC and PR curves of the eight models and

corresponding AUCs and AUPRs on the datasets. The results

suggest that EnGDD can better capture possible DTIs from

unknown drug-target pairs.
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TABLE 4 Performance of EnGDD and three individual models on CVd .

Metric Dataset Grownet DNN DeepForest EnGDD

Precision

NR 0.7822 0.8636 0.8343 0.8309

GPCR 0.7298 0.8944 0.9361 0.8686

IC 0.6610 0.8565 0.9497 0.8400

E 0.6475 0.8120 0.9189 0.7917

Recall

NR 0.9168 0.8734 0.8609 0.9057

GPCR 0.9755 0.8955 0.8215 0.9422

IC 0.9234 0.7702 0.6080 0.8142

E 0.9123 0.7039 0.5211 0.7789

Accuracy

NR 0.8302 0.8674 0.8446 0.8601

GPCR 0.8067 0.8949 0.8826 0.8998

IC 0.7244 0.8206 0.7878 0.8296

E 0.7074 0.7706 0.7377 0.7869

F1-score

NR 0.8439 0.8680 0.8468 0.8663

GPCR 0.8347 0.8948 0.8748 0.9039

IC 0.7702 0.8106 0.7397 0.8264

E 0.7573 0.7535 0.6639 0.7848

AUC

NR 0.9045 0.9302 0.9263 0.9351

GPCR 0.9455 0.9463 0.9595 0.9634

IC 0.8781 0.8767 0.8847 0.9025

E 0.8437 0.8391 0.8440 0.8697

AUPR

NR 0.8893 0.9189 0.9276 0.9367

GPCR 0.9423 0.9369 0.9606 0.9636

IC 0.8888 0.8901 0.9054 0.9200

E 0.8546 0.8456 0.8655 0.8855

The bold value denotes the best performance in each row.

3.4. Comparison of EnGDD with three
individual models

Our proposed EnGDD method combined three individual

deep learning models, that is, Grownet, DNN, and DeepForest. In

order to measure the performance of ensemble learning on DTI

prediction, we compared EnGDD with the three models under

three different cross validations (CVd, CVt , and CVdt). Tables 4–6

show the comparison results under the three cross validations.

As shown in Table 4, EnGDD obtained the best accuracy, F1-

score, AUC, and AUPR on GPCR, ion channel, and enzyme under

CVd. Although EnGDD computed slightly lower accuracy and F1

score than DNN on the nuclear receptor, the differences are only

0.0073 and 0.0017. Although EnGDD calculated relatively lower

precision and recall than DeepForest and Grownet, respectively,

it computed a better F1 score than them. The results show

that EnGDD can be appropriate to screen possible targets for a

new drug.

As shown in Table 5, EnGDD obtained better accuracy, AUC,

and AUPR on GPCR, ion channel, and enzyme under CVt . In

particular, all methods computed very low recall and F1 score and

TABLE 5 Performance of EnGDD and three individual models on CVt.

Metric Dataset Grownet DNN DeepForest EnGDD

Precision

NR 0.5292 0.5800 0.7071 0.6357

GPCR 0.7004 0.7361 0.9219 0.8700

IC 0.6756 0.8043 0.9709 0.8542

E 0.6537 0.8076 0.9403 0.8101

Recall

NR 0.2888 0.3014 0.1227 0.2285

GPCR 0.8762 0.3588 0.0714 0.6670

IC 0.9082 0.6824 0.4991 0.7937

E 0.8958 0.7173 0.5519 0.7892

Accuracy

NR 0.5141 0.5652 0.5378 0.5440

GPCR 0.7492 0.6230 0.5333 0.7836

IC 0.7360 0.7574 0.7422 0.8286

E 0.7106 0.7734 0.7585 0.8020

F1-score

NR 0.3693 0.3607 0.2021 0.3226

GPCR 0.7767 0.4564 0.1310 0.7498

IC 0.7746 0.7351 0.6545 0.8215

E 0.7557 0.7590 0.6949 0.7992

AUC

NR 0.5366 0.6456 0.7004 0.5798

GPCR 0.8591 0.6991 0.8114 0.8788

IC 0.8640 0.8048 0.8718 0.8981

E 0.8432 0.8382 0.8500 0.8750

AUPR

NR 0.5363 0.6079 0.6757 0.5863

GPCR 0.8701 0.6947 0.8005 0.8724

IC 0.8729 0.8131 0.8957 0.9101

E 0.8589 0.8463 0.8763 0.8954

The bold value denotes the best performance in each row.

relatively low precision, accuracy, AUC, and AUPR on nuclear

receptors under CVt . There are only 33 targets for nuclear receptor.

