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Introduction: Ischemic stroke (IS) is a type of stroke that leads to high mortality 
and disability. Anoikis is a form of programmed cell death. When cells detach from 
the correct extracellular matrix, anoikis disrupts integrin junctions, thus preventing 
abnormal proliferating cells from growing or attaching to an inappropriate matrix. 
Although there is growing evidence that anoikis regulates the immune response, 
which makes a great contribution to the development of IS, the role of anoikis in 
the pathogenesis of IS is rarely explored.

Methods: First, we downloaded GSE58294 set and GSE16561 set from the NCBI 
GEO database. And 35 anoikis-related genes (ARGs) were obtained from GSEA 
website. The CIBERSORT algorithm was used to estimate the relative proportions 
of 22 infiltrating immune cell types. Next, consensus clustering method was used 
to classify ischemic stroke samples. In addition, we used least absolute shrinkage 
and selection operator (LASSO), support vector machine-recursive feature 
elimination (SVM-RFE) and random forest (RF) algorithms to screen the key ARGs 
in ischemic stroke. Next, we performed receiver operating characteristics (ROC) 
analysis to assess the accuracy of each diagnostic gene. At the same time, the 
nomogram was constructed to diagnose IS by integrating trait genes. Then, we 
analyzed the correlation between gene expression and immune cell infiltration 
of the diagnostic genes in the combined database. And gene ontology (GO) and 
kyoto encyclopedia of genes and genomes (KEGG) analysis were performed on 
these genes to explore differential signaling pathways and potential functions, 
as well as the construction and visualization of regulatory networks using 
NetworkAnalyst and Cytoscape. Finally, we investigated the expression pattern of 
ARGs in IS patients across age or gender.

Results: Our study comprehensively analyzed the role of ARGs in IS for the 
first time. We revealed the expression profile of ARGs in IS and the correlation 
with infiltrating immune cells. And The results of consensus clustering analysis 
suggested that we can classify IS patients into two clusters. The machine learning 
analysis screened five signature genes, including AKT1, BRMS1, PTRH2, TFDP1 and 
TLE1. We also constructed nomogram models based on the five risk genes and 
evaluated the immune infiltration correlation, gene-miRNA, gene-TF and drug-
gene interaction regulatory networks of these signature genes. The expression of 
ARGs did not differ by sex or age.
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Discussion: This study may provide a beneficial reference for further elucidating 
the pathogenesis of IS, and render new ideas for drug screening, individualized 
therapy and immunotherapy of IS.
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Introduction

Stroke, the second leading cause of death and disability worldwide, 
causes 5.5 million deaths annually (Lindsay et al., 2019). Ischemic stroke 
(IS) accounts for about 80% of all strokes (Saini et al., 2021). Although 
tPA is the primary treatment option for IS, an army of patients with IS 
are at high risk of severe brain injury due to narrow treatment time 
windows, reperfusion injury, and rebleeding complications (Fukuta et al., 
2017; Ajoolabady et  al., 2021). Previous studies have shown that IS 
produces an immune response that leads to neuronal loss and tissue 
repair, while neuron loss may also lead to disruption of immune 
homeostasis after stroke (Iadecola et al., 2020; DeLong et al., 2022). 
Moreover, IS is usually accompanied by changes in immune cells, 
including macrophages, mast cells, neutrophils, monocytes, T cells, 
natural killer T cells, gamma delta T Cells, Tregs, B cells (DeLong et al., 
2022). However, the mechanism of immune response behind IS is largely 
unknown. Identification of novel characteristic genes may provide 
potential therapeutic targets or etiological insights for IS.

