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Neuronal biomolecular 
condensates and their 
implications in neurodegenerative 
diseases
Jeongyeon Nam  and Youngdae Gwon *

Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic 
of Korea

Biomolecular condensates are subcellular organizations where functionally 
related proteins and nucleic acids are assembled through liquid–liquid phase 
separation, allowing them to develop on a larger scale without a membrane. 
However, biomolecular condensates are highly vulnerable to disruptions from 
genetic risks and various factors inside and outside the cell and are strongly 
implicated in the pathogenesis of many neurodegenerative diseases. In addition 
to the classical view of the nucleation-polymerization process that triggers 
the protein aggregation from the misfolded seed, the pathologic transition of 
biomolecular condensates can also promote the aggregation of proteins found in 
the deposits of neurodegenerative diseases. Furthermore, it has been suggested 
that several protein or protein-RNA complexes located in the synapse and along 
the neuronal process are neuron-specific condensates displaying liquid-like 
properties. As their compositional and functional modifications play a crucial 
role in the context of neurodegeneration, further research is needed to fully 
understand the role of neuronal biomolecular condensates. In this article, we will 
discuss recent findings that explore the pivotal role of biomolecular condensates 
in the development of neuronal defects and neurodegeneration.
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1. Introduction

Compartmentalization is a critical feature that benefits eukaryotic cells, allowing them to 
concentrate functionally relevant biomolecules in specific subcellular organelles. Over time, 
eukaryotic cells have evolved to create distinct environments that promote the function of 
organelle-specific biomolecules, such as lysosomes or mitochondria. While membrane-bound 
organelles separated from the other cellular parts with lipid bilayers mainly composed of 
amphiphilic phospholipids have long been investigated, membrane-less assemblies of proteins 
and nucleic acids, defined as biomolecular condensates, have emerged as another paradigm to 
give rise to cellular organizations as a result of numerous studies over the last decade (Banani 
et al., 2017). De-mixed with the surrounding phase, biomolecular condensates embrace a subset 
of molecules of related functions, promoting many biological processes in themselves (Lyon 
et al., 2021). Now, the formation of biomolecular condensates is understood by the principle of 
liquid–liquid phase separation (LLPS).
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Although biomolecular condensates are found in many eukaryotic 
cells, neurons, which differ structurally from other cells, exhibit a 
number of unique biomolecular condensates (Gopal et  al., 2017; 
Milovanovic et al., 2018; Zeng et al., 2018; Wu et al., 2019; Mcdonald 
et al., 2020). Neurons are polarized cells with an axon that extends 
from the soma to transmit electrochemical information and multiple 
dendrites that receive inputs from adjacent neurons. In the 
interneuronal synapse, there are several microorganizations, including 
synaptic vesicle (SV) clusters, presynaptic active zones (AZ), and 
postsynaptic densities (PSD) (Feng et al., 2019; Emperador-Melero 
and Kaeser, 2020; Reshetniak and Rizzoli, 2021). Also, since axon and 
dendrites make up more than 90% of neuronal volumes, neurons face 
challenges in maintaining the structural and compositional integrity 
of synapses (Kasthuri et al., 2015). To overcome this, mRNAs encoding 
synaptic proteins are transported through neurite projections in a 
form of ribonucleoprotein (RNP) granule, or RNA transport granule, 
for localized translation (Das et al., 2021). Of note, LLPS plays a vital 
role in the assembly and functional regulation of these structures.

In this review, we  will summarize recent updates about 
biomolecular condensates found exclusively in neurons. We  will 
describe how multivalent interactions among components, facilitated 
by the principle of LLPS, generate biomolecular condensates. We will 
also discuss how the solidification of these condensates, from liquid 
to solid-like phase, is frequently found in the pathogenesis of 
neurodegenerative diseases. Additionally, we  will describe the 
specialized roles of neuronal biomolecular condensates and their 
modification under disease-relevant contexts. This review will provide 
a comprehensive understanding of neuronal biomolecular condensates 
and their role in the mechanism of neurodegeneration.

