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A nerve-wracking buzz: lessons
from Drosophila models of
peripheral neuropathy and axon
degeneration
Martha R. C. Bhattacharya*

Department of Neuroscience, BIO5 Institute, University of Arizona, Tucson, AZ, United States

The degeneration of axons and their terminals occurs following traumatic, toxic,

or genetically-induced insults. Common molecular mechanisms unite these

disparate triggers to execute a conserved nerve degeneration cascade. In this

review, we will discuss how models of peripheral nerve injury and neuropathy

in Drosophila have led the way in advancing molecular understanding of axon

degeneration and nerve injury pathways. Both neuron-intrinsic as well as glial

responses to injury will be highlighted. Finally, we will offer perspective on what

additional questions should be answered to advance these discoveries toward

clinical interventions for patients with neuropathy.
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Introduction

Peripheral nerve damage and subsequent degeneration of axons occurs in a diverse
group of syndromes and, taken together, makes peripheral neuropathy one of the most
frequent human neurodegenerative conditions (Singer et al., 2012). Peripheral neuropathy
and peripheral nerve injury occur due to localized injuries like sciatica and carpal tunnel
syndrome and via neurotoxicity due to high glucose levels or exposure to microtubule-
disrupting chemotherapeutic agents (Theiss and Meller, 2000; LaPointe et al., 2013; Menorca
et al., 2013; Albers and Pop-Busui, 2014; Fukuda et al., 2017). In addition, spontaneous or
hereditary forms of peripheral neuropathy (including both sensory and motor impairment)
can disconnect or disrupt function of circuits (Züchner et al., 2004; Timmerman et al.,
2013). Finally, neuroinflammatory diseases like multiple sclerosis cause demyelination and
degeneration of axons (Singh et al., 2017). Because of the relative ease of access to peripheral
structures compared to those in the central nervous system, peripheral nerves are an
attractive setting for studies of degenerative pathways that also affect the brain.

Pathological axon degeneration is also called Wallerian degeneration due to its initial
description in the frog hypoglossal nerve by Waller (1851). Even Waller (1851) recorded
macroscopic findings that match what we see today: a delay period following injury, a rapid
axon fragmentation process, and the subsequent clearance of the fragmented nerve. We
now have more sophisticated tools to watch this process both in vitro and in vivo in many
organisms (Tao and Rolls, 2011; Shin et al., 2012; Babetto et al., 2013; Vargas et al., 2015;
Tian et al., 2016; Li et al., 2018). The molecular study of axon degeneration was launched
by a serendipitous discovery of the Wallerian Degeneration Slow (Wlds) mouse phenotype
and, later, the responsible genomic alteration [triplication of the NAD-producing enzyme,
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nicotinamide mononucleotide adenylyltransferase (NMNAT1)]
(Lunn et al., 1989; Coleman et al., 1998; Mack et al., 2001). These
discoveries showed that axon degeneration, rather than a passive
process, was actively controlled: the initiation, pace, and extent are
determined by the activation state of cellular pathways. This led
to a flurry of research that has identified the key components of
the Wallerian degeneration pathway (summarized below) (Miller
et al., 2009; Bhattacharya et al., 2012, 2016; Osterloh et al., 2012;
Shin et al., 2012; Xiong et al., 2012; Neukomm et al., 2017) and
led to emerging strategies for clinical intervention in peripheral
neuropathy (DiAntonio, 2019; Feldman et al., 2022; Shi et al., 2022).

Drosophila melanogaster has led the way in identifying the
molecular pathways downstream of axon injury that result in
axonal fragmentation and disassembly. Using fly models of
genetic, traumatic, or toxic nerve injury, mutations in multiple fly
genes including Drosophila sterile alpha and TIR motif containing
protein (dSarm), highwire (hiw), and wallenda (wnd) genes were
first identified as axo-protective (Miller et al., 2009; Osterloh et al.,
2012; Xiong et al., 2012). Following initial descriptions of pathways
in fly, later work in mouse has universally confirmed the key
Drosophila discoveries (Table 1). Given this excellent foundation,
fly models of peripheral neuropathy and axon degeneration
continue to be a key source of information about the mechanisms
activated by nerve injury and strategies to mitigate its effects.

