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Background: Most patients with Alzheimer’s disease (AD) have an insidious

onset and frequently atypical clinical symptoms, which are considered a normal

consequence of aging,making it di�cult to diagnose ADmedically. But then again,

accurate diagnosis is critical to prevent degeneration and provide early treatment

for AD patients.

Objective: This study aims to establish a novel EEG-based classification

framework with deep learning methods for AD recognition.

Methods: First, considering the network interactions in di�erent frequency

bands (δ, θ , α, β, and γ ), multiplex networks are reconstructed by the phase

synchronization index (PSI) method, and fourteen topology features are extracted

subsequently, forming a high-dimensional feature vector. However, in feature

combination, not all features can provide e�ective information for recognition.

Moreover, combining features by manual selection is time-consuming and

laborious. Thus, a feature selection optimization algorithm called MOPSO-

GDM was proposed by combining multi-objective particle swarm optimization

(MOPSO) algorithm with Gaussian di�erential mutation (GDM) algorithm. In

addition to considering the classification error rates of support vector machine,

naive bayes, and discriminant analysis classifiers, our algorithm also considers

distance measure as an optimization objective.

Results: Finally, this method proposed achieves an excellent classification error

rate of 0.0531 (5.31%) with the feature vector size of 8, by a ten-fold cross-

validation strategy.

Conclusion: These findings show that our framework can adaptively combine

the best brain network features to explore network synchronization, functional

interactions, and characterize brain functional abnormalities, which can improve

the recognition e�ciency of diseases. While improving the classification accuracy

of application algorithms, we aim to expand our understanding of the brain

function of patients with neurological disorders through the analysis of brain

networks.

KEYWORDS

Alzheimer’s disease, EEG, complex network, multi-objective optimization, feature

selection

1. Introduction

Alzheimer’s disease (AD) is the most common type of dementia, which is a
neurodegenerative disease characterized by progressive cognitive decline, accompanied by
a decrease in daily living ability and neuropsychiatric symptoms or behavioral changes
(Zvěřová, 2019). The prevalence of AD increases rapidly at age 65. It currently affects
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∼55 million people worldwide and could increase twofold by 2050
(Niotis et al., 2022). But in fact, the disease often has a latent phase
that is extremely difficult to detect. In recent years, the diagnosis
and treatment of AD in its early stages has led to growing concern
(Elmaleh et al., 2019; Zvěřová, 2019; Pais et al., 2020; Niotis et al.,
2022). Clinically, the probable AD patients are normally evaluated
with standardized neuropsychological tests such as the MMSE
(Mini-Mental State Examination) (Tombaugh, 2004; Grassi et al.,
2019; Qiu et al., 2019; Abbate et al., 2021). In addition, various
studies have been proposed by numerous researchers to examine
the predictive power of neurophysiological data respecting AD
and other dementia symptoms (Salas-Gonzalez et al., 2011; Chaves
et al., 2012; Swietlik and Bialowas, 2019; Mehmood et al., 2021).

Nevertheless, electroencephalography (EEG) has been widely
used to track brain electrical activity generated by the cortical
regions of the brain in Alzheimer’s disease, due to its elevated
temporal resolution, non-invasiveness, and relatively low cost
compared to imaging tools (Dauwels et al., 2010; Wang
et al., 2014). EEG represents the overall electrical activity
of the brain in a waveform arising from myriad neuronal
activities (Wang et al., 2015b). The more prevalent view is
that the development of Alzheimer’s disease is associated with
a slowing of the EEG, a decrease in EEG complexity, and
a disturbance of EEG synchronization (Wang et al., 2014,
2015b; Cao et al., 2015). Moreover, it is worth noting that in
recent years, there has been rapid development in capturing
the disconnection of Alzheimer’s disease through functional
network analysis (Joudaki et al., 2012; Cisler et al., 2014;
Cai et al., 2018; Ismail and Karwowski, 2020; Gao et al.,
2021).

Brain networks are considered a promising approach to
capture the neuronal disconnection in Alzheimer’s disease,
and complex network theory has been applied to investigate
functional and structural networks (Rubinov and Sporns, 2010;
Vecchio et al., 2016; Sporns, 2022a,b). It has been found that
healthy brains have high values in complex network analysis
features such as small-worldness, hubness, and rich-clubs, while
Alzheimer’s disease brains have low values in these network
features, indicating a disconnection of the brain in AD patients
(Blinowska and Kaminski, 2013; Van den Heuvel and Sporns,
2013; Wang et al., 2014; Deng et al., 2015). Furthermore,
substantia researches showed that network properties can capture
the synergistic effect of abnormal paroxysmal firing of neurons
more effectively than the characteristics of single channel signals
(Wang et al., 2015b; Busche and Hyman, 2020; Gao et al.,
2021). In addition, the combination of multiple features can
help to display EEG abnormalities from various angles and
improve the recognition efficiency (Mahato and Paul, 2020; Pei
et al., 2020; Narayan, 2021; Wang et al., 2022). For instance,
Narayan (2021) extracted and combined the features of AAR
parameters, Barlow parameters, Hjorth parameters, etc. for the
recognition of motor EEG signals. Wang et al. (2022) applied
the second-order difference plot to extract geometric features for
epileptic seizure detection of EEG. These results all lead to the
consistent conclusion that a combination of features can improve
classification accuracy compared to a single feature. Therefore,
topological features based on complex network are considered to

be extracted and further combined for AD brain network analysis
in this paper.

However, as the number of features increases, the combination
of extracted features may not consistently be able to accurately
classify patterns in all classes (Ghosh et al., 2020). On the
contrary, the accuracy of feature classification is related to (i)
highly correlated features, which may result in redundancy in
classification learning models or (ii) uncorrelated features, which
may lead to pattern recognition failure (Khaire and Dhanalakshmi,
2022). Meanwhile, it is difficult to manually select features
that are effective for classification tasks. To address this issue,
feature selection has received widespread attention, as it can
effectively remove irrelevant and redundant features and improve
classification performance (Chandrashekar and Sahin, 2014).