2. Multivalency-driven LLPS As the 
molecular momentum to assemble 
biomolecular condensates

A de-mixing event work against the spontaneous increment in 
entropy to minimize the free energy in the system. Therefore, the 
contribution of enthalpy which offsets the loss of entropy is crucial for 
this de-mixing process as suggested by Flory-Huggins lattice models 
for polymer-solvent mixtures (Brangwynne et al., 2015; Nott et al., 
2015; Workman and Pettitt, 2021). Enthalpic momentums are 
determined by the net change in intra-and intermolecular interactions 
during the de-mixing processes. Typically, for a given set of molecules 
to separate into a different phase, the sum of the magnitude of 
interactions among them exceeds the magnitude of interactions with 
other molecules. These molecules co-exist in two distinct phases 
following the de-mixing process of such solutions, one phase having a 
dense concentration and the other having a diluted concentration. 
LLPS is defined as a switch from 1-phase regime to 2-phase regime that 
results in a local enrichment of macromolecules above the saturation 
concentration in droplet-like structures (Hyman et  al., 2014). In 
biological systems, these droplet-shaped foci composed mostly of 
proteins and nucleic acids that exhibit different phase properties from 
their surroundings are termed as biomolecular condensates (Banani 
et al., 2017; Lyon et al., 2021). The proteins in biomolecular condensates 
exhibit weak and transient interactions with multiple partners, which 
occur in both folded and intrinsically disordered regions (IDRs) 
(Banani et al., 2017; Shin and Brangwynne, 2017).

2.1. Folded domain

LLPS of sequentially positioned domains of one protein and short 
linear motifs (SLiM) of another protein is an example of how folded 
protein domains contribute to the valency-dependent assembly of 
biomolecular condensates (Hastings and Boeynaems, 2021). In the 
actin regulatory signaling system, SH3 domains of cytoplasmic 
protein NCK interact with proline-rich motifs, a prominent type of 
SLiM, of neuronal Wiskkott-Aldrich syndrome protein (N-WASP) (Li 
et al., 2012). Additionally, NCK binds to phosphorylated tyrosine 
residues of either Nephrin in kidney podocytes or SLP-76 in T cells, 
respectively through its SH2 domains (Li et al., 2012; Su et al., 2016). 
As the saturation threshold for phase separation in these signaling 
complexes, which are frequently represented as mesh networks, can 
be  altered by varying the valency of connections, multivalency is 
crucial for encouraging protein condensation (Li et al., 2012; Banani 
et al., 2016; Su et al., 2016). Other examples of LLPS which require 
folded domain-mediated interactions include the LSm domain of 
Edc3 with leucine-rich motifs of Dcp2 and/or Pdc1 in p-bodies, and 
BTB and BACK domains of SPOP in nuclear speckles (Fromm et al., 
2014; Bouchard et al., 2018).

2.2. Intrinsically disordered regions

Intrinsically disordered regions plays a crucial role for LLPS. IDRs 
do not have static tertiary structures and can be varied within a broad 
range of conformations whose energy states are similar to one another 
(Wright and Dyson, 2015). The conformational variance of IDR is 
often derived from the low complexity (LC) of its amino acid 
sequences (Uversky, 2002). Certain kinds of amino acids are enriched 
in IDRs depending on their chemical characteristics. Polar amino 
acids (e.g., serine and glutamine) and charged amino acids (e.g., 
glutamate, lysine, and arginine) are enriched in IDRs and contribute 
to LLPS driven by electrostatic interaction with other IDR-containing 
proteins or nucleic acids (Alberti et al., 2009; Pak et al., 2016). For 
example, the condensation of DDX4 in germ granules relies on the 
charged blocks in its IDR, and neutralizing the charges in these 
clusters inhibits the phase separation of DDX4 (Nott et al., 2015). 
Additionally, tyrosine and phenylalanine which have aromatic 
structures are frequently positioned in the IDR and enable IDR to 
have cation-π or π-π interactions required for LLPS, though tyrosine 
showed the better affinity with lysine or arginine compared to 
phenylalanine (Wang et al., 2018; Schuster et al., 2020). Otherwise, 
IDR could interact with SLiM as demonstrated by the interaction 
between the oligomerization domain of nucleophosmin (NPM1) and 
arginine-rich motifs of a group of nucleolar proteins in the granular 
component of nucleoli (Mitrea et al., 2016). Collectively, the sum of 
short-lived and weak interactions among biomolecules that happen 
simultaneously act as a driving momentum for LLPS.