Larval and adult stage Drosophila have many accessible
peripheral nerves from which to choose for neuropathy studies
(Figure 1). In larvae, the body is organized in repeating hemi-
segments, and nerves innervate each hemi-segment in a stereotyped
pattern. The larval nerves contain both sensory and motor axons,
as in mice. Because these nerves leave the VNC in close proximity
to each other, a researcher can injure 6–8 nerves simultaneously
in one animal (or leave them as uninjured controls) (Brace and
DiAntonio, 2020). In adults, nerves entering appendages such as
antennae, legs, and wings are ideal models for neuropathy studies
due to their accessibility (Phelps et al., 2021). Two other advantages
of adult axon degeneration models (versus larval studies) are (1)
they allow for a longer analysis of axon injury effects (up to 60 days),
and (2) the function of these axons can be read out behaviorally
using olfactory, locomotor, or grooming assays (Wang et al., 2011;
Neukomm et al., 2017; François-Moutal et al., 2019; Paglione et al.,
2020).

In this review, I will highlight new findings from Drosophila
that have potential to offer both better mechanistic understanding
of different types of neuropathy and relevant directions for future
patient care. The main (though not exclusive) focus will be on
peripheral nerve injuries and disease models in Drosophila, though
axon degeneration certainly occurs in central nervous system
disorders such as Alzheimer’s Disease and tauopathies (Law et al.,
2022). I will also offer some caveats of the Drosophila models that
should be considered when extrapolating findings to mice and man.

Injury and toxicity-induced
Wallerian degeneration in
peripherally projecting nerves

Physical crush or transection of fly nerves is perhaps the
most utilized neuropathy-inducing insult because it permits

synchronization of the injury time course in multiple axons and
also because the injury is localized to a single site for each nerve.
Using olfactory antennal axotomy (by removal of one of the two
antennae, which retains viability), early candidate approaches and
unbiased screens identified Wallerian degeneration factors such as
dSarm1 and Wallenda (Miller et al., 2009; Osterloh et al., 2012).
In a parallel screening paradigm using transection of wing axons,
the axonal localization of mitochondria was found to be critical for
axonal maintenance following injury (Fang et al., 2012). Together,
these three screens set the stage for a large expansion of this field
and, importantly, established Drosophila as a strong gene discovery
platform for evolutionarily conserved nerve injury factors (Miller
et al., 2009; Sasaki et al., 2009; Bhattacharya et al., 2012, 2016; Xiong
et al., 2012; Babetto et al., 2013; Neukomm et al., 2014).

Sarm1 (the mammalian ortholog of dSarm) is widely
appreciated to be the “central executioner” for axon degeneration
(Osterloh et al., 2012; DiAntonio, 2019). Initially characterized
as an adaptor for Toll-like receptors (Couillault et al., 2004;
Liberati et al., 2004; Carty et al., 2006), Sarm1 was unexpectedly
found to have enzymatic activity that cleaves NAD+ molecules,
reducing their availability in neurons and causing metabolic
catastrophe (Essuman et al., 2017). It is this NAD-destroying
function that precipitates the rapid degeneration of axons in vitro
and in vivo (Geisler et al., 2019; Bosanac et al., 2021). To probe
the domains responsible for this action, multiple groups have
built transgenic Drosophila lines that express structurally altered
variants of dSarm or Sarm1 (Neukomm et al., 2017; Brace et al.,
2022; Herrmann et al., 2022). These lines enabled the discovery
of separate signaling functions of Sarm1 in developmental versus
degenerative signaling, highlighting multiple ways that this NAD-
cleaving enzyme contributes to nervous system integrity (Brace
et al., 2022; Herrmann et al., 2022).