Anoikis, a form of programmed cell death, is essentially a process of 
apoptosis. When cells detach from the correct extracellular matrix, 
anoikis disrupts integrin junctions, thus preventing abnormal 
proliferating cells from growing or attaching to an inappropriate matrix 
(Taddei et al., 2012). Anoikis is characterized by anchoring growth and 
epithelial-mesenchymal transformation, which is not only important for 
tissue homeostasis and development, but also plays a critical regulatory 
role in metastatic cancer, cardiovascular disease and diabetes (Taddei 
et al., 2012). Studies have shown that various factors are related to the 
mechanism of anoikis, including integrins, E-calmodulin, EGFR, IGFR, 
Trk, TGF-β, hippo pathway, NF-κB, eEF-2 kinase, hypoxia, acidosis, 
ROS, HP and protective autophagy (Adeshakin et al., 2021; Zhu et al., 
2022). Similarly, the main pathological damage of IS is the oxidative 
stress and excitatory amino acid toxicity response induced by hypoxia, 
resulting in the damage of neurons, glial cells and vascular endothelial 
cells, and blood–brain barrier (BBB) disruption. The continuous 
ischemia and hypoxia and the gradual neuroinflammatory response 
further aggravate the tissue and cell damage, until apoptosis. This is 
manifested by the massive release of inflammatory cytokines, 
chemokines, cell adhesion molecules and matrix metalloproteinases 
(Lakhan et al., 2009; Ceulemans et al., 2010; Iadecola and Anrather, 
2011). Therefore, anoikis may play a crucial role in the occurrence and 
development of IS. Many studies have shown that anoikis is involved in 
the pathogenesis of several diseases, especially tumor immunity, such as 
glioblastoma (Sun et al., 2022), head and neck squamous cell carcinoma 
(Chi et al., 2022a) and lung adenocarcinoma (Diao et al., 2022). Despite 
growing evidence shows that anoikis regulates immune response, which 
plays a key role in the development of IS. However, the role of anoikis in 
the pathogenesis of IS is rarely explored. As a result, a thorough study of 
the different immune characteristics between normal tissues and IS 
specimens, as well as the different subtypes of IS, will help to elucidate 
the changes occurring in anoikis and its related genes. Meanwhile, the 

establishment of characteristics related to anoikis will provide new clew 
for individualized treatment of IS patients.

In this study, we  comprehensively analyzed the differential 
expression of ARGs and immune profiles in normal and IS peripheral 
blood samples for the first time. We also performed consensus clustering, 
immune infiltration analysis and functional enrichment analysis of IS 
samples using anoikis differentially expressed genes (DEGs). And 
we used three machine learning (ML) algorithms to screen five risk 
signature genes that could be used to predict disease onset. We also 
constructed nomogram models. In addition, the immune infiltration 
correlation, gene-miRNA, gene-TF and drug-gene interaction regulatory 
networks of the five risk genes were also discussed. Finally, we explored 
the expression patterns of ARGs in IS patients across age or gender. Our 
study may supply a slice of theoretical basis to individualized treatment 
of IS and the development of immunomodulatory treatment protocols.

Materials and methods

Data acquisition

We downloaded the gene expression profiling datasets of two 
IS-related peripheral blood samples, GSE58294 (GPL570 platform) and 
GSE16561 (GPL6883 platform), from the NCBI GEO database.1 The 
former included 23 control samples and 69 IS samples as a training set, 
and the latter included 24 control samples and 39 IS samples as the 
validation set. The raw GEO data were normalized using the R package 
“NormalizeBetweenArray.” 35 ARGs were obtained from GSEA 
website (Yang et al., 2022).2 The detailed flow chart is shown in Figure 1.

Differentially expressed genes analysis

R package “Limma” was utilized to explore Differentially 
expressed genes (DEGs; Wang X. et al., 2022) between normal samples 
and IS samples. p-value < 0.05 was considered statistically significant.

Immune cell infiltration profile

The CIBERSORT algorithm was used to estimate the relative 
proportions of 22 infiltrating immune cell types (Zhao et al., 2023) 
based on gene expression. p  < 0.05 was considered statistically 
significant. And the results were used for further data analysis. 
We then compared the proportions of immune cells between the 
different groups by Wilcoxon test. Histograms, heat maps, box plots 

1 https://www.ncbi.nlm.nih.gov/geo/

2 https://www.gsea-msigdb.org/gsea/msigdb/
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and violin plots were plotted using the “ggplot2” and “vioplot” R 
packages. The Pearson correlation coefficient between each immune 
cell was calculated using the “corrplot” R package, and the results 
were displayed in the associated heat map.

Correlation of infiltrating immune cells 
with ARGs

The correlation coefficient between ARGs expression and the 
percentage of infiltrating immune cells was calculated, and the results 
were presented using the R package “ggplot.” p < 0.05 was considered 
as a significant correlation.

Construction of unsupervised clusters of 
anoikis and PCA analysis

Unsupervised cluster analysis of ARGs was performed using the 
“Consens-usClusterPlus” R package to identify different anoikis patterns 
in IS. The tendency and smoothness of cumulative distribution function 
(CDF) curve, consensus score and consensus matrix were used to 
determine the optimal number of subtype k. Principal component 
analysis (PCA) was conducted by the R package “ggplot2.”

