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The gut brain axis (GBA), a bidirectional communication pathway has often 
been linked to health and disease, and gut microbiota (GM), a key component 
of this pathway shown to be altered in Parkinson’s disease (PD), are suggested to 
contribute to the pathogenesis of PD. There are few studies that report the impact 
of oral medication therapy on GM, however, there are even fewer studies that 
discuss the impact of other treatments such as device assisted therapies (DAT) 
including deep brain stimulation (DBS), levodopa-carbidopa intestinal gel infusion 
(LCIG) and photobiomodulation (PBM) and how these might impact GM. Here, 
we review the literature and summarize findings of the potential contributions of 
GM to the heterogenous clinical response to pharmaceutical therapies among 
individuals with PD. We also discuss the potential interactions between the GM 
and DATs such as DBS and LCIG and present evidence for alterations in GM in 
response to DATs. Given the complexity and highly individual nature of the GM of 
patients with PD and the potential influence that other external factors such as 
diet, lifestyle, medications, stage of the disease and other comorbidities, further 
investigations into the response of GM to therapies are worthy of future study 
in prospective, controlled trials as well as medication naïve individuals. Such 
detailed studies will help us further comprehend the relationship between GM 
in PD patients, and will help investigate the potential of targeting GM associated 
changes as a treatment avenue for PD.
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Introduction

Parkinson’s disease (PD) is a chronic neurodegenerative disease characterized by the loss of 
nigrostriatal dopaminergic innervation. The pathological hallmark is the deposition of 
intracellular α-synuclein (α-syn) aggregates in the form of Lewy bodies, and the ultimate demise 
of neurons and subsequent development of motor symptoms such as bradykinesia, rigidity, 
resting tremor, postural instability, and dystonia. It is becoming increasingly evident that 
non-motor symptoms including gastrointestinal (GI) dysfunction, psychiatric disturbances, 
sleep issues, sensory issues, and autonomy dysfunction (DeMaagd and Philip, 2015) are highly 
prevalent and problematic aspects of the disease. Dysregulation of the glutamatergic, cholinergic, 
serotonergic, and adrenergic systems are implicated in the pathogenesis of PD and contribute 
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to heterogenous patient presentations (DeMaagd and Philip, 2015; 
Chaumont-Dubel et al., 2020). Treatment strategies for PD typically 
utilize dopaminergic medications with the goal of increasing synaptic 
dopamine concentrations or dopamine receptors stimulation. In 
conjunction with pharmacological treatments, rehabilitation 
interventions, including physical and speech therapy and dietary 
modifications are employed to alleviate both motor and non-motor 
symptoms of the disease. Treatment strategies for PD typically utilize 
levodopa regimes in attempts to replace dopamine however, disease 
progression ultimately results in decreased medication efficacy as well 
as an increased prevalence of debilitating side effects in the long term. 
Device-assisted therapies (DATs) such as deep brain stimulation 
(DBS) (Limousin-Dowsey et al., 1999), levodopa-carbidopa intestinal 
gel infusion (LCIG) (Senek and Nyholm, 2014; Olanow et al., 2020) 
and subcutaneous apomorphine injections (Chaudhuri et al., 1988; 
Stibe et al., 1988; Pollak et al., 1989) are recommended for some PD 
patients with motor fluctuations and tremors inadequately controlled 
by medication, or to those patients who are intolerant to medications. 
Other therapies such as transcranial magnetic stimulation (TMS) 
(Pascual-Leone et  al., 1994; Valls-Solé et  al., 1994) and 
photobiomodulation (PBM) (Santos et  al., 2019) have also been 
explored as potential alternatives to medications. The goal of this 
review is to provide a brief overview of the existing literature in the 
context of GM and PD and how GM could influence PD treatment 
outcomes, with a specific focus on the influence that DATs might have 
on GM, which has not yet been systematically investigated. We also 
provide a brief summary of key studies on GM and PBM and 
acknowledge that discussions relating to apomorphine injections, and 
TMS are out of the scope of this review.

Gastrointestinal symptoms in patients with 
PD

Gastrointestinal (GI) issues are typically observed in almost all 
stages of PD, and about 30% of PD patients complain of GI symptoms, 
such as constipation, drooling, dysphagia, and gastroparesis (Pfeiffer, 
2003). One of the most common prodromal symptoms of PD is 
constipation (Abbott et al., 2001; Savica et al., 2009; Lin et al., 2014), 
and is also the most prevalent GI symptom (8 to 70%) in patients with 
PD (Edwards et al., 1991; Knudsen et al., 2017; Stocchi and Torti, 
2017). Despite extensive research, the etiology of constipation and 
whether constipation in PD is caused by gut or brain pathology 
remains elusive (Borghammer, 2018). One case–control study 
reported an elevated PD risk among participants with a history of 
constipation, as early as 20 years before onset of the first motor 
symptoms, as assessed by medical record review (Savica et al., 2009). 
Drooling is related to swallowing dysfunction during the 
oropharyngeal phase (Srivanitchapoom et al., 2014) and increased in 
parotid gland secretion (Nicaretta et  al., 2008) that is only 
compounded by flexed posture, unintended and open mouth (Kalf 
et  al., 2011). The prevalence of dysphagia is fairly high (97%) in 
objective studies (Pfeiffer, 2018) and is seen in patients with advanced 
PD with severe bradykinesia and rigidity, which likely contributes to 
oropharyngeal dysphagia (Fasano et  al., 2015). The prevalence of 
gastroparesis is very high (70 to 100%), and even though the 
underlying pathophysiology is unclear, plays a major player in the 
development of motor fluctuations in PD (Doi et  al., 2012). The 

