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Introduction

Late-Onset Alzheimer’s Disease (LOAD) is the most common form of Alzheimer’s

disease, accounting for ∼95% of all AD cases (Reitz and Mayeux, 2014). It is believed to be

caused by a complex interplay of genetic and environmental factors. The Apolipoprotein

E (ApoE) ε4 allele is the best-known genetic risk factor for LOAD (Jiang et al.,

2013), but various genome-wide association studies (GWAS) have identified many other

low-penetrance alleles that also influence the risk of LOAD. One such genetic factor is the

clusterin (CLU) gene, also known as apolipoprotein J (ApoJ). This gene has been found to

be one of the most important genetic factors associated with an increased risk of LOAD

in multiple GWAS studies (Harold et al., 2009; Lambert et al., 2009; Seshadri et al., 2010;

Wightman et al., 2021).

The CLU protein is found body wide, including peripheral organs (Ahuja et al., 1996;

Guo et al., 2016; Park et al., 2020), the brain (Pasinetti et al., 1994; Thambisetty et al., 2013;

Moon et al., 2021), and in bodily fluids (Trougakos and Gonos, 2002) such as plasma (De

Silva et al., 1990b; Martinez-Bujidos et al., 2015; Hsu et al., 2017; Liu et al., 2021), urine

(Solichova et al., 2007), cerebrospinal fluid (Nilselid et al., 2006), seminal fluid (Atlas-White

et al., 2000; Saewu et al., 2017), and tears (Yu et al., 2018). The functions of CLU in peripheral

tissues have been well studied and include the clearance of misfolded proteins (Humphreys

et al., 1999), lipid transport (Calero et al., 1999), inhibition of the complement system (Jenne

and Tschopp, 1989), and the regulation of oxidative stress and cell death (Foster et al., 2019).

In the brain, CLU expression is found in astrocytes (Pasinetti et al., 1994; Morgan et al.,

1995; Demattos et al., 2001; Charnay et al., 2008; John Lin et al., 2017; Chen et al., 2021)

and in cortical and hippocampal neurons (Figure 1; O’bryan et al., 1993; Pasinetti et al.,

1994; Herring et al., 2019). The specific functions of CLU in the brain, however, are not as

well-understood. Studies have shown that CLU expression is upregulated in degenerative

conditions, such as AD (Calero et al., 2005; Nuutinen et al., 2009), due to cellular and

oxidative stress or dysregulation of specific signaling pathways (Wong et al., 1994; Gutacker

et al., 1999; Schepeler et al., 2007; Trougakos and Gonos, 2009). However, the literature

provides conflicting results as to whether CLU expression improves or exacerbates cellular

stress (Schreiber et al., 1993; Han et al., 2001; Imhof et al., 2006; Kim et al., 2012; Trindade

et al., 2016; Troakes et al., 2017).

In AD, levels of CLU are increased in the brain (Mcgeer et al., 1992; Lidstrom et al.,

1998) and in cerebrospinal fluid (CSF) (May et al., 1990; Bertrand et al., 1995; Miners et al.,

2017). CLU has been found to bind to amyloid-beta (Aβ) and play a role in Aβ deposition

as well as its clearance (Wilson and Easterbrook-Smith, 1992; Narayan et al., 2011). CLU

has also been found in Aβ plaques, vessels of cerebral amyloid angiopathy (CAA; Figure 1)

(Mcgeer et al., 1992; Craggs et al., 2016; Camacho et al., 2019), associated with neurofibrillary
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tangles (Mcgeer et al., 1992), and to interact with modified Tau

species in human AD brain tissue (Zhou et al., 2014). However,

CLU may also be involved in non-Aβ pathways that could

alter susceptibility to AD (Braskie et al., 2011; Erk et al., 2011;

Thambisetty et al., 2013). Importantly, different single nucleotide

polymorphisms (SNPs) in the CLU gene may exert their effects

in combination with other genetic risk factors, such as APOE4

(Roussotte et al., 2014; Jackson et al., 2019), TREM2 (Yeh et al.,

2016) and BIN1 (Zhou et al., 2014). Additionally, at least three

different mRNA isoforms are produced from the CLU gene (Calero

et al., 1999) and recent research suggests that different variants in

the CLU gene may lead to alterations in the ratios of isoforms being

produced, which in turn could affect the outcome of the disease and

play a role in the development and progression of AD.

