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co-expression in Alzheimer’s
disease

Arthur Ribeiro-dos-Santos1, Leonardo Miranda de Brito1,2 and

Gilderlanio Santana de Araújo1*

1Programa de Pós-graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e

Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil, 2Centro de

Informática, Universidade Federal de Pernambuco, Recife, Brazil

Alzheimer’s Disease (AD) is an irreversible neurodegenerative disease clinically

characterized by the presence of β-amyloid plaques and tau deposits in various

regions of the brain. However, the underlying factors that contribute to the

development of AD remain unclear. Recently, the fusiform gyrus has been

identified as a critical brain region associated with mild cognitive impairment,

which may increase the risk of AD development. In our study, we performed

gene co-expression and di�erential co-expression network analyses, as well

as gene-expression-based prediction, using RNA-seq transcriptome data from

post-mortem fusiform gyrus tissue samples collected from both cognitively

healthy individuals and those with AD. We accessed di�erential co-expression

networks in large cohorts such as ROSMAP, MSBB, and Mayo, and conducted

over-representation analyses of gene pathways and gene ontology. Our results

comprise four exclusive gene hubs in co-expression modules of Alzheimer’s

Disease, including FNDC3A, MED23, NRIP1, and PKN2. Further, we identified

three genes with di�erential co-expressed links, namely FAM153B, CYP2C8, and

CKMT1B. The di�erential co-expressed network showed moderate predictive

performance for AD, with an area under the curve ranging from 0.71 to 0.76

(+/− 0.07). The over-representation analysis identified enrichment for Toll-Like

Receptors Cascades and signaling pathways, such as G protein events, PIP2

hydrolysis and EPH-Epherin mechanism, in the fusiform gyrus. In conclusion, our

findings shed new light on the molecular pathophysiology of AD by identifying

new genes and biological pathways involved, emphasizing the crucial role of gene

regulatory networks in the fusiform gyrus.
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co-expression networks, di�erential co-expression networks, hub genes, regulatory
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1. Introduction

Alzheimer’s Disease (AD) is an irreversible neurodegenerative disease that leads to
severe dementia and incremental disability in adults, largely in the elderly (Alzheimer’s
Association, 2022). Basic research has expanded our understanding of the multifaceted
pathophysiological mechanisms of Alzheimer’s Disease (AD), affirming that many previous
molecular changes arise earlier before its severe form (Aisen et al., 2017).

Currently, molecular factors of AD rely on β-amyloid plaques and neurofibrillary tau
proliferation in the neocortex (Jack Jr et al., 2018). Along with it, several molecular layers
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involved in AD make our systematic understanding insufficient
concerning the complexity of the disease, such as gene and miRNA
regulation (Souza et al., 2016; Brito et al., 2020), mitochondrial
genetics (Cavalcante et al., 2022; Song et al., 2022), and especially
gene-gene interactions in AD across brain regions (Lancour et al.,
2020; Wang et al., 2021). Although there are no well-defined points
of molecular distinction, clinical and genetic studies divide AD into
early-onset AD associated with molecular modifications of APP,
PSEN1 and PSEN2 (Wan et al., 2020) and the late-onset AD that
is mainly associated with risk variants in the APOE gene, while
recently, 75 genes are reported as risk factors inmulti-ethnic studies
of AD (Bellenguez et al., 2022).

Recently, the fusiform gyrus, which is a brain region that plays
roles in the vision for perception, object recognition, and reading
has gained attention in epigenetic studies (Srinivasan et al., 2020).
Specific changes in functional connectivity of the fusiform gyrus
have been reported in mild cognitive impairment, considered a
risk factor of conversion to AD (Ma et al., 2020). Chang et al.
(2016) indicated atrophy of the fusiform gyrus as a consequence
of amyloid load within the hippocampus. Besides, the mechanisms
involved in AD pathology concerning the fusiform gyrus remain
underexplored. Ma et al. (2020) considers that AD-linked genes
in the fusiform gyrus may be critical in AD onset progression
and, therefore, stand promising targets for early diagnosis and
therapy. Thus, an investigation into the molecular mechanisms in
the fusiform gyrus of AD patients is necessary.

In this study, we utilized co-expression networks and
differential co-expression network analysis to gain a better
understanding of gene-gene interactions in the AD fusiform gyrus.
Our objective was to identify potential genes that could predict
AD and contribute to the overall understanding of gene-gene
interactions in the fusiform gyrus of AD patients. The results
of our analyses revealed a total of seven genes, four of which
were identified through the co-expression analysis and three
through the differential co-expression analysis. We also developed
a differential gene co-expression network with moderate predictive
performance, which was combined with extremeGradient Boosting
(XGBoost) to predict AD.