average half-emptying time in patients with mild PD is 46 to 149 min, 
and is 55 to 221 min in moderate/severe PD, whilst the average half-
emptying time in healthy controls is to 43 to 107 min (Heetun and 
Quigley, 2012).

Evidence of leaky gut and bowel 
inflammation in PD

In a rat model of PD where substantia nigra inflammation and 
selective dopaminergic neuronal loss were induced by LPS injection, 
it was shown that bowel inflammation can exacerbate 
neuroinflammation, has the ability to disrupt the blood brain barrier 
(BBB), and can result in dopaminergic neuronal loss in the substantia 
nigra (Villarán et al., 2010). Subsequently, some studies have shown 
clinical evidence of bowel inflammation in PD patients for example; 
Devos et al. found increased expression of proinflammatory cytokines 
(tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), 
interleukin (IL)-6, and IL-1β) in PD patients using real-time PCR 
analysis of mRNA expression of pro-inflammatory cytokines in the 
ascending colon biopsies of PD patients and controls (Devos et al., 
2013). They report this increase to correlate with increased expression 
of glial markers (glial fibrillary acidic protein and Sox-10), suggesting 
that proinflammatory events in the bowel are increased in PD patients. 
Notably, the authors report that expression levels of cytokines and glial 
markers did not correlate with immunostaining levels of phospho-α-
synuclein or axial symptom sub-scores on the UPDRS part III. Further, 
these expression levels correlated negatively with PD duration, 
suggesting that bowel inflammation may play a role in PD 
pathogenesis (Devos et al., 2013). Consistent with this hypothesis, 
immune profiles in the stool of PD patients show elevated levels in 
proteins related to angiogenesis and chemokines and cytokines such 
as IL-1α, IL-1β, and IL-8 when compared to controls (Houser et al., 
2018). Results from another study also shows increased fecal 
calprotectin, an intestinal permeability marker in patients with PD 
compared to age-matched controls yet, the level of fecal calprotectin 
did not correlate with clinical parameters such as disease duration 
(Schwiertz et al., 2018; Dumitrescu et al., 2021).

There is evidence from recent studies suggesting that gut 
inflammation in PD can be traced to increased intestinal permeability, 
or leaky gut which correlates with intestinal α-synuclein accumulation 
in patients with PD (Forsyth et al., 2011). They also observed increased 
urine sucralose excretion in patients with PD when compared to 
controls, suggestive of increased colonic permeability (Forsyth et al., 
2011). Greater colon permeability has shown to correlate with 
increased α-synuclein accumulation and E. coli in distal sigmoid 
biopsies of PD patients (Salat-Foix et  al., 2012). Hence, increased 
permeability-related bowel inflammation and an increased chance of 
gut bacteria translocation are likely involved in PD pathogenesis.

Examination of morphological changes and expression in the 
intestinal epithelial barrier (including two tight junction proteins, 
ZO-1 and occludin) in colonic biopsy tissues of PD patients and 
controls showed that a greater proportion of PD patients had disrupted 
and irregularly distributed tight junction proteins and lower 
expression levels of occludin compared to controls (Clairembault 
et  al., 2015) thus confirming observations of increased gut 
permeability and mild bowel inflammatory changes in patients 
with PD.
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Brain-gut communication

It is now known that there is extensive bidirectional 
communication between the brain and the gut via several immune, 
endocrine, metabolic and neural pathways commonly referred to 
as the gut brain axis (GBA) central to which are the GM (Carabotti 
et al., 2015), resulting in a nexus that is often referred to as the 
microbiota-gut-brain axis (Gershon, 1999; Rhee et al., 2009; Round 
and Mazmanian, 2009; Forsythe et al., 2014; Mulak and Bonaz, 
2015; Reigstad et al., 2015; de Vadder et al., 2018; Cryan et al., 
2019; Osadchiy et al., 2019). This complex, intricate colonization 
has co-evolved over thousands of years to form a mutually 
beneficial relationship (Backhed et  al., 2005; Neish, 2009). The 
nutrient-rich environment of the gut provides for the collection of 
bacteria, archaea and eukarya. GM can impact the host through 
the production of various metabolites including short-chain fatty 
acids (SCFAs), cytokines, hormones and neurotransmitter 
precursors (Dethlefsen et al., 2007; Carabotti et al., 2015). GM can 
also influence several physiological functions including improving 
gut integrity, adapting of intestinal epithelia (Natividad and Verdu, 
2013), effecting host metabolism via SCFAs (den Besten et  al., 
2013), conferring protection against pathogens (Baumler and 
Sperandio, 2016) and modulating the host immune system 
(Gensollen et al., 2016). The vagus nerve is able to sense microbiota, 
and transfer this information to the CNS where it is integrated and 
to then generate a response (Eisenstein, 2016; Tse, 2017). For more 
detailed descriptions on the role of the vagus in the GBA which is 
not the primary focus of this review, the reader is referred to 
several reviews including a recent review from our group (Fulling 
et al., 2019; Klann et al., 2021; Bonaz, 2022; Bostick et al., 2022; 
Dicks, 2022; Han et al., 2022; Raj et al., 2022; Tan et al., 2022).