The pathway for activation of Sarm1 is still under investigation,
but clues have recently emerged. In one study by Izadifar et al.
(2021), With-No-Lysine (K) (Wnk) kinase was discovered to be an
inhibitor of Sarm1 activity in both Drosophila and mice. Loss of
dWnk causes axon degeneration in multiple model systems, and
its over-expression prevents some Sarm1-mediated disruption of
neural circuits (Izadifar et al., 2021). Recently it was also found
that nicotinamide mononucleotide (NMN), a synthetic precursor
of NAD+, binds to an allosteric site on the armadillo (ARM) repeat
domain and promotes Sarm1 activation. As the NMN/NAD+ ratio
increases, Sarm1 activity also increases (Figley et al., 2021). It will
be of future interest to examine how Wnk kinase expression affects
the metabolic state of the neuron, which could link these two
observations.

Intersecting with the dSarm/Sarm1 pathway, the proteins
Highwire [PAM-Highwire-Rpm-1 (Phr1) in mammals] and
Wallenda [dual leucine zipper kinase 1 (Dlk1) in mammals] also
promote injury-induced degeneration and were first recognized
for this role using injuries in the fly larval segmental nerves
and the olfactory nerves, respectively (Miller et al., 2009; Xiong
et al., 2012). Work in both fly and mouse systems demonstrated
that Hiw/Phr1, an E3 ubiquitin ligase, targets an axonally-
transported NMNAT variant, NMNAT2, for degradation (Gilley
and Coleman, 2010; Xiong et al., 2012; Babetto et al., 2013).
Thus, when Hiw/Phr1 is absent, NAD+ is produced in higher
levels in the axon, providing axo-protection after injury. The E3
ubiquitin ligase complex containing Highwire also downregulates

Frontiers in Aging Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1166146
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1166146 August 2, 2023 Time: 15:16 # 3

Bhattacharya 10.3389/fnagi.2023.1166146

TABLE 1 Genes discovered in Drosophila for roles in axon degeneration.

Gene (fly) Gene
(mouse)

Function in
axon

degeneration

Molecular role Cell type Fly discovery
references

Mammalian
references

sarm SARM1 Pro-degenerative NAD+ enzymatic
destruction

Neurons Osterloh et al., 2012 Osterloh et al., 2012

highwire (hiw) PHR1 Multiple roles E3 ubiquitin ligase Neurons Xiong et al., 2012 Babetto et al., 2013

wallenda (wnd) DLK1 Pro-degenerative MAP3K Neurons Miller et al., 2009 Miller et al., 2009

skpA SKP1A Pro-degenerative Component of E3
ubiquitin ligase

Neurons Brace et al., 2014 Yamagishi and
Tessier-Lavigne, 2016

axundead (axed) TBD Pro-degenerative Ubiquitin tagging of
proteins

Neurons Neukomm et al., 2017 N/A

retinophilin (rtp) MORN4 Pro-degenerative Membrane tethering
of myosin

Neurons Bhattacharya et al., 2012 Bhattacharya et al.,
2012; Mecklenburg

et al., 2015

draper (drpr) MEGF10 Debris clearance Signaling to activate
MMP-1 and
phagocytosis

Glia MacDonald et al., 2006;
Logan et al., 2012

Wu et al., 2009

tmep TMEM184B Pro-degenerative Endolysosomal
control

Neurons Bhattacharya et al., 2016 Bhattacharya et al., 2016

wnk WNK1 Axo-protective Serine-threonine
kinase

Neurons Izadifar et al., 2021 Izadifar et al., 2021

raw TBD Pro-degenerative Restrains JNK
signaling

Neurons Hao et al., 2019 N/A

nmnat* NMNAT1,2,3 Axo-protective NAD+ production Neurons Fang et al., 2012; Xiong
et al., 2012

Mack et al., 2001

Shown are fly gene names and abbreviations, mouse gene names, functions in axon degeneration, molecular roles, and cell types in which each protein acts. References provided are for the
initial discovery of roles in axon degeneration in Drosophila or mouse. In the mouse reference column, N/A indicates that a clear mammalian ortholog of the fly gene has not been identified.
An asterisk indicates that NMNAT was first identified as axo-protective in mice and later confirmed to be conserved in fly Wallerian degeneration.