3. Facilitation of protein fibrilization in 
the phase-deformed biomolecular 
condensates

Neurons become postmitotic during early development and 
typically remained differentiated for their entire lifespan, except in 
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cases of cell cycle re-entry found in the brains of neurodegenerative 
diseases (Lee et al., 2009; Anda et al., 2016). Along with the closed 
nature of the brain accomplished by the limited molecular exchange 
across the blood–brain barrier, long-lived neurons often accumulate 
toxic protein fibrils and aggregates through the aging process. 
Therefore, it is important to study how soluble and functional proteins 
evolve into insoluble and dysfunctional aggregates to better 
understand the pathogenesis of neurodegenerative diseases (Soto and 
Pritzkow, 2018).

Nucleation-dependent fibrilization is a well-defined model to 
describe the formation of many biological polymers such as actin and 
tubulin cytoskeletons but also has long been thought to generate 
pathologic protein fibrils often found in the neurodegenerative 
diseases (Roychaudhuri et  al., 2009). Misfolded proteins escaping 
from the proteostasis system often become the seed of this process 
(Hipp et  al., 2019). Protein amyloids and filamentous protein 
aggregates with cross-beta structures are accumulated as insoluble 
deposits inside or outside of the cells. In particular, favorable 
environments for protein fibrilization are fostered in the nervous 
system with postmitotic neurons where seeds for amyloid formation 
can be enriched as aging proceeds (Hipp et al., 2019). Amyloid plaque 
and Lewy body found in the brains of Alzheimer’s disease (AD) and 
Parkinson’s diseases (PD), respectively, are well-known examples of 
protein amyloids.

Furthermore, recent studies have demonstrated that a liquid-to-
solid phase transition is another route for building up the pathologic 
protein aggregates (Nedelsky and Taylor, 2019; Mathieu et al., 2020). 
Liquid-like biomolecular condensates become more dense and 
gel-like, and eventually transitioning into a solid-like phase during 
the pathogenic circumstances of human diseases (Alberti and 
Hyman, 2021). Especially, much evidence reflecting these pathologic 
transitions are readily identified in the process of neurodegenerative 
diseases including amyotrophic lateral sclerosis (ALS), 
frontotemporal dementia (FTD), huntington’s disease (HD), and 
tauopathy (Molliex et al., 2015; Patel et al., 2015; Lee et al., 2016; 
Ambadipudi et al., 2017; Jain and Vale, 2017; Peskett et al., 2018; 
Wegmann et  al., 2018; Nedelsky and Taylor, 2019; Alberti and 
Hyman, 2021).

3.1. Amyotrophic lateral sclerosis–
Frontotemporal dementia

Amyotrophic lateral sclerosis–frontotemporal dementia, 
collectively now accounted as a spectrum disorder of ALS and FTD, 
is a representative research field where the phase transition from 
liquid to solid states of biomolecular condensates initiates the 
pathogenesis (Ling et al., 2013). Multiple genetic causes of ALS–FTD 
have been found in the genes encoding RNA binding proteins (RBPs) 
such as transactive response DNA-binding protein 43 kDa (TDP43), 
Fused in Sarcoma (FUS), HNRNPA1, and TIA1 which can undergo 
LLPS in vitro (Molliex et al., 2015; Patel et al., 2015; Mackenzie et al., 
2017). Given that most RBP mutations causing ALS–FTD are located 
in IDR, it is not surprising that ALS–FTD-associated mutant FUS, 
HNRNPA1 and TIA1 exhibit a greater propensity to undergo LLPS at 
lower saturation concentration. Mutant proteins are also more likely 
to form denser, solid-like phases, and even insoluble fibrils (Figure 1A) 
(Molliex et al., 2015; Patel et al., 2015; Mackenzie et al., 2017).

Liquid-to-solid phase transition is also observed in the RNP 
granules, prominent types of biomolecular condensates. RNP granules 
are composed of RNA and RBPs and play a vital role in RNA 
regulation processes such as storage, splicing, decapping, and 
degradation. Wild-type TDP43, FUS, HNRNPA1, and TIA1 are 
present in RNP granules such as stress granules, p-bodies, and nucleoli 
and serve a general function. However, RNP granules harboring 
mutated RBPs had lower dynamicity, in accordance with in vitro 
experiments. Given that pathologic aggregates could be incubated in 
solidified RNP granules that offer an adequate niche for protein 
fibrilization, pathologic phase transition is necessary for the 
progression of ALS–FTD (Molliex et al., 2015; Patel et al., 2015; Zhang 
et al., 2019).