Gastric Helicobacter pylori and small 
intestinal microbial overgrowth

Helicobacter pylori infection is a common, chronic infection 
and has been implicated in PD (Charlett et al., 1999; Dobbs et al., 
2010; Nielsen et al., 2012; Blaecher et al., 2013; Efthymiou et al., 
2017), with epidemiological studies showing an increased risk of 
H. pylori infection in PD. Meta-analyses have also found a 
significantly worse mean UPDRS score in PD patients with 
H. pylori infection (either UPDRS or total UPDRS III in “on” or 
“off ” state) (Tan et  al., 2015; Dardiotis et  al., 2018) and an 
improvement in UPDRS part III scores after H. pylori has been 
treated (Hashim et al., 2014; Tan et al., 2015). While mechanisms 
of involvement of chronic H. pylori infection in PD are unclear, 
they can be  likely traced to multiple factors such as H. pylori 
toxin, neuroinflammation, and gut microbiota alterations 
(McGee et al., 2018).

Data from cross-sectional studies show that small intestinal 
bacterial overgrowth (SIBO) is more prevalent in patients with PD 
than in healthy controls (prevalence of 25 to 54%) (Gabrielli et al., 
2011; Niu et  al., 2016; DiBaise et  al., 2018), and the data on the 
relationship between PD symptoms and SIBO is quite heterogeneous 
(Fasano et al., 2013). However, rectification of SIBO has shown to 
improve motor fluctuations in PD patients, despite the high recurrence 
rate at 6 months (43%) (Fasano et al., 2013).

Gut microbiota alterations In PD

Given the extent of physiological signaling between the brain gut 
axis involving microbiota, it is not surprising that its dysfunction has 
been attributed as a cause for many neurological disorders (Sekirov 
et al., 2010).

This is notably true in PD (Bullich et al., 2019). There are now over 
20 comprehensive studies that have investigated PD associated 
differences in gut microbiota composition (Hasegawa et al., 2015; 
Scheperjans et al., 2015; Unger et al., 2016; Li et al., 2017; Heintz-
Buschart et  al., 2018; Lin et  al., 2018). These reports suggest that 
α-diversity (species diversity within a single subject) is similar in most 
datasets, and all studies showed differences in microbiota composition 
between PD patients and controls (β-diversity), but the actual bacteria 
were heterogeneous. For instance, compared to controls, the family 
Verrucomicrobiaceae (phylum Verrucomicrobia) and genera 
Akkermansia (phylum Verrucomicrobia; family Verrucomicrobiaceae) 
and Lactobacillus (phylum Firmicutes; family Lactobacillaceae) were 
seen to be  overrepresented in PD patients in several studies 
(Scheperjans et al., 2015; Bedarf et al., 2017; Hill-Burns et al., 2017; 
Heintz-Buschart et al., 2018). However, the families Prevotellaceae 
(phylum Bacteroidetes), Lachnospiraceae (phylum Firmicutes), and 
Pasteurellaceae (phylum proteobacteria) and genera Blautia (phylum 
Firmicutes; family Lachnospiraceae), Roseburia (phylum Firmicutes; 
family Lachnospiraceae), Prevotella (phylum Bacteroidetes; family 
Prevotellaceae), and Faecalibacterium (phylum Firmicutes; family 
Clostridiaceae) were seen to be underrepresented in PD patients in 
some studies (Scheperjans et al., 2015; Unger et al., 2016; Bedarf et al., 
2017). Prevotella is observed abundantly in people who consume 
primarily plant-based, fiber-rich diets, which act as substrates for 
bacteria for the production of SCFAs (Ley, 2016). Prevotella is a 
mucin-degrader that promotes and serves as an indicator of gut 
integrity (Brown et al., 2011) nevertheless, it has also been linked to 
gut inflammation and systemic inflammatory conditions (Ganesh 
et al., 2013; Ley, 2016).

Delineating the relationship between fecal microbiota and PD 
clinical features has resulted in a mixed bag. Two studies observed a 
correlation of PD duration with the abundance of Escherichia/Shigella 
genera, or family Enterobacteriaceae among other nonoverlapping 
bacteria (Li et al., 2017; Petrov et al., 2017), and the abundances of 
Enterobacteriaceae were also shown to correlate with severity of 
postural instability and gait disturbance in another report (Scheperjans 
et al., 2015).