FIGURE 1

Locations of peripheral nerve injuries commonly used in Drosophila melanogaster and molecular pathway of axon degeneration. (A) Larval
segmental nerves (green) can be crushed with forceps or cut with scissors. Larvae can also be fed drugs that cause nervous system toxicity, such as
paclitaxel. (B) Peripherally projecting axons of central nervous system structures (brain and thoracic ganglion) can be severed by removing
appendages such as antennas or legs or by cutting through the wing margin. On the brain, the location of olfactory glomeruli is shown with white
circles. On the thoracic ganglion, the location of cell bodies of motor neurons (MN) from the legs is shown in green, while the cell bodies from wing
neurons are shown in blue. (C) Current proposed pathway of axon degeneration centered around regulation of NMNAT2 and SARM. Gene names
use mammalian nomenclature. A high NMN/NAD+ ratio triggers Sarm1 activation, which triggers a positive feedback loop to further reduce NAD+

via enzymatic cleavage. NMNAT2 is the predominant axonal form in mammals, but axonally localized NMNAT1 can provide a similar function. Not
pictured: Axed, Wnk1, or intermediate MAP kinase pathway members [MKK4/MKK7 and c-Jun n-terminal kinase (JNK)]. Larval image modified from
Balapagos and used under Creative Commons ShareAlike Genetic license (CC BY-SA 2.0). Image creation was assisted by Biorender.com.
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a pro-degenerative pathway controlled by the MAP triple kinase
(MAP3K) Wallenda/DLK (Collins et al., 2006). Downstream of
Wallenda/DLK and other MAP3Ks, multiple factors ensure the
fragmentation of injured or NAD+ -depleted axons (Shin et al.,
2012; Huntwork-Rodriguez et al., 2013; Larhammar et al., 2017).

Axon degeneration in Drosophila can also be initiated by
treatment with drugs that induce nerve damage. For example,
in humans, microtubule-disrupting components of conventional
chemotherapy cocktails disrupt axon transport in long axons,
leading to their demise. Using the drug paclitaxel (taxol) to trigger
peripheral axon degeneration in Drosophila larvae, additional
neuronal axon degeneration factors were identified including
membrane occupation and recognition nexus 4 (MORN4) and
transmembrane protein 184b (TMEM184B) (Bhattacharya et al.,
2012, 2016). How these factors fit into known signaling pathways,
specifically those controlled by Sarm and by MAP kinase cascades,
remains to be determined.

Recent studies have expanded the focus from neuron-intrinsic
factors to reveal information on the role of glia in injury responses.
Flies have glia that cover the range of functions expected of
mammalian glial types, including those for nerve insulation
(wrapping glia), barrier function (subperineurial and perineurial
glia), synaptic regulation (astrocyte-like glia) and neuronal cell
body contacts (cortex glia) (Logan and Freeman, 2007; Yildirim
et al., 2019). Drosophila subperineurial glia also have engulfment
functions in both development and disease (Sonnenfeld and Jacobs,
1995). In the absence of injury, peripheral axons in Drosophila must
be maintained via appropriate wrapping and metabolic signaling;
these processes are controlled by the discoidin domain receptor
(Ddr) and TGFβ signaling, respectively (Corty et al., 2022; Lassetter
et al., 2023).

Following axonal injury, the Drosophila glial surface receptor
Draper initiates the phagocytic pathway involved in severed axon
clearance (MacDonald et al., 2006). Using appendage axotomy
to robustly activate glial injury responses, the evolutionarily
conserved signaling pathway downstream of Draper was recently
identified (Lu et al., 2017; Purice et al., 2017). Draper signaling
initiates transcriptional changes in glia following nerve injury
(Lu et al., 2017; Purice et al., 2017). This cascade proceeds via
transcriptional activation by STAT92E and AP-1. Through this
transcriptional regulation, matrix metalloproteinase MMP-1 gene
expression is upregulated and is necessary for remodeling of tissues
and glial membrane expansion following injury (Purice et al.,
2017). Other differentially activated glial genes have yet to be fully
characterized in this system, but overall the analysis points to
both Draper and Toll receptor signaling as key determinants of
phagocytic and immune responses to injury.