The expansion of GGGGCC hexanucleotide repeat in the first 
intron of C9ORF72 is the most prevalent genetic cause of ALS–FTD 
(Dejesus-Hernandez et  al., 2011; Renton et  al., 2011). Though 
C9ORF72 protein levels are decreased in the patients with 
hexanucleotide expansion, the most striking feature is the 
accumulation of protein aggregates containing five dipeptide repeats 
(DPR), (GA)n, (GP)n, (GR)n, (PA)n, and (PR)n, which are synthesized 
by the repeat-associated non-AUG translation of GGGGCC repeat 
(Mori et al., 2013a,b; Saberi et al., 2018). Each DPR has a different level 
of toxicity. While (GP)n and (PA)n with uncharged and coiled 
structures are relatively non-toxic, (GR)n, and (PR)n with the positively 
charged coiled structures are highly toxic with unique interactome 
(GA)n is moderately toxic with compacted structure similar to the 
amyloid protein with cross-beta structure (Freibaum and Taylor, 
2017). Arginine-containing (GR)n, and (PR)n can separate with RBPs 
and RNA into droplets in vitro, and thus are distributed in RNP 
granules like nucleoli and stress granules (Kwon et al., 2014; Lee et al., 
2016; Lin et al., 2016; Boeynaems et al., 2017; White et al., 2019). 
Furthermore, recruitment of (GR)n, and (PR)n triggers the arrested 
dynamicity of RNP granules, leading to cellular toxicity (Lee et al., 
2016; Boeynaems et al., 2017; White et al., 2019). Molecular findings 
related to the neuropathogenic role of arginine-containing DPRs have 
been studied in animal models, but more research is needed. (Choi 
et al., 2019; Cook et al., 2020).

Apart from the expedited protein fibrilization, phase transition in 
the disease-relevant context also affects the physiologic function of 
RNP granules. A lot of evidence supported that the function of 
biomolecular condensates is closely related to their material properties 
(Elbaum-Garfinkle et al., 2015; Zhu et al., 2019; Dorone et al., 2021; 
Lasker et al., 2022). ALS–FTD causing mutations also disrupts the 
function of RNP granules (Murakami et  al., 2015). For example, 
ribosome biogenesis and concomitant translation rates are impaired 
by (GR)n and (PR)n DPR species that affect the integrating role of 
nucleophosmin in the LLPS of a nucleolar network (White et al., 2019).

Cells have regulatory mechanisms to eliminate aberrant RNP 
granules with altered material properties because they are associated 
with cellular dysfunction and toxicity. Protein quality control (PQC) 
systems such as chaperone, unfoldase, proteasome, and autophagy 
systems are involved in disassembling or clearing aberrant RNP 
granules (Buchan et al., 2013; Ganassi et al., 2016; Turakhiya et al., 
2018; Wang et al., 2019; Gwon et al., 2021). It is worth noting that 
another functional category of ALS–FTD-causing genes, other than 
RBPs, is PQC, including VCP, SQSTM1, OPTN, and UBQLN2. 
Among them, de-mixing of SQSTM1 and UBQLN2 in both cell-free 
and cellular systems were identified and mutations linked to 
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ALS–FTD lead to reduced fluidity (SQSTOM1) and even liquid-to-
solid phase transition (UBQLN2) (Dao et al., 2019; Faruk et al., 2021). 
Mutated VCP gene is associated with persistent stress granules lacking 
reversibility and is implicated in the disease-relevant phenotypes 
(Buchan et al., 2013).