In recent years, evolutionary computation techniques have
received considerable attention for their global search capabilities.
Commonly used evolutionary computation algorithms include
particle swarm optimization (PSO) (Kennedy and Eberhart, 1995),
ant colony optimization (ACO) (Ke et al., 2010), artificial bee
colony (ABC) algorithms (Ren et al., 2017), and genetic algorithm
(GA) (Holland, 1992). PSO was proposed by Kennedy and
Eberhart (1995), due to their fast convergence speed and stable
particle cooperation, it is widely applied in feature selection
and highly efficient in applications with high-dimensional data
(Samal et al., 2007; Tran et al., 2018; Chen et al., 2021;
Wang et al., 2022). However, it is noted that PSO has a
problem of premature convergence (Deng et al., 2017). Therefore,
appropriately improving the PSO may help feature selection for
high-dimensional data.

Additionally, it is crucial to determine appropriate evaluation
metrics during training that can identify information that is
effective for classification while minimizing the number of features.
Most studies, in fact, use one objective or the weighted-summethod
to combine two objectives for merging two objectives into a single
objective. For instance, as one objective, the classification accuracy
was used in PSO algorithm for depression detection (Akbari et al.,
2021). For the weighted-sum method: (i) the number of features
in training data and classification accuracy (Chuang et al., 2008),
(ii) the fisher-discriminate-like criteria and training accuracy (Tran
et al., 2017), were combined as one objective in PSO for feature
selection. Significantly, in practice, a suitable weight parameter for
the weighted-sum method is difficult to determine, especially for
high-dimensional data, despite the use of trial and error tests. To
address this issue, recent research has started to consider multi-
objective optimization with three or more objectives, and it has
been applied in many fields such as image processing (Gong
et al., 2016), feature construction (Hammami et al., 2018) and
cancer classification (Sharma and Rani, 2019). Moreover, compared
with single-objective optimization, multi-objective optimization
can consider the trade-off relationships between different objectives
and generate a set of solutions rather than a single solution, which
provides profound insight into the characteristics of the issue (Zhou
et al., 2020).

In this study, brain network analysis theory is used to
explore abnormal brain changes in AD patients. In order to
construct it, phase synchronization index (PSI) is used to
characterize the degree of correlation between EEG signal leads.
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Meanwhile, a total of 14 topological features are extracted to
quantify brain structure. However, when all 14 features are used
for classification analysis, the calculation becomes complex in
the classification process and may be redundant due to some
features, leading to the decline of recognition. In addition, the
commonly used feature selection methods such as Recursive
Feature Elimination (RFE) and Principal Component Analysis
(PCA) only calculate between features, and ignore the feedback
relationship between feature combination and classification or
recognition. Thus, feature selection is implemented via the
proposed multi-objective optimization algorithm: MOPSO-GDM.
In addition to the classification error rate, a distance metric
is considered an objective in MOPSO-GDM algorithm, which
enables the algorithm to find the combination with the minimum
number of features that characterize the structural changes of brain
network in AD patients, and improve the operation efficiency of
the algorithm.

The remainder of this paper is organized as follows. In Section
2, the AD dataset and data preprocessing are described. Section
3 elaborates on the proposed AD recognition methods, including
PSI, topological feature extraction, MOPSO-GDM, and their
applications in feature selection. Section 4 presents the analytical
results, including brain network analysis, feature statistics analysis,
feature classification analysis, and application analysis of MOPSO-
GDM. Section 5 provides the discussion while Section 6 presents
the conclusions.

2. Material

In this study, EEG signal data are mainly used for the analysis
of abnormal brain structural changes in AD. Therefore, this section
will detail the sources of EEG data from AD patients in this study
and the preprocessing method.

2.1. Subjects

Thirty subjects were recruited in this study and divided
into AD and normal control groups. Clinical neuroimaging and
neurological examination comprised computed tomography (CT),
structural MRI, cerebellar testing and cranial nerve examination,
and Mini-Mental State Examination were executed to show the
different clinical symptoms of the two groups, so to identify
the potential network structure alterations in AD condition. All
the AD patients were determined according to the international
classification of diseases (ICD-10) of the world health organization
and the diagnostic criteria of dementia in the Diagnostic and
Statistical Manual of Psychiatric Disorders (DSM-IV). They were
free of other neurological or psychological disorders, neurological
active medications, or any other factors that may affect brain
activity. The specific information of the subjects is shown in Table 1.

2.2. EEG acquisition and preprocessing

This experiment was collected in the First Ward of Neurology
Department, Huanhu Hospital, Tianjin, China. During the

TABLE 1 Demographic and clinical characteristics of AD and healthy

control subjects.

ADs Healthy controls

Subject (numbers) 15 15

Right-handed or left-handed Right-handed Right-handed

Age (years) 77.6 (±3.4SD) 72.2 (±1.9SD)

Gender (F/M) 8/7 9/6

Education (years) >6 >6

MMSE (0–30) 21.3 (±5.8SD) 27.1 (±1.3SD)

CDR (0–3) 1.0 (±0.5SD) -

GDS (0–15) 4.2 (±2.4SD) -

MMSE, mini-mental scale examination; CDR, clinical dementia rating; GDS, global

deterioration scale; SD, standard deviation.

experiment, all the subjects were seated upright and kept awake
in a semi-dark, quiet room with electromagnetic shielding.
Furthermore, they were told in advance to avoid any movement,
such as body actions, eye movements and blinking. For each
subject, EEGs were collected for ten min (the eyes were closed
for the first five minutes, and the eyes were open for the next
five minutes) using a 16-channel Symptom amplifier (Symtop
Instrument, Beijing, China) with a sampling rate of 1024 Hz
and bandpass filtered between 0–60 Hz. Sixteen Ag-AgCl scalp
electrodes Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4,
T5, T6 were set on the scalp according to the international 10–20
system, and the linked earlobe A1 and A2 are used as a reference,
as shown in Figure 1A. In the process of data acquisition, all steps
are completed and monitored by the experienced experimenter to
ensure the correctness and effectiveness of the EEG recordings.