FIGURE 1

Clusterin (CLU) in the brain. CLU expression in the brain is found in astrocytes and neurons. CLU has multiple isoforms, including secreted and

non-secreted. Secreted CLU is known to bind Aβ plaques as well as to participate in Aβ uptake by microglia via the TREM2 receptor and Aβ clearance

via the brain vasculature. The figure was created with BioRender.com.

CLU isoforms

Alternative splicing has been implicated in the susceptibility

of Alzheimer’s disease (AD) (Raj et al., 2018) and many genes

associated with AD undergo alternative splicing (Rockenstein et al.,

1995; Zhou et al., 2014; Koch, 2018), CLU being one of them

(Szymanski et al., 2011; Foster et al., 2019; Herring et al., 2019;

Han et al., 2020). CLU consists of 11 exons (two exons are

untranslated) that give rise to secreted and cytosolic isoforms

through alternative splicing. Research challenges exist due to the

limited characterization of CLU mRNA transcript variants present

in different sexes, at different developmental timepoints, cell types,

and in different brain areas in a healthy brain (De Silva et al., 1990a;

Herring et al., 2019).
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CLU protein exists in multiple forms, including secreted

(sCLU) and non-secreted/intracellular isoforms which are targeted

to at least three different compartments within the cell (cytosol,

ER/mitochondria, nucleus; Herring et al., 2019). Unless specified,

here we will call all non-secreted isoforms intracellular CLU

(iCLU). The different forms of CLU may have distinct functions,

depending on where and when they are found, as well as how

long they are produced. The sCLU is produced from Exon 2 (Rizzi

and Bettuzzi, 2010; Ling et al., 2012) and contains an endoplasmic

reticulum (ER) signaling peptide. Similar to the small heat-shock

proteins, sCLU can function as a chaperone and bind to partially

unfolded proteins preventing their aggregation (Humphreys et al.,

1999; Wojtas et al., 2020). (Yeh et al., 2016; Wojtas et al., 2017;

Yuste-Checa et al., 2021). iCLU forms have been suggested to play a

role in apoptosis (Yang et al., 2000; Debure et al., 2003; Zhang et al.,

2005), DNA repair (Yang et al., 2000), transcription (Santilli et al.,

2003) and microtubule organization (Kang et al., 2005). One of the

iCLU is produced from Exon 3 and lacks Exon 2 (Leskov et al.,

2003; Kim et al., 2012; Prochnow et al., 2013), while another iCLU

isoform lacks exon 5 (Kimura and Yamamoto, 1996; Kimura et al.,

1997; Leskov et al., 2003). sCLU has been suggested to promote cell

survival (Trougakos and Gonos, 2009), while iCLU is associated

with decreased cell growth and apoptosis (Yang et al., 2000; Scaltriti

et al., 2004; Kim and Choi, 2011). The iCLU that lacks exon 2

has been termed a nuclear CLU (nCLU) and described as a cell

death protein that can be found in the cytoplasm and nuclei of cells

(Kimura and Yamamoto, 1996; Yang et al., 2000; Leskov et al., 2003;

Prochnow et al., 2013). However, this isoform is present at very low

levels (Yang et al., 2000; Prochnow et al., 2013) or, as some state,

is not produced at all (Andersen et al., 2007). It is worth noting

that many studies on the role of CLU isoforms have been conducted

in vitro, in cancer cells, and not in the healthy brain (Leskov et al.,

2003; Rodriguez-Pineiro et al., 2006; Moretti et al., 2007; Rizzi and

Bettuzzi, 2010).