3.2. Huntington’s disease

Huntington’s disease is caused by the accumulation of mutant 
huntingtin proteins with a polyglutamine (poly Q) tract. The 
expansion of the CAG trinucleotide in the first exon of HTT gene is 
responsible for this abnormal protein expression. Protein products of 
the first exon of HTT separate into liquid droplets when the number 
of glutamine repeats is less than those in HD patients (Peskett et al., 

2018). As the poly Q length increases, HTT exon 1 protein assemblies 
are converted to solid-like structures, indicating that phase transition 
is the underlying process of how the pathogenic HTT protein species 
exert cellular toxicity (Peskett et al., 2018). Molecular factors such as 
protein methylation and chaperone function affect the phase behavior 
of HTT protein (Aktar et al., 2019; Ratovitski et al., 2022). It will also 
be intriguing to investigate the crosstalk between HTT condensates 
and other biomolecular condensates in the development of HD 
(Sønmez et al., 2021).

3.3. Tauopathy

Neurofibrillary tangles, or intra-neuronal tau deposits, are present 
in various neurodegenerative diseases such as AD, progressive 

FIGURE 1

Neuronal condensates at the physiologic and pathologic contexts. (A) RNP granules, which are composed of mutant proteins encoded by 
amyotrophic lateral sclerosis (ALS)–frontotemporal dementia (FTD) causing genes, undergo a phase transition to solid states, resulting in the formation 
of protein aggregates. (B) Both posttranslational modification such as phosphorylation of synapsin by CaMKII dispersion and changes in interacting 
molecules (e.g., α-synuclein) lead to the dispersion of synaptic vesicle (SV) cluster. (C) Coexisting phase of scaffolding proteins serve as a hub to 
accommodate other presynaptic active zones (AZ) proteins. (D) The interaction between SynGAP trimer and PSD-95 plays a crucial role in assembling 
postsynaptic density. (E) RNA transport granules, either alone or with lysosomes, travel bi-directionally along the microtubule tract.
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supranuclear palsy, FTD, and parkinsonism linked to chromosome 17 
(FTDP-17) (Gøtz et  al., 2019). The progression of tauopathies is 
associated with the instability of microtubules, which occurs in 
tandem with the toxicity of pathologic conformations of tau, from 
oligomers to fibrils (Zhang et al., 2022). Recent studies have illustrated 
several structural and pathogenic factors governing tau LLPS (Boyko 
and Surewicz, 2022). First, an amphoteric characteristic of tau 
possessing a negatively charged N-terminal part and positively 
charged middle and C-terminal part allows for electrostatic 
interactions with other tau molecules (homotypic interaction), other 
proteins, and RNA (Zhang et al., 2017; Boyko et al., 2019; Ukmar-
Godec et al., 2019; Siegert et al., 2021). Acetylation on lysine residues 
neutralizes the charge of tau, perturbing tau-RNA interactions and 
reducing LLPS propensity (Ukmar-Godec et  al., 2019). Second, 
modification associated with tauopathies affects the LLPS behavior of 
tau. Both P310L mutation found in FTDP-17 and pathogenic 
phosphorylation promote phase separation and generate tau droplets 
with less dynamicity (Ambadipudi et al., 2017; Wegmann et al., 2018; 
Kanaan et al., 2020). Third, alternative splicing on exon 10 of tau 
producing fewer microtubule-binding repeats inhibits tau LLPS 
(Ambadipudi et al., 2017). Fourth, tau and microtubule/microtubule-
associated proteins reciprocally regulate in the separated phase, 
linking to functional aspects of tau (Hernãndez-Vega et al., 2017; 
Siahaan et al., 2019; Tan et al., 2019; Zhang et al., 2020; Savastano 
et al., 2021). Overall, the pathologic phenotypes of tauopathies are 
influenced by differential tau LLPS depending on normal or disease-
relevant context.

Apart from the homogenous tau condensates, the interaction of 
tau with RBPs from the proteomic analysis and recruitment of tau to 
stress granules were revealed (Vanderweyde et al., 2016). Among these 
RBPs, TIA1 potentiates tau LLPS, and loss of TIA1 ameliorates the 
neurodegeneration in P301S mutant tau-expressing mice (Apicco 
et  al., 2018; Ash et  al., 2021). Tau condensation through TIA1 is 
understood as the molecular basis for facilitating tau oligomerization 
and causing neurodegeneration (Jiang et al., 2019; Ash et al., 2021). 
Additionally, tau aggregates ensemble with small nuclear RNAs and 
small nucleolar RNAs are found in serine arginine repetitive matrix 
protein 2 (SRRM2)-positive nuclear splicing speckle and required for 
alterations in splicing process (Lester et al., 2021). Therefore, reciprocal 
regulation between tau and biomolecular condensates underlies much 
of tauopathies.