To avoid the influence of the machine starts, we take the data
of the middle period (2–4 min) of the eyes closed state in the first
5 minutes as the analysis object. This paper uses AD original data
from a total of 15 participants, with a sampling frequency of 1,024
Hz. Each participant was sampled for 2 minutes (120 seconds).
The EEGs of all subjects were selected and segmented according
to the length of 10 seconds (1,024 Hz–10 s = 10,240), increasing
the total number of samples for AD data to 180. The raw EEG
data recorded during the experiment are shown in Figure 1B. In
order to remove the volume conduction effect, the selected EEG
recordings are preprocessed according to the method mentioned
in Wang et al. (2014, 2015b) and Cai et al. (2018). Then each
channel of EEG recordings is decomposed into five sub-bands: delta
(δ, 1–4 Hz), theta (θ , 4–8 Hz), alpha (α, 8–12Hz), beta (β , 12–
30 Hz) and gamma (γ , 30–60 Hz) via the finite impulse response
(FIR) filter. All procedures are implemented in a MATLAB R2021b
(9.11.0.1769968) environment.

3. Method

The EEG signals of AD patients show the characteristics of
slow rhythm, reduced complexity and synchronous disturbance. At
the same time, functional network is an efficient research method
to study brain functional changes. Therefore, the effective method
of AD recognition through EEG features can perform signal

Frontiers in AgingNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1160534
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnagi.2023.1160534

FIGURE 1

Electrode names and positions on the brain (A) and 16-channel EEG signals recorded for one AD patient (B).

detection faster and identify more accurately by machine learning
methods compared with manually labeling AD EEG features. In
this section, based on the “disconnection” nature of brain neurons
in Alzheimer’s disease, a brain functional network construction
method based on Phase Synchronization Index (PSI) is proposed.
The network topological characteristics are described according
to graph theory, and the MOPSO-GDM algorithm is proposed to
perform multi-objective optimization of the characteristics. The
details are as follows.

3.1. Construction of brain functional
network

Brain networks can be constructed to identify functional
and structural alterations in the underlying brain networks
of AD patients, where the network construction requires the
determination of two main factors: nodes and edges. Thus, each
brain electrode channel is taken as the node, and the function
connection of the two channels is calculated as the edge by PSI.
The PSI is one of the commonly used metrics to measure the
connection strength of network functions, which can describe the
relationship in the instantaneous phases between time series. Even
if the amplitude of the time series is statistically independent,
the instantaneous phase may be completely synchronized. To
compute the PSI, the Hilbert transform is applied to extract the
instantaneous phase of all raw EEG signals. Suppose x (t) is any one
channel of EEG, and x̃ (t) is its Hilbert transform, which is defined
by:

x̃ (t)=
1

π
pv

∞
∫

−x

x (τ )

t − τ
dτ (1)

where pv is the Cauchy principal value. Then both the
instantaneous amplitudeA(t) and the instantaneous phase ϕ (t) can

be computed by:

A (t)=

√

[x (t)]2 +
[

x̃ (t)
]2

ϕ (t)= arctan x̃(t)
x(t)

(2)

Then the phase difference between the EEG signals is defined
as:

1ϕ
(

fm, fn, t
)

=mϕ
(

fm, t
)

− nϕ
(

fn, t
)

(3)

where fm and fn are the center frequencies of the EEG signals.
Besides, m and n are integers which should satisfy the inner
product formula m · fn = n · fm. Here, m = n= 1. So the PSI can
be calculated by:

PSI
(

fm, fn
)

=

∣

∣

∣

〈

ej−(1ϕ(fm , fn , t))
〉
∣

∣

∣
(4)

Seen from Equation (4), the value range of PSI is [0, 1]. 0
indicates that there is no coupling or coupling delay is zero, and
1 is full (non-zero delay) phase locking. The larger the PLI value,
the higher the synchronization degree between the EEG signals.
Furthermore, since zero-lag synchronization is removed from the
analysis, PSI is relatively insensitive to the volume conduction
effect. For above, in this study, PSIs between each two channels
can be calculated to generate five 16 × 16 connectivity matrices,
which shows the synchronization in five frequency bands when
considering the symmetry. According to graph theory, the PSI
matrix can be transformed into an unweighted binary adjacency
matrix Aij by applying a given threshold τ (τ is 0.3). In the
representation of the functional network graph, only connections
with PSI values greater than the threshold τ are realized, indicated
by the corresponding entry aij in the matrix being 1, otherwise
it is 0.

3.2. Extraction of brain network features

Network measures are often represented in multiple ways with
the aim of characterizing local specialization and global integration
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of brain network. In this section, measures are described that
variously detect aspects of functional integration and segregation,
quantify the importance of individual brain regions, characterize
patterns of local anatomical circuitry, and test the resilience
of networks to insult. The most commonly used features of
brain functional network are listed in Supplementary material:
Degree (DG), Node Betweenness (NB), Clustering Coefficient
(CC), Shortest Path Length (SPL), Edge Betweenness (EB),
Global Efficiency (GE), Local Efficiency (LE), Transitivity (TT),
Assortative Coefficient (AC), Small-Wordless (SW), Modularity
(MD), Motif z-score (MZ), Hierarchical Coefficient (HC), and
Graph Index Complexity (GIC).

3.3. Multiple-objective particle swarm
optimization with Gaussian di�erence
mutation (MOPSO-GDM)

In general, combining features improves classification
performance. However, in addition to the features being
undeterminable, the number of features in the combination
is equally undeterminable. It is worth noting that when the
14 brain network features are arranged and combined, it will
produce 214 feature combinations. Meanwhile, combining features
manually or programmed by a computer and feeding them into a
classifier will consume a lot of time. Therefore, in this study, the use
of intelligent algorithms to find feature combinations has become
the core idea of AD recognition framework. Different from other
feature selection methods, the proposed feature selection method
uses the classification result of feature combination as the feedback
result to the intelligent algorithm, and uses it to search the solution
space of feature combination purposefully.