When conducting cross validation on targets, the testing set

only contains about 6 targets. Thus, all methods calculated lower

performance on nuclear receptors.

As shown in Table 6, although EnGDD computed slightly lower

performance than DeepForest under CVdt , the values are very tiny

and can be neglected especially compared with the ones under

CVd and CVt . Thus, we used an ensemble of Grownet, DNN, and

DeepForest to identify potential DTIs.

4. Case study

4.1. Possible DTI prediction from unknown
drug-target pairs

We used EnGDD to find possible DTIs from unknown

drug-target pairs on the four DTI datasets after confirming its

performance. We first computed interaction probability for each

drug-target pair based on EnGDD and ranked each drug-target

pair in descending order based on the computed probabilities.
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TABLE 6 Performance of EnGDD and three individual models on CVdt.

Metric Dataset Grownet DNN DeepForest EnGDD

Precision

NR 0.7817 0.8594 0.8314 0.8286

GPCR 0.7528 0.8948 0.9353 0.8699

IC 0.7056 0.8778 0.9526 0.8638

E 0.6745 0.8467 0.9210 0.8196

Recall

NR 0.9289 0.8910 0.8858 0.9294

GPCR 0.9827 0.9203 0.9184 0.9675

IC 0.9851 0.9114 0.9267 0.9670

E 0.9695 0.8779 0.8812 0.9430

Accuracy

NR 0.8345 0.8723 0.8526 0.8682

GPCR 0.8298 0.9060 0.9274 0.9113

IC 0.7868 0.8921 0.9402 0.9072

E 0.7506 0.8593 0.9028 0.8676

F1-score

NR 0.8488 0.8745 0.8574 0.8758

GPCR 0.8525 0.9073 0.9267 0.9161

IC 0.8222 0.8941 0.9394 0.9125

E 0.7955 0.8619 0.9006 0.8769

AUC

NR 0.9155 0.9327 0.9317 0.9457

GPCR 0.9588 0.9551 0.9770 0.9753

IC 0.9490 0.9478 0.9820 0.9786

E 0.9200 0.9229 0.9584 0.9559

AUPR

NR 0.8976 0.9217 0.9286 0.9451

GPCR 0.9554 0.9467 0.9777 0.9748

IC 0.9458 0.9417 0.9842 0.9811

E 0.9237 0.9182 0.9640 0.9618

The bold value denotes the best performance in each row.

Figures 5–8 list the top 100 drug-target pairs with the highest

interaction probabilities on the four DTI datasets, respectively.

In the figures, black solid lines and black dotted lines indicate

known and unknown DTIs obtained from EnGDD, respectively.

Deep sky blue diamonds and yellow ellipses denote drugs

and targets.

On the nuclear receptor dataset, we predicted that D00182

and hsa2099 have a higher interaction probability among

unknown drug-target pairs. D00182 (Norethisterone) is a synthetic

second-generation progestin and used to protect cortical bone.

Norethindrone with daily 5 or 10 mg can produce the

same functions on biochemical markers of bone turnover

as estrogen (DeCherney, 1993; Ferrero et al., 2010; Syed,

2022). hsa2099 (Estrogen receptor) is a nuclear hormone

receptor binding to estrogen response elements with high

affinity. The steroid hormones and their receptors are densely

linked to cellular proliferation and differentiation in tissues

(Klinge, 2001). In addition, progestins affect the bone that

may be caused by stimulation of translocation relevant to the

estrogen receptor and part of norethindrone is transformed

to ethinyl estradiol in the rat liver (DeCherney, 1993), which

further verified that D00182 and hsa2099 may interact with

each other.

On the GPCR dataset, D07872 and hsa1813 were predicted

to interact with a higher interaction probability. D07872

(Dosulepin) is a tricyclic antidepressant and weak inhibitor

of dopamine reuptake. It interacts with many receptors

(Nakagawa et al., 2000; Lepping and Menkes, 2007). It is used

in patients suffering from ineffective alternative therapies

because of its toxicity potential. hsa1813 is a dopamine

receptor. Its activity is usually mediated by G proteins that

can inhibit adenylyl cyclase (Nakagawa et al., 2000). It can be

FIGURE 5

The predicted top 100 DTIs on nuclear receptors.
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FIGURE 6

The predicted top 100 DTIs on GPCRs.

antagonized by anticancer small molecule ONC201 in clinical

trials for high-grade gliomas and other cancers (Prabhu et al.,

2019).