3.4. Synucleinopathy

Aberrant accumulation of α-synuclein is a hallmark of several 
neurodegenerative diseases including Parkinson’s disease, dementia 
with Lewy bodies, and multiple system atrophy, collectively 
characterized by motor symptoms including tremor, rigidity, 
bradykinesia, and posture instability and cognitive impairments 
(Magalhåes and Lashuel, 2022). Recent research has shown that 
α-synuclein undergoes phase separation, which is connected to its 
aggregation (Ray et al., 2020). α-synuclein liquid droplets lose their 
dynamicity after prolonged incubation or when familial mutations of 
PD are introduced. Also, cellular α-synuclein condensates are 
converted to a solid-like phase and further evolve into the aggresome 
upon the addition of metal ion, which promote the aggregation of 
α-synuclein. α-synuclein LLPS occurs through homotypic interactions 

among non-amyloid-β component (NAC) domains, but 
intramolecular interactions between the N-terminal region and 
C-terminal tails masks the NAC domain under physiologic conditions, 
making the protein soluble (Sawner et al., 2021). Certain changes in 
the milieu, including pH and ionic composition, can convert the 
conformational state of α-synuclein and trigger phase separation, 
further leading to aggregation.

4. Synaptic vesicle cluster, presynaptic 
active zone, and postsynaptic density: 
Biomolecular condensates in synaptic 
connection

Synapses are the connection between presynaptic and postsynaptic 
neurons, and are composed of a presynaptic terminus, synaptic cleft, 
and postsynaptic dendritic spine, each enriched with distinct profiles 
of proteins according to their functions. The presynaptic axon 
terminus has SV clusters as an inventory of SV and triggers the release 
of neurotransmitters at the presynaptic active zone (AZ). Proper 
assembly of SV cluster and presynaptic AZ is governed by LLPS, 
which implies that they are biomolecular condensates (Milovanovic 
et al., 2018; Wu et al., 2019; Mcdonald et al., 2020). Understanding 
synaptic LLPS would give a unique viewpoint on neuropathies because 
cognitive dysfunctions are easily identified in the brains of 
neurodegenerative disease patients at the synapse level.

4.1. SV cluster

The SV cluster is a subsynaptic structure where dozens to 
thousands of SVs are closely placed near the presynaptic AZ without 
a boundary (Reshetniak and Rizzoli, 2021). In response to releasing 
stimuli, such as Ca2+ influx that can be translated into the activation 
of calcium/calmodulin-dependent protein kinase family or protein 
kinase C (PKC), SV exocytosis results in the release of 
neurotransmitters to the synaptic cleft (Cesca et al., 2010). The spatial 
confinement of SVs within SV cluster remained elusive until LLPS of 
synapsin, the major constituent of SV, was discovered (Milovanovic 
et  al., 2018). The IDR of synapsin is essential for this process by 
recruiting SH3 domain-containing proteins to synapsin condensates. 
Furthermore, phosphorylation of synapsin by CaMKII disperses the 
synapsin condensates, recapitulating the dissolution event of SVs 
from the cluster (Figure 1B). Abrogation of synapsin LLPS by adding 
an IDR-targeting antibody disrupts SV clusters in the lamprey, 
supporting the crucial role of synapsin LLPS in organizing SV clusters 
(Pechstein et al., 2020). While synapsin condensates coexist with 
liposome in vitro, cation-π interaction with SV membrane protein 
synaptophysin potentiates the SV organizing ability based on the 
observation of SV-like clusters even in the fibroblast cells (Kim et al., 
2021; Park et al., 2021). Another partner of synapsin condensates is 
α-synuclein, and excessive α-synuclein to synapsin reduces the 
synapsin condensate formation (Hoffmann et  al., 2021). Because 
α-synuclein and synapsin are functionally linked in terms of SV 
regulation, further investigation of their relationship in PD contexts, 
in which α-synuclein is accumulated, will provide a novel insight of 
PD pathogenesis (Kramer and Schulz-Schaeffer, 2007; Atias et al., 
2019; Bridi et al., 2021).
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4.2. Presynaptic AZ