Furthermore, due to the large number of brain network feature
combinations, the solution space becomes larger. For this issue,
a mutation operation is proposed to increase the search space of
the algorithm. Then, an improved Multiple- objective optimization
algorithm, MOPSO-GDM is proposed, which combines MOPSO
with the Gaussian difference mutation (GDM). In each iteration,
particles are first optimized by MOPSO with the learning factor c1,
c2 set to 2 and the weight coefficient w set to 0.7. Then, send all
optimized particles to the mutant of Gaussian differential mutation
(GDM) to prevent some particles from being trapped in local
optimization, with a mutation rate set to 0.1. Among them, GDM is
performed between random individuals in the particles, the optimal
and the current positions of the particles. Since GDM can generate
larger perturbations near the current mutation, it is easier for the
algorithm to jump out of the local extreme value. Themathematical
expression is as follows:

L(t + 1) = p1 × f1 × (L∗ − L(t))+ p2 × f2 × (Lrand − L(t)) (5)

where p1, p2 are weight coefficients with the value of 0.5. f1, f2 are
the coefficients of Gaussian distribution function, which take the
randomnumber function of Gaussian distributionwith themean of
0 and the variance of 1. L∗ is the optimal position of particle, namely
pbest. Lrand is the position vector of particle randomly selected. Lt
is the current position of the particle in iteration t. The flow-chart
of the proposed algorithm is shown in Figure 2.

3.4. Application of MOPSO-GDM in feature
selection

The MOPSO-GDM is applied as follow: first, sort the features
in the following order: DG, NB, CC, SPL, EB, GE, LE, TT, AC,
SW, MD, MZ, HC, and GIC. Randomly combine these features
to represent the algorithm particles. Each particle consists of 0-1
loci with a length of 14/70 bits (14 bits for single-band, and 70 bits
for five-bands), where the number 1 indicates that the feature is
selected as an input to the classifier, and vice versa. For example,
suppose that the feature combination in the single-band setup is
represented by the particle [01000000010001 (δ)]; accordingly, the
features NB (2nd), SW (10th), and GIC (14th) are selected for
combination. Second, in order to find the classification stability of
feature combination, the classification error rate of support vector
machine (SVM), naive bayes (NB), and discriminant analysis (DA)
classifiers are chosen as the objective value (F1, F2, and F3) of
the algorithm. Moreover, in the feature selection, the number of
selected features and classification error rate are considered as two
conflicting objectives, while in this work, distance measurement is
used to evaluate the classification performance. Therefore, fisher’s
discriminant distance measure introduced in Al-Sahaf et al. (2015)
constitutes the fourth objective of our problem. By using distance
measurement, the distance between samples of the same class can
be reduced, while the distance between samples of different classes
can be increased. The equation is as follows:

F4 =
1

1+ exp−(Dw−Db)
(6)

where the sigmoid function ensures that the value of F4 ranges from
0 to 1. Db and Dw represent the average distance of each sample
to the farthest sample within a different class and the average
distance of each sample to the closest sample within the same class,
respectively. Db and Dw are calculated using Equations (7) and (8),
respectively.

Db =
1

|T|

|T|
∑

i=1

min
{j|j6=i,class(Si) 6=class(Sj)}

Dis(Si, Sj) (7)

Dw =
1

|T|

|T|
∑

i=1

max
{j|j6=i,class(Si)=class(Sj)}

Dis(Si, Sj) (8)

where |T| represents the total number of samples in the training
set and Dis(Si, Sj) denotes the Euclidean distance between the two
samples Si and Sj.

In addition, the model applies 10-fold cross-validation, with a
ratio of 9:1 between training data and test data. Due to the real
numbers in the algorithm, the real numbers of the particles need
to be converted to 0-1 through threshold before being input into
the classifier. The intelligent detection process is shown in Figure 3.

4. Results

In this section, 14 features extracted from five frequency bands
are statistically analyzed (One-way ANOVA), and the features
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FIGURE 2

The flow-chart of MOPSO-GDM.

FIGURE 3

Intelligent process for AD recognition.

were sent to the SVM classifier for classification analysis. In order
to improve the recognition efficiency of AD, the features are
combined, and multi-objective optimization algorithms: NSGA,
MOSPO, MOPSO-M, and MOPSO-GDM are used for feature
selection to find the optimal feature combination to characterize
the abnormal changes in AD brain. The results are analyzed
as follows.

4.1. Brain network analysis

Through the PSI method, the PSI matrix (16–16 connectivity
matrices) is obtained to investigate the synchronization dynamics
of AD patients and the normal controls (NC). After thresholding,

PSI matrix transferred to adjacency matrix, which can be visualized
through functional connectivity of AD and the normal control
group in the δ, θ , α, β , and γ frequency band, as shown
in Figure 4.

It is clear that the average network connectivity of AD patients
decreases in each frequency band compared to the normal control
group. Especially in the α, β , and γ frequency bands, there
are significant differences between the AD and normal groups,
while the difference in the δ and θ frequency bands are reduced.
Therefore, the conclusion can be drawn that the functional
network connectivity strength changes significantly in the AD
brain and that the difference between AD and control is more
pronounced in the high frequency band and weaker in the low
frequency band.
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FIGURE 4

Brain network visualization in the (A) delta (δ), (B) theta (θ ), (C) alpha (α), (D) beta (β), and (E) gamma (γ ) frequency band.