Gene set variation analysis

We downloaded the”c5.go.symbols” file and”c2.cp.kegg.symbols” 
file from Gene set variation analysis (GSVA)’s MSigDB database. 

Then, R packets “GSVA” and “limma” were used to analyze the altered 
pathways and biological functions (Chi et al., 2022b) between different 
ARGs-related clusters.

Machine learning algorithms

We used least absolute shrinkage and selection operator (LASSO; 
Chi et al., 2022c; Zhao et al., 2022a), support vector machine-recursive 
feature elimination (SVM-RFE) and random forest (RF) algorithms 
(Zhao et al., 2022b; Chi et al., 2022d) to screen the key ARGs in DEG 
obtained between normal samples and IS samples. Then took the 
intersection of the feature genes screened by the three algorithms, and 
draw the Venn diagram with “VennDiagram” R packet. Next, the 
“pROC” R package was used to draw ROC curves to determine the 
predictive value of these characteristic genes in the training set. At the 
same time, we used R package “InpROC” to compute the area under the 
curve (AUC). And the prediction ability of these characteristic genes was 
validated in the verification set. Finally, we also constructed a nomogram 
with the R package “rms” based on these signature genes (Cai et al., 2022).

Gene ontology and Kyoto encyclopedia of 
genes and genomes analysis

Next, we performed Gene ontology (GO) and Kyoto encyclopedia 
of genes and genomes (KEGG) enrichment analysis on these genes 
using the R package “clusterProfiler” to probe the differential 
signaling pathways and potential functions of the signature genes. 
p-values < 0.05 were considered statistically significant.

FIGURE 1

A detailed flow chart about the study of ARGs in IS.
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Correlation of immune-infiltrating cells 
with signature genes

The correlation coefficients between the expression of ARGs and 
immune infiltrating cells were first computed, and then Spearman’s 
rank correlation analysis was used to probe the relationship between 
immune infiltrating cells and the characteristic genes. Finally, Lollipop 
plots were drawn using the R package “ggplot.”

Construction of regulatory networks

The regulatory networks of miRNA diagnostic biomarkers and 
transcription factor (TF) diagnostic biomarkers based on characteristic 
genes was constructed by NetworkAnalyst.3 The file of the interaction 
between drug and gene was obtained from the drug-gene interaction 
database (DGIdb),4 and then imported into the Cytoscape software for 
further visualization (Chi et al., 2022a).

Results

Expression profiles of ARGs in IS patients

In order to explore the role of ARGs in IS, we systematically 
evaluated the altered expression of ARGs in IS patients through 
the GSE58294 database. The results showed that the expression 
profiles of 22 ARGs were altered, of which the expression levels 
of 9 ARGs (CAV1, CEACAM6, IKBKG, ITGA5, PDK4, PIK3CA, 
PTRH2, SNAI2, TFDP1) were up-regulated, while 13 ARGs 
(AKT1, BCL2, BMF, BRMS1, CEACAM5, MAP3K7, MCL1, 
NOTCH1, NTRK2, PIK3R3, SIK1, STK11, TLE1) were down-
regulated (Figures 2A,B). Meanwhile, the chromosome locations 
of 22 anoikis genes were visualized (Figure  2C). Next, 
we conducted correlation analysis of these differentially expressed 
ARGs to explore their interactions. It was obvious that some 
anoikis regulatory genes, such as STK11 and TFDP1, AKT1 and 
NOTCH1, MCL1 and NOTCH1, showed strong synergistic 
effects, while MAP3K7 illustrated significant antagonistic effects 
with STK11, BRMS1, and ITGA5, respectively (Figures 2D,E).

Immune profile of IS patients and its 
association with ARGs

Based on gene expression, we calculated the difference in the 
proportion of 22 infiltrating immune cell types in each sample using 
the CIBERSORT algorithm. The results indicated that activated 
memory CD4+ T cells, follicular helper T cells, monocytes, M0 
macrophages, resting dendritic cells and neutrophils were differentially 
up-regulated in IS patients, while naive B cells, CD8+ T cells, naive 
CD4+ T cells and resting mast cells were differentially down-regulated 
(Figures 3A,B). This means that IS causes changes in the immune 

3 http://www.networkanalyst.ca

4 https://dgidb.genome.wustl.edu/

system. Meanwhile, correlation analysis demonstrated that naive B 
cells, eosinophils, M0 macrophages, M2 macrophages, resting mast 
cells, neutrophils, activated memory CD4+ T cells, plasma cells, and 
regulatory T cells (Tregs) were closely bound up with anoikis 
regulators (Figure 3C). These results suggest that ARGs make a great 
contribution to the alterations of immune infiltration status of 
IS patients.