On the ion channel dataset, DB00599 and hsa2562

demonstrated a higher interaction probability. DB00599

(Thiopental) is a barbiturate. The drug can produce general

anesthesia, treat convulsions, and reduce intracranial pressure

(Dickinson et al., 2002). It can induce general anesthesia

or complete anesthesia with short duration by intravenous

administration. It is also utilized to control convulsive states
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FIGURE 7

The predicted top 100 DTIs on ion channels.

for hypnosis and reduce increased intracranial pressure

for neurosurgical patients (Wishart et al., 2008). hsa2562

(gamma-aminobutyric acid type A receptor subunit beta3) is

a heteropentameric receptor for GABA that mainly inhibit

neurotransmitter in the vertebrate brain and is also a receptor of

diazepines and various anesthetics (Khair and Salvucci, 2021).

On the enzyme dataset, EnGDD predicted that D00002

may interact with hsa10935 with a higher interaction

probability. D00002 (Nadide) is an important metabolic

intermediate and can be used as an enzyme cofactor in redox

reactions. It is involved in various enzymatic reactions as

an electron carrier. It regulates various cellular functions

including energy metabolism and DNA repair (Navarro

et al., 2022; Pencina et al., 2023). hsa10935 (Mitochondrial

peroxiredoxin 3) help to scavenge reactive oxygen species

(Wang et al., 2021). It can also protect hippocampal neurons

against excitotoxic injury in vivo. The up-regulation of

peroxiredoxin-3 might be used to treat neurodegenerative diseases.

4.2. Target prediction for Parkinson’s
disease and Alzheimer’s disease

In the KEGG database, D00777, D00059, D00780, D00784,

D01277, D02004, D04641, D05768, D08969, D00558, D00781,

D00785, D00786, andD02562 are known to be the therapeutic clues

of PD (Kanehisa et al., 2017).

D00777 (Amantadine hydrochloride) is a drug only in oral

formulations. It can be used to treat the PD patients. It has good

absorption and little drug is present in the circulation. Associations

between amantadine therapeutic effects and plasma concentrations

have been confirmed by different studies (Aoki and Sitar, 1988).

D00059 (Levodopa) has been validated for its “miraculous” effect in

PD patients in 1961. L-dopa decarboxylase was an enzyme that can

generate dopamine from levodopa. Patients with PD have a severe

striatal dopamine deficit. Now, levodopa has been a “gold standard”

of PD drug treatment (Hornykiewicz, 2010).

D00780 (Bromocriptine mesylate) is a dopamine receptor with

an antioxidant effect (Ashhar et al., 2021). It has dopaminergic

and antidyskinetic activities and is utilized to treat PD patients.

Bromocriptine can selectively bind to postsynaptic dopamine

D2 receptors in the central nervous system to implement the

inhibition of neurotransmission and the effect of antidyskinetic

(Kim et al., 2023). D00784 (Ropinirole hydrochloride) is a non-

ergoline dopamine receptor agonist. It can efficiently control motor

symptoms in early PD patients and has good toleration to PD (Sethi

et al., 1998).

D01277 (Droxidopa) is an orally active synthetic amino acid.

Neurogenic orthostatic hypotension is a fall in blood pressure

on standing and notably affects PD. Droxidopa has been applied

to the treatment of neurogenic orthostatic hypotension by FDA.

Kaufmann et al. (2015). D02004 (Apomorphine hydrochloride)

is an effective D1 and D2 dopamine agonist. It has a rapid

antiparkinsonian function after subcutaneous administration and

the effect is comparable with one of levodopa. Many studies suggest

that Apomorphine is an effective therapeutic strategy for motor

symptoms in PD (Unti et al., 2015).

D04641 (Istradefylline) is an adenosine A2A receptor

antagonist. Kondo et al. (2015) detected the safety and effective

of Istradefylline after administration once daily for 52 weeks

in PD patients who experience wearing-off symptoms on

levodopa treatment. They found that Istradefylline therapy

was well-tolerated in levodopa-treated PD patients. D05768

(Rotigotine) is a non-ergolinic dopamine D3/D2/D1 receptor

agonist. It administrates via a transdermal system and has

been evaluated for the therapy of idiopathic PD (Reynolds

et al., 2005). D08969 (Pimavanserin tartrate) is used to treat

L-dopa-induced psychosis in PD. It is safe, well-tolerated

and efficacious in the treatment of L-dopa-induced psychosis

and doesn’t worsen motor symptoms (Abbas and Roth,

2008).
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FIGURE 8

The predicted top 100 DTIs on enzymes.