Inherited sensory neuropathy
models

Drosophila models of Charcot-Marie-Tooth (CMT)
syndrome have yielded important insights into the pathological
mechanisms causing sensory and motor neuropathy. CMT is
linked to mutations in over 100 genes (WU Neuromuscular,
2023) and can be classified into myelin-affecting (CMT1,
CMT4) and axon-affecting (CMT2, CMTX) phenotypes

(Bolino and D’Antonio, 2023). Regardless of the subtype, all
CMTs ultimately result in axon degeneration of peripheral nerves.
Drosophila models of CMT2-associated mutations in Mitofusin2
(MFN2), have revealed that both loss- and gain-of-function human
variants of MFN2 cause CMT-associated neurodegeneration and
have implicated excessive mitochondrial fusion and disrupted
mitochondria-ER contacts in disease pathogenesis (El Fissi et al.,
2018; Shen et al., 2021). In another CMT subtype (CMT4J),
autosomal recessive mutations in the PIP2 phosphatase FIG4
in humans cause a syndrome showing degeneration both in
central and peripheral neuron populations (Chow et al., 2007).
In mice, FIG4 mutation reduces the number of large diameter
myelinated axons and impairs nerve conduction and action
potential generation (Chow et al., 2007). By altering Drosophila
Fig4 to introduce mutations corresponding to human patient
variants, we now know that impaired phosphatase activity is not
the reason for the patient syndrome and that its role in the nervous
system involves the maintenance of lysosomal membrane integrity
(Bharadwaj et al., 2016). By taking advantage of the “rough
eye” phenotype caused by dFig4 mutations in flies, a modifier
screen recently resulted in the identification of long non-coding
RNAs that whose knockdown can suppress some phenotypes of
dFig4 (Muraoka et al., 2018; Shimada et al., 2020). Whether this
phenotype is due to a direct effect on Fig4 expression levels or on
other related pathways has not yet been determined, but it may
offer clues for how to molecularly target the Fig4 pathway in CMT
4J patients.

Spinal muscular atrophy (SMA), which causes motor neuron
loss, can be modeled in Drosophila by depleting the survival
motor neuron (SMN) protein; these models also exhibit motor
neuron death. By taking advantage of the extremely well-described
trajectory of motor neuron cell fate decisions during Drosophila
embryonic development (Mark et al., 2021; Meng and Heckscher,
2021), Grice and Liu (2011, 2022) were able to show that
early neurogenesis disruption, in addition to later neuromuscular
junction (NMJ) dysfunction, contribute to locomotor phenotypes
in SMA.

Some limitations to extrapolation of Drosophila findings to
mammalian systems should be considered. First, Drosophila do
not myelinate their nerves. In some peripheral neuropathies such
as CMT Type 1A, Schwann cell disruption by mutations in
peripheral myelin protein 22 (PMP22) or myelin protein zero
(MPZ) cause secondary axon degeneration (Bolino and D’Antonio,
2023). The lack of myelination in Drosophila suggests this subtype
is better modeled in vertebrates. Second, Drosophila lack an
adaptive immune system. Therefore, non-neuronal responses
to nervous system injury are likely simplified when compared
to their mammalian counterparts. In the mouse, for example,
sequential post-injury infiltration of neutrophils, macrophages and
lymphocytes into injured nerves contribute to sensitization and
pain (Marchand et al., 2005).

Dendrite degeneration

Patients with poorly controlled diabetes often experience
peripheral neuropathy, which presents as hyperalgesia (extra
sensitivity to normally innocuous stimuli), which can later progress
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to numbness. Inter-epidermal nerve fibers in the skin that subserve
these sensations can show dystrophic terminals and withdrawal
from the epidermis (Cheung et al., 2015). Patients with painful
diabetic neuropathy also show decreases in intraepidermal nerve
fiber density, indicating that nerve terminals are disrupted (Cheung
et al., 2015). Drosophila fed a high sugar diet show thermal
nociceptive hypersensitivity, similar to painful neuropathy in
humans (Dabbara et al., 2021). This phenomenon is driven by
sensory neuron function: when insulin receptor expression is
impaired specifically in sensory neurons, overall dendrite length
of multidendritic Class IV sensory neurons (which tile the cuticle
wall) is reduced and animals show persistent hyperalgesia (Im et al.,
2018). Thus the Drosophila system is well suited to examine not
only pathological axon damage but also dendrite dysfunction.