The Presynaptic AZ is located beneath the presynaptic membrane 
and is where SV exocytosis occurs (Sþdhof, 2012). Presynaptic AZ is 
seen as dense marks under electron microscopy and has a concentrated 
proteome, making them distinct from the surroundings. Scaffold 
proteins such as Glutamine/leucine/lysine/serine-rich protein (ELKS), 
Liprin-α, Rab3-interacting molecule (RIM), and RIM-binding protein 
(RIMBP) interact with each other during SV fusion events to recruit 
other AZ proteins including voltage-gated Ca2+ channel (VGCC) and 
cell adhesion molecules (Sþdhof, 2012). Recent reports have 
demonstrated that these scaffold molecules undergo LLPS dominated 
by both structured domain-and IDR-affiliated multivalent interactions 
(Wu et al., 2019; Mcdonald et al., 2020; Liang et al., 2021). In vitro 
reconstitution systems have revealed co-phase separation of RIM and 
RIMBP, driven by the multivalent interactions between the proline-
rich motif of RIM and SH3 domain of RIMBP. This event is further 
coupled to the incorporation of VGCCs into their separated phase 
(Figure 1C).

Liprin-α plays a pivotal role in regulating AZ condensates 
profiles. Oligomeric Liprin-α assembled upon a coiled-coiled 
region can be de-mixed with ELKS (Liang et al., 2021). ELKS and 
Liprin-α condensates were identified in the developing synapses 
of Caenorhabditis elegans (Mcdonald et al., 2020). Interestingly, 
Liprin-α determines whether RIM, RIMBP, and VGCC are 
distributed with ELKS condensates (Liang et al., 2021). ELKS-
Liprin-α coexisting droplets accommodate RIM and RIMBP, 
while liquid droplets composed of ELKS alone cannot recruit 
both. However, RIM and RIMBP in the ELKS-resident droplets 
failed to incorporate VGCC. The heterogeneity between the 
condensates provides the molecular basis for distinct protein–
protein interaction networks found in the synapse 
(Lautenschlæger, 2022).

4.3. Postsynaptic densities

Similar to the presynaptic AZ, PSD is an electron-dense area at 
the postsynaptic membrane proximal to AZ (Sþdhof, 2012). PSD 
contains a significant number of proteins that respond to the 
released neurotransmitters, including glutamate receptors, 
downstream signaling molecules, and scaffold proteins (Feng and 
Zhang, 2009). LLPS also plays an essential role in the assembly of 
PSD. The multivalent interaction between the trimeric complex of 
Ras/Rap GTPase-activating protein SynGAP and PDZ domain of 
postsynaptic density protein 95 (PSD-95) forms liquid-like droplets 
(Figure 1D). These two highly abundant proteins act on the normal 
structure and function of the postsynaptic neuron (Vazquez et al., 
2004; Chen et al., 2015; Zeng et al., 2016). Replacing endogenous 
SynGAP with a trimerization-defective mutant SynGAP or 
endogenous PSD-95 with mutant PSD-95 that fails to interact with 
SynGAP reduces spine volume and postsynaptic condensates, 
underscoring the functional role of SynGAP/PSD-95 condensates in 
regulating postsynaptic activity.

Phase separation also contributes to the differential assembly of 
excitatory PSD (ePSD) and inhibitory PSD (iPSD) (Zeng et al., 2018). 
In the supported membrane bilayer system, co-phase separation of 
four enriched scaffold proteins of ePSD, PSD-95, guanylate 

kinase-associated protein (GKAP), SH3 and multiple ankyrin repeat 
domains protein (Shank), and Homer scaffold protein (Homer), was 
achieved. These condensates also recruit SynGAP and N-methyl 
D-aspartate receptor subtype 2B (NR2B) but repel gephyrin, a key 
scaffold of iPSD. Therefore, ePSD formation by LLPS enables an 
augmented glutamate receptor response in a condensed area. On the 
contrary, iPSD is formed by the LLPS of gephyrin and glycine or 
GABA receptors (Bai et al., 2021).