Levodopa-D00558 (carbidopa) intestinal gel is used to treat

advanced Levodopa-responsive PD with severe motor fluctuations

and dyskinesia when other therapies fail to give satisfactory

results in several countries (Wirdefeldt et al., 2016). D00781

(Entacapone) is a Chocolate-O-methyltransferase inhibitor. The

addition of Entacapone in PD patients who havemotor fluctuations

can improve motor fluctuations (Schrag, 2005). (Mishra et al.,

2019) found that D00785 (Selegiline hydrochloride) loaded nano

lipid carrier administered through the nasal route has the

potential for PD management therapy. D00786 (Tolcapone) may

be beneficial to the PD patients who have not still developed

motor fluctuations (Waters et al., 1998). D02562 (Rasagiline

mesylate) is a potent and non-reversible MAO-B inhibitor.

It has neuroprotective activities and a good safety and a

helpful clinical effect in fluctuating PD patients who have been

given an add-on to chronic levodopa therapy (Rabey et al.,

2000).

The above 14 drugs are known to be therapy strategies

for PD patients Table 7 gives the top 10 targets interacting

with these drugs with the highest probabilities. In Table 7, each

row lists a drug associated with PD and its predicted top

10 targets. The bold fonts denote that corresponding targets

have no interaction with the query drug but are predicted to

interact with the drug. The normal fonts denote that the query

drug is known to interact with corresponding targets and the

interactions are also predicted. In particular, D00059, D00780,

D00784, D02004, and D05768 have been validated to interact

with hsa1813 on the GPCR dataset. EnGDD predicted that

D01277, D04641, and D08969 may interact with hsa1813 with

the ranking of 5, 7, and 2, respectively. hsa1813 is a dopamine

receptor D2. Dopamine is a neurotransmitter in the brain. Its

concentration is directly associated with PD. Its low concentration

in the substantia nigra can inhibit the transmission of nerve

impulses and makes the brain fail to transduct signals in the

proper way, which causes the brain and other body parts to lose

connection (Latif et al., 2021). The above results show that D01277,

D04641, and D08969 can be applied to the PD treatment by

targeting hsa1813.

In the KEGG database, D02173, D04905, D00670, D02558,

and D03822 are the therapeutic clues of AD. Table 7 gives

the top 10 targets interacting with these drugs with the

highest probabilities.

D02173 (Galantamine hydrobromide) is a tertiary alkaloid

extracted from plants. It is now synthesized and used to treat mild

to moderate AD and provides one choice of an acetylcholinesterase

inhibitor for the treatment of AD (Zarotsky et al., 2003). D04905
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TABLE 7 Target prediction for Parkinson’s disease and Alzheimer’s disease.

Disease Dataset Drug Target

PD

IC D00777 hsa2906 hsa2905 hsa2902 hsa2903 hsa2904 hsa116443 hsa1137 hsa1139 hsa1136 hsa2555

GPCR

D00059 hsa150 hsa151 hsa152 hsa148 hsa147 hsa146 hsa155 hsa154 hsa153 hsa1813

D00780 hsa3356 hsa3357 hsa147 hsa3358 hsa1813 hsa150 hsa3350 hsa148 hsa146 hsa152

D00784 hsa1813 hsa150 hsa148 hsa147 hsa146 hsa152 hsa151 hsa1814 hsa1815 hsa1131

D01277 hsa154 hsa148 hsa1812 hsa1814 hsa1813 hsa153 hsa1815 hsa147 hsa155 hsa146

D02004 hsa3356 hsa150 hsa1813 hsa152 hsa3358 hsa151 hsa1812 hsa3357 hsa3350 hsa1814

D04641 hsa3269 hsa1129 hsa3356 hsa148 hsa146 hsa1128 hsa1813 hsa1132 hsa1131 hsa1133

D05768 hsa1813 hsa1129 hsa1131 hsa1128 hsa3356 hsa1812 hsa1132 hsa3269 hsa3358 hsa3350

D08969 hsa3356 hsa1813 hsa3269 hsa147 hsa148 hsa1812 hsa146 hsa3358 hsa1815 hsa3350

E

D00558 hsa1644 hsa7054 hsa5053 hsa5591 hsa1576 hsa43 hsa5742 hsa1588 hsa51004 hsa1565

D00781 hsa1312 hsa5742 hsa240 hsa5743 hsa5141 hsa5143 hsa5144 hsa5142 hsa5149 hsa7155