In the most comprehensive study of CLU isoforms so far, CLU

mRNA transcripts have been characterized in the rodent brain,

primary cultures of rodent and human neurons and astrocytes,

and in rodent and human brain-derived cell lines (Herring et al.,

2019). In the cortex, iCLU could be found in the nuclear, organelle,

and cytosolic compartments of neurons, but only low levels were

detected in astrocytes. Six different CLU immunoreactive bands (5

in cytosolic and 1 in nuclear fraction) were identified in primary

cultures of rodent cortical neurons. Five immunoreactive bands (4

in cytosolic and 1 in nuclear fraction) were detected in astrocytes. It

was concluded that two isoforms were exclusive to neurons. Three

different Exon 1 variants were discovered—Exon 1A, Exon 1B,

and Exon 1C. Exon 1A and Exon 1C are expressed in astrocytes

and neurons, respectively, while Exon 1B mRNA transcript was

detected in both cell types and, thus, two neuron-specific CLU

isoforms likely originate from a neuron-specific Exon 1C variant.

A novel mitochondrial CLU (mitoCLU) was identified in female

adult cortical tissue, which is translated from a non-canonical start

site CUG (Leucine) in Exon 3. mitoCLU is also found in human

cells but is generated from an AUG and a CUG start sites located in

Exon 3 (Herring et al., 2019). In light of these findings, there may

be a need to re-evaluate some of the historical results.

CLU isoforms in AD

Multiple CLU SNPs, both intronic and exonic, have been

associated with LOAD (Harold et al., 2009; Lambert et al.,

2009; Moon et al., 2021). Interestingly, while some confer

protection against AD, others have been linked to an increased

AD risk [reviewed in Woody and Zhao (2016)]. Both sCLU

and nCLU are upregulated in response to stress (Nizard et al.,

2007) and inflammation, and CLU and CLU mRNA is altered

in neurodegenerative disorders (Grewal et al., 1999; Sasaki

et al., 2002; Ingram et al., 2014; Labadorf et al., 2015; Das

Gupta et al., 2019; Yuste-Checa et al., 2022), including AD

(Calero et al., 2005; Zhou et al., 2014; Bettens et al., 2015;

Foster et al., 2019; Jackson et al., 2019). However, while sCLU

is thought to be protective, iCLU isoforms were linked to

cytotoxicity (Nizard et al., 2007; Prochnow et al., 2013; Yeh

et al., 2016; Wojtas et al., 2017; Yuste-Checa et al., 2021).

Therefore, CLU variants and other factors that modify the ratio

between different isoforms could also alter the risk for LOAD

and associated brain pathology through the multiple functions

attributed to CLU.

The most well-known SNP is rs11136000, which is located in

intron 3 and is carried by about 36% of the Caucasian population

(Bertram et al., 2007; Braskie et al., 2011). The major allele,

rs1113600C, is associated with reduced expression of CLU and

an increased risk of AD (Ling et al., 2012; Roussotte et al.,

2014; Tan et al., 2016). This allele has also been linked to faster

cognitive decline (Thambisetty et al., 2013) and poorer memory

scores (Pedraza et al., 2014). Additionally, research has shown

that the C allele can change brain structure and network activity

in young adults, suggesting that brain circuitry in early life may

contribute to cognitive effects later in life (Braskie et al., 2011;

Lancaster et al., 2015). In contrast, the minor allele, rs11136000T,

is associated with increased CLU expression and a reduced risk

of AD (Ling et al., 2012; Roussotte et al., 2014; Tan et al.,

2016). Studies have also found that this allele is associated with

increased nCLU expression, but not sCLU. The ratio of expressed

isoforms may change depending on the CLU genotype, with

both nCLU and sCLU levels increasing with AD (Ling et al.,

2012).