Recent work has highlighted the similarities and differences
between axon and dendrite degeneration by taking advantage of
the class IV sensory neurons described above. In this system, Sarm
over-expression or NMNAT knockout cause dendrite degeneration,
suggesting that dendrites also degenerate via NAD+ depletion (Ji
et al., 2022). The process of fragmentation was found to be separable
from that of phagocytic clearance, done by endothelial cells in
the larval cuticle. The authors describe a dendrite degeneration
model which proposes three NAD+ “checkpoints:” one which
activates Sarm, one in which additional Sarm-induced NAD+

exposes phosphatidylserine (PS) on the surface of injured dendrites
to recruit phagocytic cells, and finally an ultra-low NAD+ level that
causes dendrite breakdown independent of phagocytosis (Ji et al.,
2022). These intriguing results suggest that there are more levels of
control of neurite breakdown than previously appreciated. Further
work will be required to confirm the alterations in NAD+ levels
directly and to examine whether this model extends to mechanisms
in axons or in other locations where glia rather than epidermal cells
are responsible for phagocytosis.

Motor neuropathy and ALS models

The Drosophila larval neuromuscular junction has long been
appreciated as a phenomenal location for studies of synaptic
function; indeed, significant findings on the genes controlling the
synaptic vesicle cycle were initially identified using this platform
(Zhang, 2003; Frank et al., 2020). Using flies to model motor
neuropathies such as amyotrophic lateral sclerosis (ALS) thus
has been very well received. One caveat to the point-by-point
comparison to mammalian systems is that, in mammals, the
neuromuscular junction is cholinergic rather than glutamatergic.
However, basic principles of neural toxicity of ALS-linked proteins
are easily modeled in Drosophila larval and adult peripheral nerves
(Yang et al., 2015). Some studies also use photoreceptor neurons
or the central brain to investigate neuron death associated with
ALS-linked gene expression (Ihara et al., 2013; Cunningham et al.,
2020; Dubey et al., 2022). Here we will focus on axonal and synaptic
effects of ALS genes in Drosophila.

The simplicity of Drosophila transgenic creation has permitted
many models of ALS in which human or Drosophila versions of
disease-associated protein variants can be expressed in spatially
and temporally specific ways using binary expression systems
like GAL4-UAS (Brand and Perrimon, 1993). For example, TDP-
43, a protein whose aggregation is a hallmark of ALS and

other neurodegenerative diseases, can be expressed in Drosophila
larval motor neurons or in accessible adult structures (eyes, legs,
or wings) to evaluate the pathways leading to motor neuron
dysfunction and loss (Li et al., 2010; Estes et al., 2011; Sreedharan
et al., 2015). Using pupal lethality as a readout of TDP-43
toxicity, an innovative drug screen for ALS suppressors identified
pioglitazone, a PPARγ agonist, as a compound that mitigates
TDP-43-dependent locomotor dysfunction (Joardar et al., 2015).
However, this compound does not protect against all genetic causes
of ALS and its mechanism is still unclear. Metabolomic profiling
of larvae with TDP-43 over-expression has also revealed a role
for the Tricarboxylic acid (TCA) cycle in the pathology of ALS
(Loganathan et al., 2022).

In 2011, two groups studying ALS cohorts identified a
hexanucleotide expansion in chromosome 9, open reading frame
72 (C9orf72) as a cause of ALS, and this alteration has since
been appreciated to be the most common genetic alteration in
sporadic ALS cases (DeJesus-Hernandez et al., 2011; Renton et al.,
2011). While no C9orf72 homolog exists in flies, Drosophila models
have been instrumental in understanding how this hexanucleotide
expansion, which causes expression of multiple dipeptide repeat
proteins, cause neurodegeneration. One of the biggest strengths of
fly models is the ability to perform in vivo forward genetic screens,
which have identified mediators and modifiers of dipeptide repeat
toxicity (Xu et al., 2013; Solomon et al., 2018; Goodman et al.,
2019). Drosophila models are also used to validate in vitro screening
results in cultured cells (Donnelly et al., 2013). For example,
stress granule accumulation occurs in ALS-affected neurons and
disrupts critical cellular functions like nucleocytoplasmic transport
and RNA metabolism (Li et al., 2013; Zhang et al., 2015, 2018).
Markmiller et al. (2018) performed a screen in the Drosophila
eye for suppressors of the ALS-associated “rough eye” phenotype
and identified a number of novel candidates. Candidates were also
studied directly in peripheral nerves of the Drosophila wing, and 5
novel stress granule proteins were identified as modifiers of the ALS
phenotype (Markmiller et al., 2018).