2. Materials and methods

2.1. RNA-seq from fusiform gyrus of
Alzheimer’s disease and neurologically
normal post-mortem

The RNA-seq transcriptome dataset was obtained from the
Gene Expression Omnibus under accession number GSE125583.
The RNA was extracted from the fusiform gyrus of post-mortem
tissue from individuals with AD or who were neurologically normal
as controls (NC) (n= 289), with age ranges from 60 to 103 years old
(Srinivasan et al., 2020). Samples were extracted from the fusiform
gyrus of neurologically normal controls (n = 70, aged 71 to 103)
and AD patients (n = 219, aged 60 to 103), and were sequenced
using the Illumina HiSeq 2,500 sequencer in single-end read mode.

The process of downloading the .sra files for each sample
were carried out using the prefetch tool from SRA Toolkit

(Leinonen et al., 2010). Subsequently, all .sra files were converted

to .fastq files with the help of fastq-dump. Quality control checks
were performed on each sample both before and after RNA-seq
preprocessing. The Trimmomatic package was utilized to remove
Illumina adapters, as well as to trim and filter low-quality reads
and bases. Trimmomatic was executed in Single End Mode, using
the ILLUMINACLIP command to remove adapters that were
specified in the TruSeq3-SE.fa file, with the threshold values for
seed mismatches, palindrome clip, and simple clip set to 2, 30, and
10, respectively. Other commands, such as LEADING, TRAILING,
SLIDINGWINDOW, and MINLEN, had their values set to 3, 3,
4:15, and 36, respectively. Read alignment was performed using
STAR (Dobin et al., 2013), with the hg19 genome reference being
employed. STAR was configured to recognize that a read overlaps a
gene, regardless of whether it maps to the same or opposite strand.
Read counting was carried out with HTseq, and the gene symbols
were annotated using the HUGO Gene Nomenclature Committee
(Anders et al., 2015).

The process of transcript filtering was carried out in three
distinct steps. Firstly, the read counts were normalized using the
counts per million. Subsequently, transcripts were filtered based
on the global average of reads, where the read count per transcript
and per sample were observed. Lastly, transcripts were removed if
the sum of their counts across all samples was less than the global
average of reads. After following this process, we carried out a
transcript and sample filtering according to the best practices for
co-expression and differential co-expression analysis. These best
practices include using 20 or more samples per group, ensuring
both a large volume of reads per sample (around 10 million) and
a high read depth, which corresponds to the number of times each
nucleotide was read for each sequence (Ballouz et al., 2015).

2.2. The RNA-seq harmonization study
(ROSMAP, MSBB, and Mayo Cohorts)

In addition to fusiform gyrus RNA-seq data, we accessed RNA-
seq data from three large cohorts described as follows:

• ROSMAP stands for Religious Order Study (ROS) and
Memory and Aging Project (MAP), which are two
longitudinal clinical-pathological cohort studies conducted
by RUSH University (Bennett et al., 2018). ROS focuses on
memory, motor, and functional problems related to aging and
Alzheimer’s disease in Catholic orders, whileMAP investigates
the decline in cognitive and motor function and the risk of
Alzheimer’s disease in the general population. Clinical data
and transcriptomic RNA-seq data from post-mortem donors
were accessed from ROSMAP, including tissues such as the
dorsolateral prefrontal cortex (AD = 308, NC = 148), frontal
cortex (AD = 24, NC = 25), head of the caudate nucleus (AD
= 178, NC = 95), posterior cingulate cortex (AD = 156, NC
= 102), and temporal cortex (AD= 26, NC= 25).

• The Mount Sinai/JJ Peters VA Medical Center Brain Bank
(MSBB) cohort consists of more than 2,000 well-characterized
human brains and encompasses the entire range of cognitive
and neuropathological disease severity, in the absence of
detectable non-AD neuropathology (Wang et al., 2018). The
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cohort follows rigorous inclusion and exclusion criteria.
Neuropathological evaluations for each sample were carried
out in accordance with the Consortium to Establish a
Registry for Alzheimer’s Disease (CERAD) protocol. The post-
mortem tissue extraction, diagnostic, and neuropsychological
procedures used in this cohort were approved by the
Institutional Review Boards of both Mount Sinai and JJ Peters
VA Medical Center. Among RNA-seq data from MSBB’s post-
mortem donors, tissues such as the frontal pole (AD = 132,
NC = 90), inferior frontal gyrus (AD = 132, NC = 91),
parahippocampal gyrus (AD = 146, NC = 83), and superior
temporal gyrus (AD = 149, NC = 86) were included. Because
of the low number of samples for the prefrontal cortex (AD=