Identification of anoikis-related clusters in 
IS

In order to further clarify the expression profile of ARGs in IS, 
we  used consensus clustering algorithm to group  69 IS samples 
according to the expression of 22 ARGs. We set the value of k to 2–9 
(Supplementary Figure 1), and found that when k = 2, the consensus 
index of CDF curve fluctuates in the minimum range, and the 
consensus score is relatively large, indicating that relatively good value 
of k is 2 (Figures 4A–D). And we validated it in the GSE16561 dataset 
(Supplementary Figure  2). In addition, the results of principal 
component analysis (PCA) showed that there were significant 
differences between the two clusters (Figure 4E). Therefore, we divided 
69 IS patients into two clusters, including cluster 1 (n = 41) and cluster 
2 (n = 28).

Identification of immune 
microenvironment and biological function 
characteristics in different anoikis clusters

We analyzed the differences in 22 DEGs between two 
different clusters, and the results showed that cluster 1 was 
characterized by high expression levels of AKT1, SIK1 and TLE1, 
while cluster 2 showed high expression levels of CEACAM6, 
STK11, and TFDP1 (Figures  5A,B). To further explore the 
differences in immune microenvironment characteristics 
between the different clusters of anoikis, we  dissected the 
differences in infiltrating immune cells and their immune 
functions. Our results showed that cluster 1 was characterized by 
a high proportion of naive B cells, whereas cluster 2 exhibited a 
high proportion of plasma cells, resting memory CD4+ T cells 
and M2 macrophages (Figures 5C,D). This evidence suggested a 
different immune profile between the anoikis-associated clusters. 
Next, we carried out GSVA analysis based on GO and KEGG gene 
sets. GO results indicated that T cell lineage determination, B cell 
proliferation, regulation of B cell proliferation, B cell activation 
and somatic diversity of immunoglobulins in immune response 
were up-regulated in cluster 2, while chitin binding, cysteine 
protease binding, axonal dynein complexes, azurophilic granule 
lumen and Alditol Nadpplus 1 oxidoreductase activities were 
down-regulated in cluster 2 (Figure 5E). KEGG results showed 
that JAK-SAT signaling pathway, cytokine-cytokine receptor 
interaction, natural killer cell-mediated cytotoxicity, antigen 
processing and presentation, B-cell receptor signaling pathway, 
T-cell receptor signaling pathway, apoptosis and TOLL-like 
receptor signaling pathway were up-regulated in cluster 2, while 
glycerophospholipid metabolism, homologous recombination, 
systemic lupus erythematosus, metabolism of xenobiotics by 
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cytochrome P450 and drug metabolism cytochrome P450 were 
down-regulated in cluster 2 (Figure 5F).

Construction and validation of the lasso 
model, SVM model, and RF model

We developed three algorithms to select candidate anoikis 
genes from 22 anoikis-related DEGs to predict the occurrence of 
IS. The results of the lasso model showed that 14 genes were 
associated with the occurrence of IS, including AKT1, BCL2, 
BRMS1, CEACAM5, CEACAM6, ITGA5, MAP3K7, MCL1, 
NOTCH1, PTRH2, SNAI2, STK11, TFDP1, and TLE1 
(Figures 6A,B). Meanwhile, the feature vectors generated by SVM 
were removed using a support vector machine (SVM) to find the 
best variables and identify 10 genes for anoikis variables, 
including AKT1, BRMS1, TLE1, TFDP1, PTRH2, PIK3CA, 
STK11, BMF, NOTCH1, and MAP3K7 (Figure  6C). For the 
random forest algorithm, 6 signature genes with relative 
importance scores greater than two were identified, including 
AKT1, TLE1, BRMS1, PTRH2, TFDP1, and PIK3CA 
(Figures  6D,E). Finally, we  took the intersection of the genes 
obtained from the three machine learning models, leaving 5 
anoikis genes (AKT1, BRMS1, PTRH2, TFDP1, and TLE1) for 

follow-up analysis (Figure 6F). And we performed GO and KEGG 
enrichment analysis on the five diagnostic genes. The GO results 
depicted that these genes were mainly involved in anoikis, 
regulation of anoikis, regulation of DNA-binding transcription 
factor activity, RNA polymerase II transcription regulator 
complex and DNA-binding transcription factor binding, etc. 
(Figure 6G). In KEGG, the results indicated that these genes were 
enriched in Carbohydrate digestion and absorption, Notch 
signaling pathway, Fc epsilon RI signaling pathway and B cell 
receptor signaling pathway as well as other pathways (Figure 6H).