Anti-PD medications and gut microbiota

While the primary focus of this review is DATs and GM 
modifications, it is pertinent to discuss other therapies in this context. 
The influence between GM and drug intake is mutual, and is well 
reported in the literature (Li et al., 2016; Collins and Patterson, 2020; 
Vich Vila et al., 2020) with a growing body of evidence emerging on 
the relationship between commonly prescribed PD drugs and GM 
(Jameson and Hsiao, 2019; Maini Rekdal et al., 2019; van Kessel et al., 
2019; Zhang et al., 2021). Levodopa (L-dopa), the dopamine precursor 
and the gold standard for the treatment of PD (Salat and Tolosa, 2013) 
is usually taken in combination with a dopa decarboxylase inhibitor, 
such as carbidopa to prevent early conversion into dopamine prior to 
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reaching the brain (van Kessel et al., 2019). Yet, carbidopa is ineffective 
against the bacterial dopa decarboxylases (van Kessel et al., 2019), 
which enables GM to metabolize L-dopa, into dopamine by a dopa 
decarboxylase from E. faecalis and then converted into m-tyramine 
through the action of a dehydroxylase from Eggerthella lenta, thus 
decreasing drug availability and increasing side effects (Jameson and 
Hsiao, 2019; Maini Rekdal et  al., 2019; van Kessel et  al., 2019). 
Deamination of L-dopa by C. sporogenes results in 
3-(3,4-dihydroxyphenyl) propionic acid, relatively high levels of which 
have been reported in feces of L-dopa treated PD patients (van Kessel 
et al., 2019).

L-dopa metabolism is dependent on intestinal bacteria but in 
addition, it influences the GM composition itself based on reports that 
show an increased relative abundance of Peptoniphilus, Finegoldia and 
Enterococcus, and a decrease in Faecalibacterium, Blautia and 
Lachnospirae after L-dopa therapy (Weis et  al., 2019; van Kessel 
et al., 2020).

Catechol-o-methyl transferase (COMT) inhibitors, 
anticholinergics, monoaminoxidase inhibitors and dopamine agonists 
are all additional PD drugs that can be administered with or without 
L-dopa (Weis et al., 2019), and they can impact the abundance of gut 
microbial dopa decarboxylases, thus influencing dopamine 
metabolism (van Kessel et al., 2019). Dopamine agonist therapy has 
been associated with reduced intestinal motility and SIBO in a rat 
model (van Kessel et al., 2022), and the authors proposed these effects 
to be mediated by greater relative abundance of Lactobacillus and 
Bifidobacterium, along with a concurrent decrease in Lachnospiraceae 
and Prevotellaceae (van Kessel et al., 2022). There are known GI side 
effects induced by COMT inhibitors and anticholinergics (Kaakkola, 
2000; Ness et al., 2006; Gray et al., 2022), likely due to gut dysbiosis 
(Chen et al., 2021). Some studies have shown gut microbial signatures 
such as increased Bifidobacterium or Lactobacillaceae in PD patients 
treated with COMT inhibitors (Scheperjans et al., 2015; Hill-Burns 
et  al., 2017; Aho et  al., 2019). Further, a significant decrease was 
observed in the abundance of Faecalibacterium prausnitzii along with 
lowering of fecal butyrate associated with a widely prescribed COMT 
inhibitor (entacapone) (Gordin et al., 2004). Several other studies have 
confirmed that there is an alteration of GM related to GI disorders and 
constipation after entacapone treatment is initiated (Weis et al., 2019; 
Fu et al., 2022). Specifically, Fu et al. showed that there is a downward 
trend in Sellimonas, Lactobacillus, Faecalibacterium, Dorea, 
Intestinobacter and Blautia and an upwards trend in Eubacterium, 
Bifodobacterium and Christensenellacea R-7 group in a group of PD 
patients receiving entacapone in combination with L-dopa when 
compared to those treated with L-dopa alone (Fu et al., 2022).

These findings lend support to the hypothesis that there is an 
important relationship between microbiota and drug metabolism 
through the disease course of PD patients and hence systematic 
profiling of the GM will be  essential to comprehend mechanistic 
underpinnings of GM–drug interactions and how this interplay affects 
drug efficacy. Additional studies are needed to assess the potential 
utility of therapeutics in altering the GM to enhance therapeutic 
efficacy and clinical outcomes in patients with PD.

Thus overall, there is sufficient support for the concept of a 
bidirectional communication along the brain-gut-microbiome-
immune axis (Singh et al., 2016; Galley et al., 2017; Karl et al., 2018; 
Jacobs et al., 2021), which can play a crucial role in PD. While there is 
some evidence for GM in PD medications as discussed previously, 

there is very little available in the literature regarding the effects of 
DATs on the GBA in the context of PD. The remainder of the review 
will focus on DATs in PD, and will discuss a few non-DATs useful in 
treating PD in the context of GM.