8, NC= 3), this tissue was not included.
• The Mayo Clinic Study of Aging (Mayo) is a comprehensive

investigation into the prevalence, incidence, and risk factors
associated with mild cognitive impairment (MCI) and
dementia. The study is designed as a prospective, population-
based cohort study (Roberts et al., 2008), with in-person
clinical evaluations conducted either at the Mayo Clinic
Abigail Van Buren Alzheimer’s Disease Research Clinic
or at participants’ residence using standardized protocols.
To confirm a diagnosis of AD, the study relies on
the NINCDS-ADRDA criteria. The Mayo Clinic Study of
Aging incorporates RNA-seq post-mortem donor tissue data
obtained from cerebellum and temporal cortex samples. This
data includes samples from both individuals with AD (84 in
cerebellum, 82 in temporal cortex) and healthy individuals (78
in both cerebellum and temporal cortex).

2.3. RNA-seq data from genotype-tissue
expression database (GTEx)

In addition, we also explored RNA-seq data from GTEx (v8)
for 13 different brain tissues, including the anterior cingulate
cortex, cortex, cerebellum, frontal cortex, cerebellar hemisphere,
hippocampus, hypothalamus, amygdala, nucleus accumbens,
caudate nucleus, putamen, spinal cord, and substantia nigra
(Lonsdale et al., 2013). This resulted in a total of 2,642 samples from
the 17,382 samples cataloged by GTEx across 54 tissues donated
by 948 individuals. Approximately 55% of the cerebral tissue
donors were between 60 and 70 years old. The RNA-seq expression
data from the 13 brain tissues were preprocessed by the GTEx
team, which involved aligning them with the GRCh38 genome
and quantifying and normalizing each tissue using the software
and techniques of STAR, RNA-Seq Expectation-Maximization
(RSEM), and median gene-level transcription per million (TPM),
respectively. These data were used to explore how genes are
expressed at baseline.

2.4. Co-expression network analysis and
identification of hub genes in Alzheimer’s
disease

To avoid processes unrelated to AD, we conducted co-
expression analyses individually per group NC, AD, and samples of

AD plus NC (NC+AD). The co-expression analysis was performed
using CEMiTool, which identifies co-expression modules (Russo
et al., 2018). CEMiTool implements an unsupervised method
for gene filtering based on the inverse gamma distribution and
performs a tunning for parameter selection on the identification
of modules, functional enrichment analysis based on the Reactome
pathway database, and drawing interaction networks. Although not
developed for RNA-seq data, CEMiTool can process read counts by
allowing the inside-built variance stabilizing transformation (VST).
The tool has a dependency on WGCNA, a standard R package
implemented to perform gene co-expression analysis (Langfelder
and Horvath, 2008). Several WGCNA procedures are imported
for the execution of CEMiTool, among which include functions
for hierarchical clustering into modules and a modified version of
the automatic soft-thresholding power selector function. CEMiTool

automatically identifies the best β parameter. For RNA-seq data,
CEMiTool recommends the use of the VST function. Therefore,
input data for these analyses were kept in a non-normalized
discrete distribution. The output is a user-friendly report for co-
expression analysis, which include a summary of gene counts, over-
representation analysis of functional pathways (ORA), gene-gene
co-expression networks, gene-gene interaction networks, and hub
genes. Additionally, we measured module stability by comparing
the results of CEMiTool under all samples and CEMiTool by
bootstrapping 70% of samples at each iteration (100x). The module
stability was accessed based on the number of detected modules,
elements in each module, and the number of hubs.

2.5. Di�erential co-expression network
analysis

Similar to co-expression experiments, we performed
differential co-expression network analysis (DCGNA) with
diffcoexp for NC, AD, and NC+AD groups. The diffcoexp were
performed to investigate Differential Co-expressed Links (DCLs),
defined as gene pairs with statistical significance concerning the
difference of the correlation coefficients under two conditions, and
Differential Co-expressed Genes (DCG), genes with particularly
more DCLs than expected by chance (Wei et al., 2018). diffcoexp
has a dependency onWGCNA and allows the identification of pairs
of genes co-expressed in at least one condition, the comparison of
gene-gene correlation coefficients between each condition, and the
DCGNA itself. diffcoexp uses Fisher’s Z transformation to compare
the level of correlation between pairs of genes under two conditions
(case vs control) in order to identify DCLs. The DCGs are defined
through the binomial probability model, taking into account the
number of links between co-expressed pairs (Jiang et al., 2016).