D00785 hsa4129 hsa4128 hsa476 hsa43 hsa1576 hsa5743 hsa5149 hsa5148 hsa5742 hsa590

D00786 hsa5743 hsa5742 hsa240 hsa1728 hsa1312 hsa1576 hsa4128 hsa79001 hsa1557 hsa1558

D01277 hsa1644 hsa7054 hsa6898 hsa51067 hsa5743 hsa8565 hsa7298 hsa5742 hsa5053 hsa7153

D02562 hsa4129 hsa4128 hsa1576 hsa5142 hsa5143 hsa5144 hsa8622 hsa5153 hsa5136 hsa199974

AD

IC
D02173 hsa1137 hsa1135 hsa1139 hsa1138 hsa57053 hsa1141 hsa1143 hsa8973 hsa1136 hsa1134

D04905 hsa2557 hsa2559 hsa2555 hsa2554 hsa2564 hsa2556 hsa2558 hsa2567 hsa55879 hsa2565

GPCR D00670 hsa1128 hsa1131 hsa3269 hsa1133 hsa1129 hsa3350 hsa1132 hsa3357 hsa1813 hsa3356

E

D00670 hsa43 hsa590 hsa4842 hsa3480 hsa23035 hsa120892 hsa23239 hsa10461 hsa3645 hsa3643

D02173 hsa590 hsa43 hsa5743 hsa1576 hsa7150 hsa5137 hsa5140 hsa5742 hsa5152 hsa3717

D02558 hsa43 hsa590 hsa5742 hsa5743 hsa4842 hsa4919 hsa1559 hsa4843 hsa6476 hsa477

D03822 hsa43 hsa590 hsa5743 hsa5742 hsa4129 hsa240 hsa112 hsa59272 hsa114 hsa477

The bold value denotes the best performance in each row.

(Memantine hydrochloride) is the first drug approved by the

US FDA and used to treat moderate to severe AD (Witt et al.,

2004). D00670 (Donepezil hydrochloride) is one class of AChE

inhibitors that can be used for the therapy of AD. It has longer and

more selective function and manageable adverse effects (Sugimoto,

2001).

Cholinesterase inhibitors are “first-line” agents used for

the treatment of AD. D02558 (Rivastigmine tartrate) and

donepezil (cholinesterase inhibitors) have a dose-response

association. Rivastigmine tartrate is as a carbamate inhibitor

of acetylcholinesterase and is used for the treatment of mild to

moderate AD under the trade name of Exelon (Shamsi et al.,

2020). D03822 (Rivastigmine) has been reported to improve

or maintain AD patients’ performance including cognitive

function, global function, and behavior. Its efficacy and tolerability

have been confirmed by many clinical trials (Williams et al.,

2003).

The above 5 drugs are known to be the therapeutic clues

of AD. In Table 7, each row lists a drug associated with AD

and its predicted top 10 targets. The bold fonts denote that

corresponding targets have no interaction with the query drug but

are predicted to interact with the drug. The normal fonts denote

that the query drug interacts with corresponding targets and the

interactions are also predicted. Particularly, D02173, D02558, and

D03822 are three agents used in the treatment of AD. EnGDD

predicted that the three drugs may interact with hsa5743 with

the ranking of 3, 4, and 3, respectively. hsa5743 is prostaglandin-

endoperoxide synthase 2 (PTGS2). Xie et al. (2022) have reported

that baicalein may influence the progression of AD through

regulating the expression of PTGS2. Thus, D02173, D02558, and

D03822 may be the clues of treatment for AD patients through

targeting PTGS2.

5. Conclusion

In this study, we developed a computational method EnGDD

for possible DTI identification. EnGDD combined feature

extraction, dimensional reduction, and DTI classification with

an ensemble of Grownet, DNN, and DeepForest. EnGDD

obtained better performance than the other seven DTI prediction

models. Parkinson’s disease and Alzheimer’s disease are two

neurodegenerative diseases. The results from the case studies by

EnGDD show that D00002 (Nadide) may be a potential drug for

neurodegenerative diseases. In addition, hsa1813 and hsa5743

may be possible targets of Parkinson’s disease and Alzheimer’s

disease, respectively.

In the future, we will design a novel deep learning model to

improve DTI prediction performance and find potential drugs and

targets for neurodegenerative diseases (Chen et al., 2019; Sun et al.,
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2022; Wang et al., 2023; Zhang et al., 2023). In addition, with the

rapid development of artificial intelligence technologies, novel drug

research, and development for the two diseases can be performed

by molecular generation and retrosynthesis (Sridharan et al., 2022;

Yu et al., 2023).
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