4.2. Extraction and analysis of network
features

The following 14 network topological features of AD and
normal brains are extracted for further quantitative analysis,
which are shown as histograms in Figure 5. One way ANOVA
is implemented to study whether there are significant differences
between the two groups, “**” represents there exists obvious
group difference with P < 0.01, as shown in Figure 7 and
Supplementary Table S1. There are significant differences between
the features of AD brain network and the normal controls in the five
frequency bands, except for the features of MZ in the θ frequency
band, MZ and HR in the γ frequency band.

It can be seen that the remaining 12 features in both groups,
with the exception of MZ and HR, show consistent results in
all five frequency bands. First, the values of DG, CC, GE, LE,
TS, SW, and GIC in AD group are lower than those in the
normal control group, indicating that compared to the normal
brain, the network connectivity in the AD brain is sparser,
with the worse local aggregation, the lower global efficiency of
information transmission, the weaker abilities of information
parallel processing and local information transmission, and the
simpler brain functional structure, which could effectively explain
the disconnection characteristics of the AD brain. The increase
in the values of NB, SPL, EB, AT, and MD in the AD group
suggests that the AD brain network is altered to be more
susceptible to abnormalities, with longer information transmission
paths, worse stability of network structure, lower efficiency of
information transmission and interaction, slower speed, and higher
degree of polarization but a looser topology associated with
cognitive dysfunction.

Moreover, for module properties, there are significant
differences in MZ in the δ, α, and β frequency bands. The MZ

value of AD group is higher than that of the control group
in the δ and α frequency bands, and the MD shows the same
trend, manifesting that although the connectivity of AD brain
network is greatly sparser than that of the normal brain, both
the modularization degree and the importance of modules of
AD network are higher in the two frequency bands. While in the
β frequency band, the modularization degree of AD network is
raised, but the importance of modules reduces. In addition, the
hierarchy of brain network in the AD group reduces in the δ and α

frequency band, reflecting in the significant reduction of HR value.
Thus, for the ANOVA results, these features can be considered for
the classification analysis.

4.3. Classification analysis of features

The average classification results are shown in Table 2, where
cross-validation is performed with a 9:1 ratio of training and test
set (training= 360×90%, test= 360×10%). For all features, the α

and γ bands show the best classification effect, for which the lowest
classification error rate reach 0.1487 (α) and 0.1409 (γ ) in SPL,
followed by the β band, for which the lowest error rate is 0.1754 in
AT, whereas the δ and θ bands have the poor discrimination, with
the lowest classification error rate of 0.2272 in MZ and 0.2485 in
AT, respectively. Among the ten features, SPL perform best in the α

and γ bands.

4.4. Application results of NSGA, MOPSO,
MOPSO-M, and MOPSO-GDM

In this section, in order to improve the classification error
rate in each frequency band, multiple features are combined,
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FIGURE 5

Feature (normalized in the range of [0,1]) visualization in the (A) delta (δ), (B) theta (θ ), (C) alpha (α), (D) beta (β), and (E) gamma (γ ) frequency bands.

Asterisks represent significant di�erences between the two groups (**P <0.01).

and multi-objective optimization optimization algorithms
(NSGA, MOPSO, MOPSO-M, and MOPSO-GDM) are applied
to determine the optimal feature combination. In particular, the
mutation operation added in MOPSO-M is consistent with the
mutation in NSGA.

4.4.1. Simulation test
The four algorithms are used together with the Zitzler-

Deb-Thiele ((ZDT1-ZDT4 and ZDT6) functions to verify their
effectiveness, which are shown in Figure 6. These test functions
have different properties, where ZDT1 has a convex Pareto
front, ZDT2 has a non-convex Pareto front, ZDT3 has multiple
disconnected convex Pareto fronts, ZDT4 has many local optima,
the global Pareto front is non-convex, and ZDT6 has a non-convex
Pareto front with a thin density toward the Pareto front (Li et al.,
2010). Since ZDT5 is a Boolean function, it is not used in this paper.
In, the particle and iteration numbers were set to 30 and 50, and

the experiments were performed 20 times to avoid chance. It is
interesting to note that all four algorithms can achieve the optimal
values in ZDT1 and ZDT2 with the variate is 10 or 50.When variate
is 10, the optimal values can be found in all but NSGA andMOPSO
in ZDT1. Nevertheless, when variate is 50, ZDT1, ZDT4 and ZDT6
in NSGA could not find the optimal value, and the same is true
for ZDT4 and ZDT6 in MOPSO, ZDT2 and ZDT4 in MOPSO-
M. It is noted that MOPSO-GDM can find optimal values in all
test functions: ZDT1-ZDT4 and ZDT6, suggesting that MOPSO-
GDM can effectively avoid getting trapped in local optima and find
optimal results in higher dimensions and more complex problems.

4.4.2. Application analysis of AD recognition
The features are combined in each frequency band, and NSGA,

MOPSO, MOPSO-M, and MOPSO-GDM are applied to determine
the optimal feature combination. A total of 20 experimental
trials are conducted with each algorithm, and the non-dominated
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TABLE 2 The classification results of single features (DG-GIC) in the δ, θ , α, β, and γ frequency bands.

Band DG NB CC SPL EB GE LE TS AT SW MD MZ HR GIC

δ 0.2455 0.2567 0.2534 0.2647 0.2552 0.2544 0.2641 0.2566 0.2492 0.2959 0.2539 0.2272 0.4295 0.2876

θ 0.2569 0.2609 0.2752 0.258 0.2694 0.2553 0.2694 0.3258 0.2485 0.3735 0.3713 0.4332 0.4408 0.2638

α 0.1627 0.1657 0.2028 0.1487 0.1794 0.1743 0.1876 0.2434 0.166 0.1777 0.2208 0.2109 0.3512 0.157

β 0.2097 0.2753 0.2178 0.2217 0.2683 0.2012 0.2106 0.2332 0.1754 0.3321 0.3037 0.2774 0.3239 0.2669

γ 0.1505 0.2232 0.1469 0.1409 0.1692 0.1495 0.142 0.2392 0.2915 0.2139 0.2333 0.3202 0.2405 0.145