Drosophila as a validation platform
for newly discovered neuropathy
genes

Whole genome sequencing of rare disease patient samples,
and genome-wide association studies, are continuously generating
predictions of the importance of individual genetic loci to disease
risk or severity. In order to demonstrate a true effect of these genetic
variants, it is often required to modify the gene’s expression (up or
down), either alone or in the background of a disease model. The
costs and time associated with doing these rigorous experiments
in mice in vivo is substantial. In contrast, Drosophila is a simple
and powerful system in which genetic manipulations are simple
and time-efficient, and appropriate disease models (such as those
described above) are easily identified. Because it is predicted that
roughly 65% of human disease genes have orthologs in Drosophila
(Ugur et al., 2016), the fly has become a preferred model in which
to first test the consequences of altering genes predicted by human
genomic analyses (Sarkar and Feany, 2021; Wang et al., 2021).
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The use of the fly to test disease-associated variants can be
done in multiple ways such as transgenic expression of disease
variants, knockdown of fly ortholog(s) of the human genes, or
directly modifying the analogous amino acids in the fly ortholog
via CRISPR. To give a few examples: Sorbitol dehydrogenase
(SORD) homozygous mutations were recently identified in a
cohort of patients clinically diagnosed with CMT. By creating a
Drosophila model in which the orthologs (Sord1 and Sord2) were
disrupted, the authors showed not only that the role of SORD
in axon maintenance is conserved but that a pharmacological
reversal of the phenotype is possible (Cortese et al., 2020). In
another example, Cytochrome c oxidase assembly factor 7 (COA7)
was identified from patient genomic analysis as a new causative
gene for peripheral neuropathy (Higuchi et al., 2018). To model
this disorder in vivo, the authors created a Drosophila model of
COA7 impairment and showed defects in synaptic branches of
the peripheral terminals of motor neurons as well as impaired
locomotion (Higuchi et al., 2018). These results supported the
causality of the variant-phenotype relationship in vivo.

Discussion

Considering the advantages in accessibility, cost, and
evolutionary conservation described above, Drosophila has become
appreciated as one of the best models for understanding both
neuron-intrinsic and extrinsic contributions to peripheral nerve
maintenance and pathological forms of peripheral nerve loss. The
number of human genomics studies who complete their first in vivo
validations in Drosophila is growing. Additionally, a network of
laboratories has united to use model organisms as rare disease
profiling platforms, with Drosophila as one of the leaders in this
movement (Gahl et al., 2015; Huang et al., 2022; Morimoto et al.,
2023; Srivastava et al., 2023). For more established models of
diseases such as ALS, flies will continue to provide a platform for
unbiased, in vivo screening for enhancers and suppressors of nerve
degeneration and cell loss.

A goal for future work on nerve injury in Drosophila is to unite
our understanding of how glial cells contribute to axonal damage
responses. This field is still in its infancy. However, because of
the conservation of functions of glia in Drosophila and mammals,
glial-neuronal communication can be addressed well in flies using
advanced genetic tools and forward screening approaches (Yildirim
et al., 2019). Another challenge that lays ahead is to integrate the
pathways identified through human disease cohorts into known
signaling pathways mediating axon degeneration (for example, are

processes disrupted by new neuropathy genes like SORD or COA7
upstream or downstream of Sarm1?). An exciting era is before us as
we begin to answer these questions.

As mentioned above, caveats do exist for this model involving
lack of myelination or an adaptive immune system. However, the
myriad advantages of using Drosophila to identify and characterize
factors contributing to axon, dendrite, and synapse disruption will
continue to keep flies at the leading edge of discoveries that, in
turn, will improve our ability to mitigate the suffering of patients
suffering from peripheral neuropathy.
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