Next, we performed ROC analysis and calculated the AUC values 
of the ROC curves to assess the accuracy of each diagnostic gene. Our 
results showed that all five genes had relatively high predictive values 
in the training set (GSE58294; Figure  7A). At the same time, 
we conducted validation in another dataset (GSE16561; Figure 7B).

Establishment of nomogram for predicting 
IS

Nomogram were constructed to diagnose IS by integrating trait 
genes (Figure 8A). In the nomogram, each trait gene corresponds to 
a score, and the total score is obtained by summing the scores of all 
trait genes. The total score corresponds to the different risks of IS. The 

A

C D E

B

FIGURE 2

Expression profiles of ARGs in IS. (A) Heat map showing the expression of 22 differentially expressed ARGs. (B) Box plot showing the expression 
differences of 22 ARGs between IS and non-IS samples. (C) Relative positions of the 22 ARGs on the chromosomes. (D) Correlation circle plot showing 
the correlation of the 22 differentially expressed ARGs. (E) Correlation heat map showing the correlation coefficients of the 22 differentially expressed 
ARGs. Red and green represent positive and negative correlations, respectively. Correlation coefficients are shown as the area of the pie chart. 
*p < 0.05, **p < 0.01, ***p < 0.001.
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calibration curves showed that nomogram was able to accurately 
estimate the prediction of IS onset (Figure 8B). The clinical impact 
curve also showed the significant predictive power of the nomogram 
model (Figure 8C). As shown in the decision curve analysis, patients 
with IS can benefit from the nomogram (Figure 8D).

Immune infiltration correlation analysis of 
5 genes

Then, we analyzed the correlation between gene expression 
and immune cell infiltration of 5 diagnostic genes in the 
combined database of GSE58294 database and GSE16561 
database. The results showed that AKT1 gene was positively 

correlated with resting Dendritic cells, CD8+ T cells, naive CD4+ 
T cells, naive B cells and resting NK cells. And AKT1 gene was 
negatively correlated with M2 Macrophages, Plasma cells, 
activated Dendritic cells, follicular helper T cells, resting CD4+ 
memory T cells, resting Mast cells and gamma delta T cells 
(Figure 9A). BRMS1 gene was positively correlated with naive 
CD4+ T cells and resting Dendritic cells, and it was negatively 
correlated with Plasma cells (Figure  9B). PTRH2 gene was 
positively correlated with gamma delta T cells, follicular helper 
T cells, memory B cells, Monocytes, M2 Macrophages, resting 
memory CD4+ T cells and resting Mast cells. And PTRH2 gene 
was negatively correlated with naive CD4+ T cells, M1 
Macrophages, naive B cells and resting NK cells (Figure  9C). 
TFDP1 gene was positively correlated with Neutrophils, 

A

B C

FIGURE 3

Overview of immune infiltration in IS. (A) Relative abundance of 22 infiltrating immune cells between IS and non-IS samples. (B) Violin plot showing the 
difference in immune infiltration between IS and non-IS samples. (C) Correlation analysis of 22 differentially expressed ARGs with infiltrating immune 
cells. *p < 0.05, **p < 0.01, ***p < 0.001.
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Monocytes, activated Mast cells, Plasma cells and M0 
Macrophages. And TFDP1 gene was negatively correlated with 
naive B cells, activated CD4+ memory T cells and CD8+ T cells 
(Figure 9D). But the TLE1 gene showed no statistically significant 
difference in the combined set. Overall, the expression of these 
genes may be related to the level of infiltration of a variety of 
immune cells, implying that these key diagnostic genes are likely 
to be involved in immune regulation in the pathogenesis of IS.

Construction of regulatory networks

Afterwards, we constructed the gene-miRNA (Figure 10A) and 
gene-TF regulatory networks (Figure 10B) of five genes, respectively. 
The results showed that there were a host of miRNAs and TFs involved 
in the regulation of these diagnostic genes. In addition, we constructed 
the drug-gene interaction regulatory network of AKT1. The results 
indicated that 30 drugs or molecular compounds acted on AKT1, 22 

A B

C

D

E

FIGURE 4

Identification of molecular clusters associated with anoikis in IS. (A) Consensus clustering matrix at k = 2. (B) Cumulative distribution function (CDF) 
curves representing k values of 2–9, respectively. (C) Representative CDF delta area curves. (D) Visualization of the distribution of the two clusters by 
principal component analysis (PCA). (E) Consensus clustering scores for k values of 2–9, respectively.
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of which inhibited it (Figure 11). In general, these results may provide 
directions for the future application of these genes in disease diagnosis, 
disease subtype classification, survival prediction, drug sensitivity 
analysis and so on.