FIGURE 6

Simulation test results of the four algorithms with the (A) ZDT1, (B) ZDT2, (C) ZDT3, (D) ZDT4, and (E) ZDT6 functions. Standard data: yellow line;

Variate 10: blue line; Variate 50: red line.

solution set is displayed in the form of scatter plot, as shown in
Figure 7: three coordinates are SVM, NB, and DA classification
error rates, respectively, where the value of error rates are shown
in Table 3. It can be seen that feature combinations reach lower
error rates than single feature (Table 2) with SVM. In addition,
the lowest error rate emerges in β frequency band, particularly
in MOPSO-GDM, i.e., 0.1319 (SVM: 0.0933, NB: 0.1731, and
DA:0.1292). Then followed by α and γ frequency bands with error

rates of 0.1445 in MOPSO (SVM: 0.1237, NB: 0.1856, and DA:
0.1242) and 0.1326 in MOPSO-GDM (SVM: 0.1248, NB: 0.1404,
and DA: 0.1387), respectively. Moreover, error rates of δ frequency
band is 0.1978 in MOPSO-M, θ band is 0.1884 in MOPSO-GDM,
which are higher than other bands. It can be concluded that α, β ,
and γ frequency bands can get better classification performance by
the way of feature combination, which is consistent with the results
in Table 2.
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FIGURE 7

The scatter plot: non-dominated solution of (A) NSGA, (B) MOPSO, (C) MOPSO-M, and (D) MOPSO-GDM in the δ (blue point), θ (purple point), α (red

point), β (black point), and γ (green point) frequency bands.

TABLE 3 The SVM, NB, DA, and their average (AVG) classification error rates of non-dominated solution of NSGA, MOPSO, MOPSO-M, and MOPSO-GDM

in the δ, θ , α, β, and γ frequency bands.

NSGA MOPSO MOPSO-M MOPSO-GDM

SVM NB DA AVG SVM NB DA AVG SVM NB DA AVG SVM NB DA AVG

δ 0.1646 0.2672 0.2147 0.2155 0.1345 0.2652 0.207 0.2022 0.1308 0.2647 0.2174 0.1978 0.1339 0.2646 0.209 0.2025

θ 0.2361 0.2148 0.1501 0.2003 0.2219 0.2052 0.14 0.189 0.2229 0.2052 0.1383 0.2141 0.2242 0.2067 0.1344 0.1884

α 0.1411 0.2124 0.1437 0.1657 0.1237 0.1856 0.1242 0.1445 0.1219 0.1877 0.1204 0.1548 0.1249 0.1873 0.1232 0.1451

β 0.1148 0.1718 0.1288 0.1385 0.0954 0.1742 0.1333 0.1343 0.0996 0.1721 0.1271 0.1358 0.0933 0.1731 0.1292 0.1319

γ 0.1311 0.1442 0.1576 0.1443 0.1236 0.1407 0.1404 0.1349 0.1251 0.1401 0.1396 0.1349 0.1248 0.1404 0.1387 0.1326

To further investigate the influence of frequency band
combination to improve the recognition precision, the brain
network features of five bands are combined and optimized by
algorithms, where the number of particle variable is increased to
70 (14 features × 5 frequency bands), and the trend of minimum
average error rate with the number of feature increased shows in
Figure 8, the detail data show in Tables 4, 5. First, it can be found
that the average error rates of five frequency bands combination
of four algorithms were 0.0876, 0.0808, 0.0787, and 0.0769, lower

than single frequency band (Table 3: γ frequency band), where
MOPSO-GDM is superior to the other three algorithms. Second,
the dimension of solution space of NSGA and MOPSO-GDM is
the widest, which range from 2-33 and 2-32, respectively. It is
followed by MOPSO and MOPSO-M, ranging from 8-30 and 8-
28, respectively. Furthermore, the average error rate of the non-
dominated solution optimized by MOPSO-GDM is the lowest,
which is 0.0769. In addition, the min average error rate emerges
in MOPSO-GDM with feature number of 8, is 0.0531 and better
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FIGURE 8

The variation trend of the minimum average classification error rate in the feature combination optimized by NSGA (green line), MOPSO (black line),

MOPSO-M (blue line), and MOPSO-GDM (red line).

TABLE 4 The SVM, NB, DA, and their average (AVG) classification error rates of non-dominated solution of NSGA, MOPSO, MOPSO-M, and MOPSO-GDM

in five frequency bands combination.

The classification error rate of non-dominated solution

SVM NB DA
AVG error rate of 3 classifiers

AVG Var AVG Var AVG Var

NSGA 0.0407 0.00091 0.1449 0.00433 0.0771 0.00262 0.0876

(4.51e-05-0.0067) (0.00051-0.0101) (9.78e-08-0.0055)

MOPSO 0.0151 0.00018 0.1534 0.0045 0.074 0.00348 0.0808

(4.69e-05-0.0012) (0.00157-0.0076) (0.00016-0.0586)

MOPSO-M 0.0108 0.00019 0.1481 0.00419 0.0772 0.00359 0.0787

(4.68e-05-0.0015) (0.00163-0.0097) (0.00018-0.0586)

MOPSO-GDM 0.0121 0.00022 0.143 0.00396 0.0755 0.00255 0.0769

(4.69e-05-0.0044) (0.0019-0.0093) (0.00016-0.0089)

than other three algorithms, suggesting that MOPSO-GDM could
find the optimal feature combination in multi-band combination,
which is in accordance with the conclusion of Section 4.4.1 that
MOPSO-GDM can find the optimal result in higher dimensions
and more complex problems. As can be seen from the above, that
combination of features between frequency bands may improve the
efficiency of AD recognition.