Device-assisted therapies for PD

While traditional therapies such as L-dopa are effective for the 
treatment of PD motor symptoms, long-term use of such medications, 
disease progression and severity can lead to the development of motor 
complications and potential psychiatric symptoms (Nakamura, 1997; 
Olanow et al., 2014). This can be attributed to oral levodopa’s short 
plasma half-life, which results in pulsatile striatal receptor simulation 
and consequently, adverse side-effects (Shoulson et al., 1975; Nutt, 
2008). When oral pharmaceutical treatment strategies become less 
effective, PD patients can be considered for DATs. Several DATs have 
demonstrated efficacy in PD patients and can improve motor 
fluctuations, including deep brain stimulation (DBS), levodopa-
carbidopa intestinal gel infusion (LCIG), and continuous 
subcutaneous apomorphine injections (Marsili et al., 2021).

DBS was originally approved by the Food and Drug 
Administration in 2002 and has since become a relatively commonly 
utilized therapy for the treatment of advanced PD in many developed 
nations, although it is significantly under-utilized in many parts of the 
world (Lim et al., 2019). During surgery, a quadripolar deep-brain 
stimulation electrode is stereotactically inserted into the brain through 
a burr hole in the skull connected to an implantable pulse generator 
(Okun, 2012). The subthalamic nucleus (STN) and globus pallidus 
interna (GPi) are commonly targeted structures in DBS for PD 
patients. Other emerging targets include ventralis intermedius (Vim) 
DBS, which has shown to improve tremor symptoms. Further 
evidence demonstrates variable improvement of cognition (which can 
also be negatively impacted by DBS especially in individuals with 
pre-existing cognitive impairment (Bucur and Papagno, 2022; 
Hamdan and Vieira, 2022)), psychiatric disturbances, mood disorders, 
autonomic dysfunction, and sleep issues following GPi and STN DBS 
for PD (Fasano et al., 2012; Fukaya and Yamamoto, 2015; Mansouri 
et al., 2018).

In addition to DBS, it has been hypothesized that pulsatile striatal 
receptor simulation seen in patients utilizing long-term traditional 
levodopa therapy can be  negated by delivering dopamine in a 
continual manner. One strategy that aims to stabilize plasma levels of 
levodopa through continuous dopaminergic innervation is levodopa-
carbidopa intestinal gel (LCIG) therapy (Olanow et al., 2014). LCIG 
involves the continual infusion of a carboxymethylcellulose aqueous 
gel to the proximal jejunum through a percutaneous gastrojejunostomy 
tube powered by a portable infusion pump (Olanow et al., 2014). 
LCIG has been shown to significantly improve motor functioning in 
PD patients by providing reductions in “off ” time (Nyholm et al., 
2012; Olanow et al., 2014; de Fabregues et al., 2017; Fernandez et al., 
2018). Additionally, LCIG reduces the prevalence of non-motor 
symptoms including psychiatric disturbances, cognitive deficits, sleep 
issues, and gastrointestinal dysfunction (Chang et al., 2016). Similar 
to LCIG, apomorphine can be continually administered via DAT to 
provide PD patients with continuous dopaminergic stimulation and 
consequently, motor and non-motor symptom relief. Apomorphine is 
a non-narcotic derivative of morphine that activates striatopallidal 
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pathways via direct stimulation of postsynaptic D1 and D2 striatal 
dopamine receptors (Hagell and Odin, 2001; Carbone et al., 2019). 
The structure, composition, and lipophilic nature of apomorphine 
allows it to cross the blood–brain barrier more readily than levodopa 
(Carbone et al., 2019). For this reason, apomorphine is commonly 
used as a “rescue medication” due to its fast-acting pharmacokinetic 
properties (Hagell and Odin, 2001; Carbone et al., 2019). When used 
as a “rescue medication,” the effects of apomorphine onset 
approximately 4–12 min and last approximately 45–60 min after the 
time of injection (Hagell and Odin, 2001; Carbone et  al., 2019). 
However, regularly-scheduled injections of apomorphine can provide 
long-term PD symptom relief. Intermittent injections of apomorphine 
can be  administered into the abdomen, arms, or thighs with 
pre-marked doses contained in an insulin syringe mounted in an 
injector pen (Hagell and Odin, 2001). If injections are needed more 
than 4–6 times daily, continuous apomorphine infusions can 
be administered through an infusion pump (Hagell and Odin, 2001). 
All DATs need to be  carefully considered in suitability to patient 
profiles and co-morbidities, as well as permissible potential side effect 
profiles from each DAT (Hagell and Odin, 2001; Carbone et al., 2019).