Expression of ARGs in different ages or 
sexes

Finally, we  investigated the expression pattern of ARGs in IS 
patients across age or gender. This may provide a reference for whether 
patients with IS need personalized treatment. The results showed that 
there was almost no difference in ARGs expression between IS 
patients older than 60 years old and IS patients less than or equal to 
60 years old (Supplementary Figures  3A,B). Through principal 
component analysis (PCA), it was clear that IS patients over 60 years 

of age did not differ well from IS patients less than or equal to 60 years 
old (Supplementary Figure 3C). Similarly, the expression of ARGs in 
male IS patients was not significantly different from female IS patients 
(Supplementary Figures  3D–F). This suggests that individualized 
treatment strategies may not be necessary for IS treatment in patients 
of different ages or genders.

Discussion

IS is a major challenge for clinical neurosurgery due to its very 
high disability and mortality, which impose a heavy burden on 
individuals, families and society. Researchers have been exploring new 
diagnostic methods and therapeutic strategies for a long time to 
improve early preclinical diagnosis and treatment of IS. Apoptosis is 
the most common form of programmed cell death in multicellular 

A B

C D

E F

FIGURE 5

Identification of immune infiltration and biological functional characteristics in different clusters of anoikis. (A) Heat map showing the expression 
profiles of 22 anoikis-associated DEGs between two anoikis clusters. (B) Boxplot showing the difference in expression of 22 anoikis -associated DEGs 
between two anoikis clusters. (C) Relative abundance of 22 infiltrating immune cells between two lost apoptosis clusters. (D) Boxplot showing the 
difference in immune infiltration between two anoikis clusters. (E) GSVA results of the GO set between two anoikis clusters were plotted in the bar 
graph. (F) GSVA results of the KEGG gene set between two anoikis clusters are plotted in the bar graph. *p < 0.05, **p < 0.01, ***p < 0.001.
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organisms and can be triggered by intrinsic or extrinsic pathways (Tuo 
et al., 2022). Anoikis is essentially an apoptotic process. Consistent 
with classical apoptosis, anoikis can follow either an intrinsic pathway 
mediated by mitochondria or an extrinsic pathway triggered by cell 
surface death receptors (Taddei et al., 2012). However, the specific 

mechanisms by which anoikis regulates disease still need to be further 
explored. In this study, we used three machine learning algorithms to 
explore the role of ARGs in IS. For the first time, we comprehensively 
analyzed the difference of ARGs expression profile between normal 
samples and IS samples. We  found 22 dysfunctional ARGs in IS 
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FIGURE 6

Construction and validation of the Lasso model, SVM model and RF model. (A) Fourteen cross-validations of adjusted parameter selection in the 
LASSO model. Each curve corresponds to one gene. (B) LASSO coefficient analysis. Vertical dashed lines are plotted at the best lambda. (C) SVM-RFE 
algorithm for feature gene selection. (D) Relationship between the number of random forest trees and error rates. (E) Ranking of the relative 
importance of genes. (F) Venn diagram showing the feature genes shared by LASSO, SVM-RFE algorithms, and random forest. (G) Bubble plot of GO 
analysis results based on the 5 feature genes. (H) Bubble plot of KEGG analysis results based on 5 signature genes.
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patients, indicating the potential role of anoikis in the 
development of IS.

Much of research have shown that IS leads to the up-regulation 
of activated memory CD4+ T cells, follicular helper T cells, 

monocytes, M0 macrophages, resting dendritic cells, and 
neutrophils, as well as the down-regulation of naive B cells, CD8+ 
T cells, naive CD4+ T cells, and resting mast cells (DeLong et al., 
2022; Endres et al., 2022; Zheng et al., 2022), which is consistent 