5. RNA transport granule relays RNA 
and RBP to neurites for localized 
translation

Ribonucleic acid (RNA) transport granules are specialized 
ribonucleoprotein granules found in neurons that transport 
mRNA to axons and dendrites for localized translation 
(Fernandopulle et al., 2021). In order to travel to the proximal 
parts of neuron, they rely on microtubule-dependent transport 
machinery which bi-directionally dispatch biomolecules along 
with the track assembled with microtubules by aid of motor 
proteins such as dynein and kinesin (Abouward and Schiavo, 
2021). Recent findings has suggested that functional failures in 
RNA transport granules are caused by mutations in RBPs that are 
genetically associated with neurodegenerative diseases (Figure 1E) 
(Liao et al., 2019; Fernandopulle et al., 2021).

One such RBP is Annexin A11 (ANXA11), which is a genetic risk 
for both familial and sporadic cases of ALS–FTD (Smith et al., 2017). 
Mutations in ANXA11 result in impaired Ca2+ homeostasis and 
protein translation, as well as hinder proper elimination of stress 
granules (Nahm et al., 2020). In the neuronal context, ANXA11 is 
found in the proteomes labeled in the vicinity of both lysosome and 
RNA transport granules and links them during the cargo transport 
(Liao et  al., 2019). Since ANXA11 proteins mutated in annexin 
repeats region less interacts with the lysosome, the travel distances of 
RNA cargo in ANXA11 mutation harboring neurons are reduced 
as well.

Another cause of the functional impairment of RNA transport 
granules is mutations in TAR DNA-binding domain (TARDBP) 
that result in ALS–FTD and code for TDP-43. In addition to the 
pathogenic aggregation of TDP-43, its physiologic functions that 
regulate gene expression in both transcriptional and translational 
levels are also affected. Cellular dysfunctions such aberrant splicing 
and abnormal RNP granules are brought on by the loss of TDP-43 
functions and increased cytoplasmic localizations that are related 
to changes in the interplay between the proteome and 
transcriptome (Tollervey et al., 2011; Ling et al., 2015). In addition, 
TDP-43 directs RNA trafficking to synaptic processes in a 
microtubule-dependent manner (Alami et  al., 2014). RNA 
transport granules with TDP-43 demonstrate anterograde 
transport, whereas those without TDP-43 undergo retrograde 
transport. Moreover, a kymograph from fruit fly motor neurons 
expressing TDP-43 A315T or M337V mutants showed RNA 
transport granules travel retrogradely, causing the cytoplasmic 
accumulation of TDP-43 which are reminiscent of ALS histology 
(Neumann et al., 2006; Alami et al., 2014). Moreover, the loss of 
TDP-43 results in poor local translation, which compromises 
synaptic transmission. (Diaper et al., 2013; Wong et al., 2021).
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6. Conclusion and future perspectives

Upon the dramatic shift in the distribution of biomolecules 
between mixed and de-mixed states accomplished by weak and 
multivalent interactions, biomolecular condensates are understood as 
functional units of biological phenomena. Multiple pathogenic factors 
including genetic risks of neurodegenerative disease or cellular 
stresses alter the material properties and dynamicity of biomolecular 
condensates. In the neuronal context, fibrilization of pathogenic 
proteins are promoted at aberrant biomolecular condensates where 
phase transition occurs. In addition, the phase transition of 
biomolecular condensates is often involved in their loss of function. 
There is still much to be understood because the research on neuronal 
condensates is still in its early stages. This work will unveil how 
abnormal alteration of neuronal condensates triggers neuronal 
dysfunction such as impaired axonal transport, loss of synaptic 
plasticity, and excitotoxicity. Many genetic loci for synaptic proteins 
that are identified as neurodegenerative disease-causing variants can 
be attractive topics in that a considerable portion of disease-associated 
genes encode condensate-forming proteins (Stein et al., 2010; Liu 
et al., 2021; Prokopenko et al., 2021; Banani et al., 2022). Furthermore, 
it will be  crucial to reflect the actual pathophysiology of 
neurodegenerative disease by establishing a higher order system than 
in vitro and cellular levels using multicellular or animal models to 
analyze the material properties and dynamics of biomolecular 
condensates. Those approaches will broaden our knowledge and 
be  utilized as a bridge to develop therapeutic interventions from 
molecular findings.
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