Interactions between the gut 
microbiome and device-assisted 
therapies

The utilization of DATs for the treatment of PD has significant 
implications on the GM. As discussed in previous sections, compared 
to healthy, non-PD controls (HCs), PD patients have distinctly 
different GM. Patients have been shown to have significant 
overrepresentation of Verrucomicrobia at the phylum level, 
Verrucomicrobiales at the order level, Verrucomicrobiaceae and 
Lactobacillaceae at the family level, and Akkermansia at the genus level 
(Lubomski et al., 2022a,b). Similarly, Firmicutes and Bacteroidetes at 
the phylum level, Pasteurellales at the order level, Pasteurellaceae, 
Butyricicoccaceae, and Veillonellaceae at the family level, Blautia, 
Faecalibacterium, Roseburia, Fusicatenibacter, Haemophilus, 
Gemmiger, Lachnospiraceae ND3007 group, Erysipelotrichaceae, 
Butyricicoccus and Streptococcus at the genus level are 
underrepresented in PD patients when compared to non-PD HCs 
(Lubomski et  al., 2022a,b). Prevalence of such diverse GM 
dysregulations in PD exemplifies the significant role of the GM in PD 
pathology. The composition of the GM is further altered following the 
initiation of DATs, specifically DBS and LCIG. It is important to note 
that reports investigating the interactions between the GM and DATs 
are relatively limited (Melis et al., 2021; Lubomski et al., 2022a,b). 
There are no reports in the literature describing the relationships 
between intermittent or continual apomorphine infusions and the 
GM (Table 1).

One study investigating the role of acute DAT use (either DBS or 
LCIG) on the GM composition (at pre-therapy time points of −2 and 
0 weeks with post-therapy time points of +2 and + 4 weeks to healthy 
controls at 0 weeks) revealed significantly greater (p = 0.0033) 
phylogenetic GM abundances following DAT initiation (Lubomski 
et al., 2022b). These differences were seen consistently at different 
timepoints for the same individuals (Lubomski et  al., 2022b). 
Although alpha diversity measures including Shannon (species 
abundance and evenness within a community) and Simpson (species 

richness and evenness within a community) scores were not significant 
between DAT and non-PD HC groups, measurements of beta diversity 
(extent of difference in species diversity difference between two 
environments) were significant between DAT groups (p = 0.0102) 
(Lubomski et al., 2022b). Specifically following DBS, Clostridium_
XlVa, Bilophila, Parabacteroides and Pseudoflavonifractor were 
overrepresented while Dorea was underrepresented. Greater taxa 
differences in this group may be due to postoperative administration 
of Cephazolin, an antibiotic utilized to prevent DBS hardware 
infections (Lubomski et  al., 2022a,b). However, the symbiotic 
overabundance of Parabacteroides coupled with Clostridium could 
serve as an anti-inflammatory mechanism, as both species produce 
bile acids (Lubomski et al., 2022a,b). Following acute administration 

TABLE 1 Overview of studies investigating the effect of DAT activation 
and PBM on the composition of the GM.

Source Intervention Conclusion

Lubomski 

et al. (2022b)

4 weeks DBS Significant differences in alpha and beta 

diversity were seen when compared to 

initiation of LCIG therapy (p = 0.0102)

Use of the post-operative antibiotic 

Cephazolin may have caused increased taxa 

differences

Overabundance of Parabacteroides coupled 

with Clostridium could serve as an anti-

inflammatory mechanism to promote 

post-operative healing

Lubomski 

et al. (2022a)

12 months DBS Increased longitudinal diversity could 

be due to time-dependent changes in the 

GM secondary to DAT activation

Lubomski 

et al. (2022b)

4 weeks LCIG Significant differences in alpha and beta 

diversity were seen when compared to 

initiation of DBS (p = 0.0102)

Overexpression of Escherichia/Shigella may 

be attributed to the acidic properties of 

LCIG gel

First reported under-expression of 

Gemmiger highlighting PD-specific GM 

alterations secondary to DAT activation

Lubomski 

et al. (2022a)

12 months LCIG Increased longitudinal diversity could 

be due to time-dependent changes in the 

GM secondary to DAT activation

Melis  

et al. (2021)

LCIG Administration of LCIG therapy 

significantly increased the abundance of 

Enterobacteriaceae, Escherichia and Serratia 

compared to administration of levodopa 

alone

Increased abundance of Enterobacteriaceae 

may contribute to gut inflammation 

following LCIG initiation

Bicknell  

et al. (2022)

12 weeks PBM Decreased F:B ratio was observed which is 

indicative of improved gut health

Increase in SCFA-producing bacteria was 

observed
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of LCIG therapy, Pseudoflavonifractor was overrepresented while 
Escherichia/Shigella and Gemmiger were underrepresented (Lubomski 
et  al., 2022b). The authors proposed Escherichia/Shigella 
overexpression may have been due to the mildly acidic (~ pH 6.0) 
properties of the LCIG gel itself as Escherichia/Shigella tolerate acidic 
conditions (Benjamin and Datta, 1995; Lubomski et al., 2022b). This 
study reported the underrepresentation of Gemmiger for the first time, 
highlighting how DATs induce GM alterations specific to PD 
(Lubomski et al., 2022b).