5. Discussion

It is known that EEG features undergo changes in physiological
and pathological aging (especially due to neurodegeneration), and
the distribution of spectral power gradually changes (Vecchio
et al., 2020, 2022), which has been shown in past studies that (in
awake, resting conditions) a pronounced amplitude decrease of
α band (Wang et al., 2015a,b; Elmaleh et al., 2019) and a global
“slowing” of the background EEG rhythms, with the increase of
δ and θ frequencies, the appearance of background EEG rhythms
shows an overall diffusive phenomenon. This is in agreement
with the findings in Figure 4 and Table 2. In addition, Gamma
oscillations are prominent in multiple brain regions, including the
hippocampus, and are believed to play a role in attentional selection

and memory operations (Zeisel et al., 2015; Fernández-Ruiz et al.,
2021; Benussi et al., 2022). In the present study, the γ band is
studied and found to exhibit the same "slowing" property as the
α band, and showed excellent classification performance with the
average error rate of 0.1326, which is better than α band.

In addition, Figure 5 shows the group differences of global
functional networks in degree, clustering coefficient, global
efficiency, local efficiency and other topological parameters in
five frequency bands. By these network measures, it can further
investigate the changes of brain network “disconnection” in AD
patients. Notably, this has been reported in previous papers, such
as the average path lengths, clustering coefficients, global efficiency,
local efficiency (Wang et al., 2014; Yu et al., 2020), where these
features also appeared in the consistent results of this paper, that
is, the value decreased in the AD brain network. Meanwhile,
small-worldness (Wang et al., 2014), graph index complexity and
modularity (Yu et al., 2020) are consistent with the results of
this paper. But interestingly, the shortest path length decreased
in the study by Yu et al. (2020), but increased in this study
(Figure 5). Considering that Yu et al. used the single-channel
network construction method: weighted visibility graph, which is
different from the full-channel network construction by PSI. Thus,
from the studies of La Foresta et al. (2019) and Duan et al. (2020), it
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TABLE 5 The minimum average (AVG) classification error rate and feature

number of non-dominated solution of NSGA, MOPSO, MOPSO-M, and

MOPSO-GDM in five frequency bands combination.

The non-dominated solution

AVG error
rate (Min)

Number of
features

NSGA 0.0623 13

MOPSO 0.0612 16

MOPSO-M 0.0603 15

MOPSO-GDM 0.0531 8

TABLE 6 The number of feature combination category by searching in the

optimization process of NSGA, MOPSO, MOPSO-M, and MOPSO-GDM.

The number of feature
combination category (20 trials)

MIN MAX AVG

NSGA 14787 16809 15233.4

MOPSO 8840 14028 12762.9

MOPSO-M 14944 15274 15041.45

MOPSO-GDM 16286 16560 16405.3

can be found that shortest path length increased in AD full-brain
network. Moreover, from various points of view of the network,
features such as transitivity, betweenness of nodes and edges,
assortative and hierarchical coefficients have been considered to
study the topological differences in connectivity between two
groups. All features indicate that the local and global functional
networks in the AD group are significantly reduced, especially in
the α, β , and γ frequency bands, which may lead to functional loss.

In this study, to overcome the lack of slow convergence,
premature convergence, and tendency to get trapped in local
optimal solutions in MOPSO, a novel modified method, MOPSO-
GDM, is proposed and introduced to select the optimal feature
combination. Owing to the combination of MOPSO and GDM,
MOPSO-GDM achieves best performance in feature selection
compared with NSGA, MOPSO and another improved PSO:
MOPSO-M algorithms, especially in high-dimensional space
optimization (Figure 7). From past studies, hybrid algorithms are
commonly used as improved algorithms, such as GA-PSO (Gupta
et al., 2019; Liu et al., 2020), BAPSO (Almadhor et al., 2021), PSO-
GWO (Dahmani and Yebdri, 2020), and hybrid multi-objective
optimization algorithms: NSGA-MOPSO (Shuaipeng et al., 2017;
Xie et al., 2022). Nevertheless, most hybrid algorithms directly
combined the whole of two algorithms, without considering the
complexity of the algorithm (Wang et al., 2022). Therefore,
in this paper, superfluous operators are eliminated and only
mutation is added to simplify the algorithm flow. In addition,
the categories of feature combinations searched by the algorithm
during optimization are counted, as shown in Table 6. It is noted
that MOPSO-GDM can seek additional feature combinations in 20
trials, that is, the search space is larger and the population is more
diverse, thus better avoiding MOPSO from getting stuck in local
optima than MOPSO-M.

TABLE 7 The classification results (error rate: SVM, NB, and DA) of

non-dominated solution using leave-one-out validation.

The classification error rate of
non-dominated solution using
leave-one-out validation

SVM NB DA AVG

NSGA 0.0388 0.1463 0.0815 0.0889

MOPSO 0.0159 0.1541 0.0828 0.0840

MOPSO-M 0.0116 0.1487 0.0819 0.0814

MOPSO-GDM 0.0130 0.1430 0.0808 0.0789

In addition, to verify the effectiveness of the algorithm results,
we re-evaluate the non-dominated solution sets of the four classes
of algorithms using the leave-one-out validation, and the results
are shown in Table 7. First, it can be seen that the classification
error rates using leave-one-out validation are also consistent with
those shown in Table 4, among which theMOPSO-GDM algorithm
still performs the best. Meanwhile, the optimal feature combination
of the four algorithms in Table 5 are verified by leave-one-out,
as shown in Table 8, where the classification accuracy of the
optimal feature combination of MOSPO-GDM is 0.0521, which
is little different from 0.0531 in Table 5. This indicates that
the combination of features optimized by the algorithm can
indeed improve the recognition efficiency of AD patients. It also
indirectly indicates the feasibility of the ten-fold cross strategy in
this framework.

Finally, several general feature selection algorithms with single-
object optimization are used on the AD data in this paper, such as
Recursive Feature Elimination (RFE), LASSO Regression, Feature
selective validation (FSV), and Principal Component Analysis
(PCA), the results are shown in Table 9, where C1, C2, and C2
respectively represent the classifier of SVM, NB, and DA. And in
the PCA method, principal components are used as features. It can
be seen that except for RFE, the classification results of the other
three methods are poor. It is worth noting that the combination
of features that worked well with SVM performed poorly with the
other two classifiers, which shows that only relying on a single target
or a single classifier to determine the combination of features is
not universal. Therefore, multi-objective algorithm optimization is
particularly significant.