Other SNPs have also been linked to changes in CLU protein

localization, for example, rare SNPs located in exons 5 and 6

have been identified and linked to alterations in CLU isoform

production in AD, such as a reduction in sCLU (Bettens et al.,

2012, 2015; Han et al., 2020). Studies with Tg4510 mice, which

overexpress the human mutant P301L Tau (Ramsden et al., 2005),

have also shown changes in CLU expression. In these mice, sCLU

was upregulated in the hippocampus at 5.5 months, but a truncated

version of iCLU was increased in the hippocampus as early as 2

months (pre-tangle time point). This truncated version of iCLU

was found to interact directly with Tau protein, but outside of

the microtubule binding region. Interestingly, the Tg2576 mouse

model of amyloidosis did not show any age-related changes in

CLU isoform expression (Zhou et al., 2014) suggesting that in

this study Tau rather than amyloid was driving changes in CLU

isoform expression.
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CLU function in AD

The availability of CLU mouse models is currently limited to

two models from the Jackson Laboratory. The first model is a

CLU−/− model (JAX:005642) that was developed over 20 years

ago (Mclaughlin et al., 2000). The second model contains a 2kb

region of human DNA sequence that spans from intron 7 to exon 9,

including a human LOAD CLU risk SNP rs2279590 (JAX:037496),

that we have produced as part of the MODEL-AD consortium that

is currently undergoing phenotyping. Recently, it was discovered

that the existing CLU−/− model is not a complete KO as the

mitoCLU isoform is still present (Herring et al., 2019). In addition,

a mouse with the deletion of exon 3 was created in 2021, but, except

for the effect on the auditory function, has not been characterized

yet or validated (Zhao et al., 2021). Given the association between

CLU risk alleles and altered CLU isoform production (Foster et al.,

2019; Han et al., 2020), there is a significant urgency to validate CLU

functions identified with the currently available CLU−/− model in

the Jackson Laboratory, and possibly to create the new CLU−/−.

The function of CLU in AD has been studied using mouse

models, including the CLU−/− model and its crosses with other

known ADmodels. Studies have shown that loss of CLU in PDAPP

transgenic mice leads to a reduction in dense core plaques and

neuritic dystrophy (Demattos et al., 2002), while crossing of the

same CLU−/− with APP/PS1 mice increased incidence of cerebral

amyloid angiopathy while also reducing dense core plaques (Wojtas

et al., 2017). Notably, CLU−/− mice show impaired presynaptic

function, and reduced spine density (Chen et al., 2021). CLU−/−

crossed with the 5xFAD mouse model of amyloidosis led to

decreased levels of soluble Aβ oligomers and amyloid plaques and

an increase in synaptic proteins as well as improved scores of

behavioral tests. However, these results were only seen in younger

mice, suggesting CLU’s role in the early stages of AD (Oh et al.,

2019). However, due to incomplete KO of all CLU isoforms in the

CLU−/− mice used in all of these studies, these findings need to be

re-explored. Additionally, some data on CLU function is available

through CLU overexpression studies, where overexpression in

astrocytes of 5xFAD mice reduced amyloid pathology, neuronal

toxicity, and rescued synaptic deficits (Chen et al., 2021). A recent

publication also describes the effects of removing Exon 2 from

CLU and shows downregulation of extracellular matrix pathways

in cultured neurons (Foster et al., 2022). However, no AD-related

CLU mutations have been identified in Exon 2, which harbors the

ER-targeting sequence (Moon et al., 2021; Foster et al., 2022).

There are two ways that CLU has been suggested to be

involved in the Aβ clearance – transvascular and microglial.

Transvascular pathway encompasses Aβ clearance across the

blood-brain barrier (BBB) as a free peptide and/or bound to

APOE or CLU. While APOE2 and APOE3 bound Aβ is removed

via endothelial low-density lipoprotein receptor-related protein 1

(LRP1), CLU facilitates Aβ clearance via endothelial low-density

lipoprotein receptor-related protein 2 (LRP2) (Bell et al., 2007;