Interestingly, a similar study investigating the role of longitudinal 
(0 month–12 month) use of DATs on the GM composition revealed 
similar, yet important differences. Both DBS and LCIG therapy elicited 
specific changes in the GM composition. However, the short-term 
taxa abundance changes reported by Lubomski et al. (2022a) were 
inconsistent with longitudinal results (Lubomski et al., 2022a). For 
example, long-term exposure to DBS resulted in the overrepresentation 
of Euryarchaeota and Spirochaetes at the phylum level, Bacillales, 
Methanobacteriales, and Spirochaetales at the order level, 
Methanobacteriaceae, Bacillaceae, and Spirochaetaceae at the family 
level, and Prevotella, Methanobrevibacter, Treponema, Bacillus, 
Veillonella, Citrobacter, Faecalicoccus, and Morganella at the genus 
level (Lubomski et  al., 2022a). Hespellia, Acetanaerobacterium, 
Anaerotruncus, Howardella, and Flavonifractor were underrepresented 
following long-term DBS exposure (Lubomski et al., 2022a). Similarly, 
long-term LCIG therapy resulted in overrepresentation of 
Prevotellaceae, Roseburia, Prevotella, and Bacillus (Lubomski et al., 
2022a). Hespellia, Eggerthella, Holdemania, Gordonibacter, and 
Acetanaerobacterium were underrepresented following long-term 
LCIG use (Lubomski et al., 2022a). Treatment formulation could also 
result in alterations in bacterial abundance. For instance, patients 
receiving an L-dopa + carbidopa intestinal gel showed higher levels of 
Enterobacteriaceae, Escherichia and Serratia compared to those 

receiving only L-dopa, and both groups displayed metabolic markers 
of gut inflammation (Melis et al., 2021). Contrastingly, results from 
another study conducted on 19 PD patients prior to, and after a 
90-day L-dopa treatment reported no major differences in either α or 
β diversity between the two time points, which indicates that more 
research in this area is needed to better understand factors implicated 
in L-dopa-mediated GM reshaping (Palacios et  al., 2021). The 
observed differences between acute and longitudinal DAT use on the 
microbiota integrity and composition highlight how GM 
modifications may emerge and evolve in a time-dependent manner. 
Although the mechanisms are still not fully understood, this could 
be due to evolving physiological responses to DATs or DAT-mediated 
influences on the GM that emerge as exposure time to DATs increases 
(Lubomski et al., 2022a). Furthermore, it is likely that the interactions 
between the GM and DATs is bidirectional given the significant 
modulatory effects of the GM on other organs and physiological 
processes (Figure  1). However, this remains an area of limited 
investigation, hence future long-term, longitudinal studies in this area 
will be of interest.

Other therapies

Photobiomodulation
Photobiomodulation or PBM therapy uses non-thermal and 

non-ionizing light in the visible and infrared spectrum, and has 
recently been proposed as a therapeutic intervention for symptomatic 
improvement in PD of patients with Parkinson’s disease (Johnstone 
et al., 2015). PBM is thought to target cytochrome-C-oxidase, which 
absorbs red and near-infrared light (Hamblin, 2018), which in turn 
releases reactive oxygen species (ROS) from the complex, thereby 
promoting increased mitochondrial membrane potential. This leads 

FIGURE 1

Overview of GM in PD and the role that DATs might have in influencing PD-GM. Created with BioRender.com.
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to an increase in ATP production, which can regulate downstream 
signaling pathways and gene transcription via ATP, cAMP, ROS, Ca2+ 
and nitric oxide (NO) (Hamblin, 2018; Benson et al., 2020). Data of 
PBM from preclinical models of PD are promising, showing the ability 
to protect animals when PBM delivered to areas remote from the brain 
prior to administration of MPTP (pre-conditioning) (Johnstone et al., 
2015; Kim et al., 2017; Ganeshan et al., 2019; Gordon and Johnstone, 
2019). These data have prompted the justification of clinical trials 
(Salehpour and Hamblin, 2020). A recent, prospective proof-of-
concept study which used both transcranial as well as remote PBM in 
12 participants with PD showed that it is a safe, effective therapy for 
several PD symptoms as long as the treatment was continued (Liebert 
et al., 2021). Data from this study is encouraging, and warrants larger 
randomized clinical trials.

Photobiomodulation of the gut microbiome
Bicknell et al. showed that PBM when applied to mice abdomen 

can lead to alterations in GM (Bicknell et al., 2019). Furthermore, 
recent reports suggest that in humans, combination PBM therapy 
when delivered to the head, nose, neck and abdomen has the potential 
to attenuate or reverse some of the clinical signs and non-motor 
symptoms of PD (Santos et al., 2019). A recent study compared fecal 
microbiome samples (pre- and post-treatment) from PD patients 
before and after a 12-week course of PBM therapy to the abdominal, 
head, neck and nasal areas (Bicknell et al., 2022). Results from this 
study show that at the phylum level, there is a decrease in Firmicutes, 
and an increase in Bacteroidetes, resulting in a “positive” alteration in 
the Firmicutes to Bacteroidetes (F:B) ratio (Eckburg et al., 2005). A 
higher ratio is often reported to be an indicator of poor gut health and 
is often used as a proxy for gut health (Ley et al., 2006; Spychala et al., 
2018; Magne et al., 2020; Stojanov et al., 2020). Microbial diversity was 
not significantly altered after PBM treatment, however, there was an 
increase in SCFA-producers, and in those genera generally recognized 
to be beneficial and a decrease in potential pathogens (Bicknell et al., 
2022). Further in-depth investigations into the response of GM to 
PBM is worthy of prospective, controlled clinical trials which could 
provide insight into the potential of targeting the gut microbiome with 
PBM as an avenue into the treatment of PD.