6. Conclusion

In this work, the PSI method is used to quantify the
synchronization strength of 16-channel EEG signals, leading to
the construction of functional brain networks in AD patients.
Analysis of the brain network in five frequency bands (δ, θ , α,
β , and γ ) shows that compared with the normal control group,
the brain connections of AD patients reveal more sparsity. Then,
fourteen topological features (DG-GIC) based on complex network
formation patterns in EEG signals are extracted for Alzheimer’s
disease recognition. ANOVA statistical analysis and classification
analysis are further applied to evaluate the effectiveness of
topological features. Among which, most features significantly
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TABLE 8 The classification results (specific features and error rate: SVM, NB, and DA) of the optimal feature combination using leave-one-out validation.

The classification error rate of the optimal feature combination using leave-one-out validation

Feature AVG error rate (SVM,NB,DA)

NSGA δ:EB-MD-MZ-HR,θ :AT,α:AT-MZ-HR,β :DG-SPL-GE,γ :DG-GIC 0.0624 (0.0122,0.1687,0.0061)

MOPSO δ:MZ,θ : MZ,α: DG-AT-MD-MZ-HR,β :DG-GE-AT-MZ,γ : CC-SPL-EB-LE-MZ 0.0619 (0.0122,0.1478,0.0258)

MOPSO-M δ:MZ,θ :MD,α:DG-AT-MZ-HR,β :DG-SPL-GE-AT-MZ,γ : DG-SPL-GE-MZ 0.0593 (0.0092,0.1533,0.0153)

MOPSO-GDM δ:MZ,θ :AT,α:DG-AT-MZ-HR,γ :DG-MZ 0.0521 (0.0122,0.0981,0.0460)

TABLE 9 The results of general feature selection method: Recursive Feature Elimination (RFE), LASSO Regression, Feature selective validation (FSV) and

Principal Component Analysis (PCA). C1: SVM; C2: NB; C3: DA analysis.

RFE LASSO FSV PCA

Feature Num Classifier Classifier Classifier Classifier

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

2 0.0798 0.4722 0.5243 0.1748 0.2301 0.2117 0.2913 0.3465 0.2821 0.2452 0.2759 0.2544

3 0.1074 0.4691 0.3160 0.1871 0.2331 0.2178 0.1717 0.1810 0.1655 0.2483 0.2759 0.2544

4 0.0214 0.4507 0.1534 0.1410 0.2210 0.1656 0.1717 0.2024 0.1686 0.2544 0.2789 0.2544

5 0.0183 0.4477 0.1503 0.1379 0.2056 0.1441 0.1686 0.2085 0.1748 0.2544 0.2758 0.2482

6 0.0123 0.4416 0.1135 0.1379 0.1902 0.1379 0.1717 0.1963 0.1563 0.2574 0.2758 0.2513

7 0.0062 0.4416 0.1135 0.1379 0.1932 0.1348 0.1655 0.1901 0.1317 0.2574 0.2758 0.2696

8 0.0092 0.4355 0.1104 0.1318 0.1902 0.1256 0.1655 0.1993 0.1348 0.2544 0.2758 0.2635

9 0.0062 0.4294 0.1135 0.1349 0.1932 0.0735 0.1655 0.2023 0.1317 0.2544 0.2820 0.2698

10 0.0062 0.4110 0.1104 0.1409 0.1901 0.0918 0.1655 0.2177 0.1225 0.2544 0.2728 0.2698

12 0.0153 0.2638 0.1135 0.1409 0.1932 0.0888 0.1594 0.2208 0.1255 0.1286 0.2789 0.1410

14 0.0092 0.1410 0.1042 0.0368 0.1993 0.0765 0.1318 0.2085 0.1286 0.1317 0.2821 0.1471

16 0.0092 0.1349 0.1073 0.0428 0.1963 0.0642 0.1288 0.1963 0.1164 0.1132 0.2790 0.1380

18 0.0092 0.1349 0.1073 0.0306 0.1932 0.0612 0.1318 0.1902 0.1103 0.1132 0.2821 0.1349

20 0.0061 0.1349 0.1104 0.0306 0.1963 0.0703 0.1470 0.1932 0.1194 0.1163 0.2790 0.1134

change in AD brain network when compared with the normal
brain in the five frequency bands, which can effectively explain
the disconnection characteristics of AD brain, resulting in the
degeneration of AD brain function, especially in α, β , and γ

frequency bands. Meanwhile, most of the features generated by
SVM classifier have low classification error rates in the α, β ,
and γ frequency bands. Further, to enhance the classification
performance, a novel hybrid and multi-objective optimization
algorithm, MOPSO-GDM, is proposed for multiple feature
combination (δ/ δ-θ-α-β-γ ), achieving a much lower classification
error rate than NSGA, MOPSO, and MOPSO-M algorithms, with
a min classification error rate of 0.0531 (average error rate of
SVM, NB, and DA classifiers) with 8 features combination in
the δ-θ-α-β-γ . In sum, it is clear that applying the MOPSO-
GDM for features selection can reduce the dimension of the
feature set, which makes the resulting data set suitable for EEG-
based AD clinical auxiliary diagnosis by minimizing the number
of require features per sample to explore the potential markers
and characterize the abnormalities of EEG signals of AD patients.
Moreover, shedding light on EEG analysis of AD patients may

help extend our understanding of brain function in patients with
other neurological disorders. In future work, we will further explore
the way features are fused with each other. Furthermore, such
feature selection or dimensionality reduction methods as RFE and
PCA give us new hints, which let us to consider the combination
of intelligent optimization algorithms and non-genetic-feature
selection methods to optimize AD brain network features in
subsequent work.
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