A

B

FIGURE 7

Exploration of the diagnostic value of 5 signature genes. (A) ROC curves showing the diagnostic value of the 5 signature genes in the GSE58294 
dataset. (B) ROC curves showing the diagnostic value of the 5 signature genes validated in the GSE16561 dataset.
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with our results. Different kinds of immune cells play key roles in 
IS. Neutrophils can increase stroke severity through a variety of 
mechanisms such as triggering capillary sludge, producing free 
radicals, secreting inflammatory mediators, enhancing thrombosis 
by forming neutrophil–platelet aggregates and NETs and 
up-regulating nuclear PKM2 (Aronowski and Roy-O'Reilly, 2019; 
Denorme et al., 2022; Dhanesha et al., 2022). Similarly, mast cells 
can exacerbate CNS injury in IS by amplifying the inflammatory 
response and promoting cerebral blood barrier disruption, brain 
edema, extravasation, and hemorrhage (Parrella et al., 2019). In 
contrast, Monocytes mainly secrete TNF-α, IL-6 and IL-1β to 
exert pro-inflammatory effects, as well as enhance CB2 receptor 
expression and disrupt BBB to exacerbate IS, but inhibition of 
their recruitment can significantly prevent brain edema (Boyette 
et al., 2017; Greco et al., 2021; Qiu et al., 2021). In addition, it was 
reported that an increase in the number of Treg cells and depletion 
of CD4+ T cells can improve the long-term outcome after stroke 
(Shi et al., 2021; Weitbrecht et al., 2021). And M2 macrophages 
enhance neurogenesis and angiogenesis by secreting various 
neurotrophic factors such as IGF-1, BDNF and VEGF, and 
promote the recovery of neurological function after cerebral 
ischemia/reperfusion injury in rats (Li et  al., 2021). And our 
clustering analysis exhibited that we could classify IS patients into 
two clusters and that cluster 2 showed elevated proportions of 

plasma cells, resting memory CD4+ T cells and M2 macrophages. 
Thus, cluster 2 patients may have a better prognosis and targeting 
different immune cells after IS may also be an important direction 
for further exploration of IS treatment strategies in the future.

In recent years, machine learning has been increasingly used 
to diagnose IS, screen key genes and immune cells due to its better 
performance of prediction, lower error rate and higher reliability 
(Brugnara et  al., 2020; Wang J. et  al., 2022). In our research, 
we screened five signature genes, AKT1, BRMS1, PTRH2, TFDP1, 
and TLE1, by LASSO, SVM-RFE and RF algorithms. And these 
five feature genes have good diagnostic value (all AUC > 0.8) in 
training set (IS sample size n = 69). However, the results of their 
diagnostic value in the verification set were not very satisfactory. 
But the AUC values of the five genes were all greater than 0.55, 
and the AUC value of TFDP1 was 0.788. This may be due to the 
small sample size of IS patients in the verification group (IS 
sample size n = 39). And in addition, a nomogram containing five 
genes can combine five signature genes to better diagnose the 
occurrence of IS.

At the same time, a multitude of studies have shown that some of 
these key diagnostic genes were involved in the pathogenesis of 
IS. AKT1 not only promotes neuronal survival after IS and attenuates 
hippocampal neuronal injury through various signaling pathways 
such as AKT-nNOS-JNK (Xie et al., 2013; Shao et al., 2017), but also 

A B
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FIGURE 8

Construction of the nomogram model based on Characteristic ARGs. (A) Construction of nomogram integrating Characteristic ARGs for IS. in the 
nomogram, each variable corresponds to a score, and the total score can be calculated by summing the scores of all variables. (B) Calibration curves 
to estimate the prediction accuracy of the nomogram. (C) Clinical impact of the nomogram model as assessed by the clinical impact curve. 
(D) Decision curve analysis showing the clinical benefit of nomogram.
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restores BBB senescence by activating the eNOS-SIRT1 axis, thereby 
preventing IS in aged mice (Li et  al., 2022). According to recent 
reports, PTRH2 mutations have been shown to be  one of the 
molecular mechanisms leading to ataxia and cerebellar atrophy in 
patients with multisystem neurological, endocrine and pancreatic 
diseases in infancy (Picker-Minh et  al., 2022). The TFDP1 gene 
controls both the transcriptional activity of cellular genes and was also 

involved in the cyclic regulation of cellular genes, affecting cell 
proliferation and apoptosis (Hitchens and Robbins, 2003; Liu et al., 
2022). Previous studies have found that the E2F-related transcription 
factor TFDP1 may be involved in the induction of genes related to 
functional modules in the transcriptome of ischemic neurons (Jin 
et al., 2001). BRMS1 plays a central role mainly in the inhibition of 
cancer metastasis. BRMS1 was able to influence both the association 
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FIGURE 9