Discussion and future directions

Overall, our review summarizes the link between dysbiosis and 
PD, with a particular focus DATs, as the knowledge gleaned from this 
is likely important not only for diagnostic purposes, but also for 
therapeutic applications. However, several limitations in GM studies 
still exist. One concern is that there are discrepancies and variabilities 
found between some PD-GM studies, which limit reproducibility. 
Hence, it is essential to adopt and share common laboratory protocols, 
bioinformatics pipelines and analytical methods reduce external 
confounders (Boertien et al., 2019). It will also be essential to compare 
samples from PD patients at different stages of disease progression, 
especially those with prodromal disease and early subjects in order to 
better define stage-associated signatures (Boertien et  al., 2019). 
Furthermore, it is essential to obtain sufficient comparisons of 
microbial profiles between patients undergoing conventional 
pharmacological treatment and treatment-naïve PD individuals in 
order to account for drugs that may affect GM composition (Van 

Kessel et al., 2019; Weis et al., 2019; Melis et al., 2021). Additionally, 
the dose and time of administration of GM-modifying drugs may also 
vary depending on the stage of the disease, thus possibly further 
influencing the study outcomes. Optimum probiotic-prebiotic 
cocktails and ideal dietary interventions have yet to be identified for 
PD treatment.

Fecal microbial transplants (FMT) involves transplantation of 
fecal microbiota from healthy donors into the GI tract of recipients to 
modulate and restore the GM (Zhang et al., 2012). FMT has been 
shown to be beneficial in patients with Clostridium difficile infections 
and irritable bowel syndrome (IBS) where there is dysbiosis (Barichella 
et  al., 2016). Presently, there are multiple ongoing clinical trials 
investigating the effects of FMT on PD symptoms including 
constipation, motor symptoms, and restoration of gut homeostasis 
(Xue et al., 2020; Kuai et al., 2021; Metta et al., 2021; Segal et al., 2021; 
DuPont et al., 2023), NCT03808389, NCT04854291, NCT05204641, 
NCT03671785 and it is possible that utilization of FMT in 
combination with DATs could improve PD progression 
and symptomology.

In the context of DATs for PD, it is important to note that the 
studies of DAT activation and GM remain limited to a few studies, or 
do not exist at all. For example, there are no reports in the literature 
detailing the relationship between longitudinal apomorphine 
infusions and the composition of the GM. Administration of 
apomorphine for PD is similar to LCIG therapy in the sense that both 
medications aim to increase and stabilize dopaminergic stimulation 
by means of a DAT that continually infuses medication. Because LCIG 
therapy has been shown to induce significant changes in the PD GM 
(Lubomski et  al., 2022b), investigating the relationship between 
device-assisted apomorphine infusions and the GM could be  b, 
investigating the relationship between device-assisted apomorphine 
infusions and the GM could be beneficial to better understand the 
pathogenesis of PD and potentially utilize the GM for 
therapeutic benefits.

Additionally, many studies investigate the effects of DAT 
activation on the GM in a unidirectional manner when in reality, this 
is likely a bidirectional process. Accumulating evidence suggest 
increased intestinal permeability in PD is correlated with gut 
inflammation and increased prevalence of gut bacterial translocation 
(Forsyth et al., 2011). It is possible that DAT activation could result in 
translocation of the GM due to increased intestinal permeability. 
Furthermore, alterations in the GM secondary to DAT activation have 
the potential to provide therapeutic benefits. For example, following 
DBS for PD, Clostridium and Parabacteroides are overrepresented, 
possibly due to postoperative administration of Cephazolin, an 
antibiotic utilized to prevent DBS hardware infections (Lubomski 
et  al., 2022a¸b). However, the symbiotic overabundance of these 
bacteria could serve as an anti-inflammatory mechanism to promote 
bodily healing following surgery (Freedman et al., 2018; Lubomski 
et al., 2022b). While this study looked at GM composition over a 
4-week time period, it would be beneficial in the future to conduct 
longitudinal studies that would be helpful in better understanding the 
potential bidirectional relationships between DBS activation and the 
GM. Similarly, the somewhat contradictory findings in the GM 
composition after 0 month – 6 month and 0 month – 12 month 
initiation of LCIG therapy show how the GM has the potential to 
be modified in a time-dependent manner following the activation of 
a single DAT (Lubomski et al., 2022a). As with DBS, longitudinal 
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investigations of LCIG therapy for PD could allow for a better 
understanding of the potential bidirectional relationship between 
DAT activation and alterations in the GM composition.

Overall, though much work remains to be done and large clinical 
trials are required, GM is emerging as a promising diagnostic and 
therapeutic tool for PD and deserves further investigation.
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