Zlokovic, 2011; Zhao et al., 2015b). APOE4 cannot bind LRP1

and, thus, together with aging, leads to enhanced risk of cerebral

amyloid angiopathy (CAA) (Zhao et al., 2015a,b). In 12 month

APP/PS1;CLU−/− mice, significant increase in dense core Aβ

plaques was observed in leptomeningeal vessels and penetrating

arterioles. Accordingly, plaques were reduced in cortical and

hippocampal regions indicating a shift to Aβ accumulation in the

perivascular drainage pathways leading to increased CAA in the

absence of CLU. This study also showed an increase in Aβ40:42

ratio due to a longer Aβ40 clearance time in mice lacking CLU

(Wojtas et al., 2017). Similarly, in 12 month PDAPP;CLU−/− mice,

a reduction in Aβ plaques was reported, but no changes in the

total Aβ levels in the cortex or hippocampus or effect on CAA.

Interestingly, authors did observe an increase in soluble Aβ in the

brain (Demattos et al., 2004). It was suggested that the differences in

effect on CAAmay be due to the younger age that the mice develop

CAA at, which is 6 and 12 months for the APP/PS1, PDAPP mice,

respectively (Nelson et al., 2017). Overall, CLU plays a role in the

Aβ clearance via the brain vasculature, thus, SNPs in CLU leading

to changes in the levels of secreted CLU, may affect the severity

of CAA observed in AD. Given that Aβ40 is the predominant Aβ

species which accumulates in the vessel walls and presents as CAA

(Yamada, 2015; Robert et al., 2017), lack of CLUmay be responsible

for the altered clearance of Aβ40 specifically and, in turn, the

enhanced risk of CAA.

CLU and APOE have been identified as ligands of the triggering

receptor expressed on myeloid cells 2 (TREM2) (Yeh et al., 2016).

TREM2 is a receptor that is selectively expressed onmicroglia in the

brain (Wang et al., 2015; Ulland et al., 2017; Nugent et al., 2020) and

macrophages in the periphery (Chung et al., 2002), and is known

to play a role in inflammatory signaling (Kobayashi et al., 2016),

microglial metabolism (Ulland et al., 2017), phagocytosis (Poliani

et al., 2015; Wang et al., 2015), activation (Jay et al., 2015; Wang

et al., 2015), survival (Wang et al., 2015; Ulland et al., 2017; Zheng

et al., 2017), and proliferation (Poliani et al., 2015). TREM2 was

identified as a lipid receptor and was shown to control cholesterol

and phospholipid metabolism in the brain (Wang et al., 2015;

Andreone et al., 2020; Nugent et al., 2020; Li et al., 2022). Lipidated

CLU can bind to Aβ, and CLU-Aβ complexes can then be taken

up by microglia through binding to TREM2 (Yeh et al., 2016). This

suggests that CLUmay be facilitating microglial Aβ uptake through

TREM2 (Figure 1), and a lack of sCLU due to changes in CLU

isoform expressionmay affect Aβ uptake and clearance. In addition,

given the role that lipid metabolism plays in AD (Zhu et al., 2019;

Kao et al., 2020; Paasila et al., 2021; Turri et al., 2022), TREM2

function as a lipid metabolism regulator (Wang et al., 2015; Nugent

et al., 2020; Li et al., 2022), and CLU binding lipids and cholesterol

to influence their trafficking (Matukumalli et al., 2017; Foster et al.,

2019), the interaction between TREM2 and CLU should be further

explored as it could have a great impact on AD pathogenesis.

Conclusions

In conclusion, the role of CLU in Alzheimer’s disease is

complex and not fully understood. Multiple CLU isoforms have

been identified, but future research is needed to understand their

transcription patterns in different cell types, brain regions, during

development and aging, in healthy brain and disease as well as

different sexes. Moreover, it is still unclear how each identified

AD-linked CLU SNP alters the ratios of translated CLU isoforms.

Studies utilizing a single CLU−/− model and crossing it with other

known mouse AD models have shown a range of CLU functions in

the AD brain. However, these studies may need to be re-evaluated
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due to incomplete KO of all the CLU isoforms in this model. New

and improved CLU models focusing on different CLU isoforms are

needed to elucidate the specific role of CLU in healthy brain, the

development and progression of AD.
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