Correlation analysis of immune infiltration with signature gene expression in the combined database of GSE58294 database and GSE16561 database. 
(A) The correlation of AKT1 gene expressions with immune infiltration cell. (B) The correlation of BRMS1 gene expressions with immune infiltration cell. 
(C) The correlation of TFDP1 gene expressions with immune infiltration cell. (D) The correlation of TLE1 gene expressions with immune infiltration cell. 
The size of the dots represents the strength of gene correlation with immune cells; the larger the dot, the stronger the correlation. The color of the 
dots represents the p-value; the greener the color, the lower the p-value. Numbers marked in red indicate statistical significance. p < 0.05 was 
considered statistically significant.
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FIGURE 10

Construction of regulatory network. (A) 5 target gene-miRNA regulatory network. (B) 5 target gene-TF regulatory network. Red circle nodes represent 
hub genes, green squares represent miRNAs, and green-blue squares represent TFs.
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of cells with the immune environment and to regulate the expression 
of high-impact molecules such as FAK, EGFR, AKT and NF-κB 
(Zimmermann and Welch, 2020). And TLE1 plays a role in 
participating in the immune inflammatory response, suppressing 
apoptosis of lost nests, and suppressing tumor activity but also acting 
as an oncogene in some tumors (Yu et  al., 2022). However, the 
potential mechanism of action of BRMS1 and TLE1 in IS has not been 
reported. In conclusion, the researches involving these characteristic 
genes showed that the results of our screening are reliable to 
some extent.

Meanwhile, gene enrichment analysis showed that these key genes 
were mainly involved in anoikis, regulation of anoikis, Notch signaling 
pathway, Fc epsilon RI signaling pathway, B cell receptor signaling 
pathway and inflammatory or immune-related signal pathways, etc. 
However, the regulatory relationship between these key genes, and the 
mechanism of various signal pathways and IS still need further 
experimental validation.

In addition, we  further analyzed these characteristic genes, 
including exploring the correlation of their immune infiltration and 
their interaction networks with miRNA, TF and drug regulation, 
which can provide directions for our subsequent IS targeting and 
immunotherapy. In the future, we  will continue to explore their 
potential mechanism in IS through molecular biology experiments.

Finally, we discussed the differences in the expression of ARGs by 
age or sex. The results showed that there was no difference in the 
expression of ARGs among different genders or ages. This implies that 
individualized diagnostic and therapeutic strategies may not 

be required for the treatment of IS in patients of different ages or 
genders. However, previous studies have shown that age and gender 
are key factors in the pathology of IS. The mortality and morbidity of 
elderly patients with stroke were higher, and their functional recovery 
was worse than that of younger patients. Men have a higher risk of 
developing IS when they are young, while stroke is more common in 
women (Roy-O'Reilly and McCullough, 2018). And the mortality and 
disability rate of women after stroke is higher than that of men 
(Gasbarrino et al., 2022). Thus, more research is needed to unravel the 
link between age and sex and stroke immune response.

It should not be overlooked that this study has several limitations. 
The first and foremost, our current study was conducted based on a 
public dataset with profiles from blood samples rather than brain 
tissue, and the conclusions were drawn by bioinformatics methods, 
which should thereafter be validated for reliability. There is one more 
point, it is not clear whether the above genes are expressed at different 
levels between individuals of different regions or races. The last but 
not the least, more in vivo and in vitro studies are needed to elucidate 
the potential mechanisms underlying these correlations between 
AKT1, BRMS1, PTRH2, TFDP1, and TLE1 and infiltrating immune 
cells in IS.

Conclusion

In brief, our study comprehensively analyzed the role of ARGs in 
IS for the first time. We revealed the expression profile of ARGs in IS 

FIGURE 11

Drug-gene interaction network. Green circle nodes are pivotal genes and purple oval nodes are predicted drugs or molecular compounds. The red 
words represent the main drug-gene effects.
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and the correlation with infiltrating immune cells, and demonstrated 
consensus clustering analysis and machine learning analysis based on 
ARGs to analyze five signature genes, AKT1, BRMS1, MAP3K7, 
NOTCH1, PTRH2, STK11, TFDP1, and TLE1, in the immune 
infiltration and the role in diagnosis. The results suggested that we can 
classify IS patients into two clusters. The results also indicated that the 
expression of ARGs did not differ by sex or age. Our study may 
provide a beneficial reference to further elucidate the pathogenesis of 
IS and render new ideas to drug screening, individualized treatment 
and immunotherapy of IS.
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