2.6. Gene Ontology for Networks

After performing DGCNA, we converted the sub-network into
the STRING network format using Cytoscape (Szklarczyk et al.,
2023). We then visualized and analyzed the DCLs and DCGs
using gene ontology (GO) analysis and EnrichmentMap (Isserlin
et al., 2014). This approach allowed us to investigate the molecular
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functions and biological processes associated with enriched GO
terms (FDR ≤ 0.05), providing insights into AD mechanisms.

2.7. Gene expression-based prediction

We used eXtreme Gradient Boosting (XGBoost, Chen and
Guestrin, 2016) to fit boosted tree models for predicting AD status.
Specifically, we set XGBoost to use a binary logistic objective
function for the binary prediction task and ten rounds of 5-fold
cross-validation. DE genes (Cavalcante et al., 2022), co-expressed
gene hubs and DCGs were used as features to assess the predictive
performance, which was measured by the mean Area Under Curve
(AUC) and error test mean. Likewise, we examined the predictive
value of differential co-expressed network sub-network using the
same metrics.

3. Results

3.1. Transcripts abundance in fusiform
gyrus

We identified 42,000 transcripts in the fusiform gyrus and a
catalog of 30,115 well-annotated transcripts by merging RNA-seq
transcripts with the Hugo Gene Nomenclature Committee from
European Bioinformatics Institute. The annotated transcripts set
were split into protein-coding genes (n = 17,829), pseudogenes (n
= 7,111), non-coding RNAs (n = 4,834), and others (n = 341).
This transcript annotation was performed aiming to focus only on
protein-coding genes.

After gene annotation, the gene expression matrix was
submitted to a read-filtering process before co-expression network
analysis and differential co-expression analysis for quality control
regarding best statistical practices. The filtering process removed
non-expressed transcripts (with roughly zero expression) within
samples. Thus, 18,619 transcripts remained in AD samples, 16,598
transcripts remained in NC, and 19,207 transcripts remained in
the pooled NC+AD group. Subsequently, a filter per sample was
performed to remove samples with gene read counts below the
recommended threshold of 10 million reads. A total of six samples
were removed from all our analyses, five from the AD samples and
one from the NC samples.

3.2. Specific structure of co-expressed
genes and enrichment for functional
pathways in fusiform gyrus

CEMiTool’s unsupervised filtering method resulted in the
co-expression analysis of 1,284 transcripts for AD group, 927
transcripts for NC, and 1,303 transcripts for NC+AD samples. Co-
expressed gene modules, their enriched biological pathways, as
well as important hub genes associated with AD were identified
by gene co-expression network analysis experiments. Overall, our
analysis identified three modules in AD patients, five gene modules
in NC samples, and three in pooled samples (NC+AD). For the

AD, we assessed module consistency by resampling strategy (100x).
Our results demonstrated high stability in identifying exactly three
gene modules, with an accuracy of 74%. However, in 24% of
the permutations, we found a fourth module, while only 2% of
the permutations showed the presence of only two modules. On
average, Module 1 (M1) contained 558.2 genes (+/-60.30), Module
2 (M2) contained 438.1 genes (+/−64.13), and Module 3 (M3)
contained 135.4 genes (+/−32.90).

The AD gene modules and their corresponding hubs are
depicted in a clear manner in Figure 1A, while the co-expression
and interaction networks of AD and NC groups are shown in
Supplementary Figures S1, S2. In comparison, we note a distinction
between gene modules and subsequently network structure of
regulatory genes across conditions (AD and NC). With a focus on
exclusive genes, 121 are AD-specific co-expressed genes (Figure 1B)
and four exclusive, out of eight co-expression gene hubs, namely
PKN2, FNDC3A, NRIP1, TMTC2 (see Figure 1C). The hub genes
identified in the co-expression analysis are exceptional to the
analysis and do not overlap with the differential co-coexpressed
network (Figure 1D), detailed in Section 3.3.

Over-representation analysis, which was implemented in
CEMiTool, revealed 52 functional pathways enriched for the NC
group, 65 for the AD group, and 95 for the NC+AD group (adjusted
p-value and q-value (FDR) ≤ 0.05). Convergences between groups
are represented in the Venn diagram in Figure 2A. Among the
pathways exclusive to AD, 11 were identified, comprising six Toll-
like Receptors (TLR) cascade-related pathways and five signal
transportation pathways. Notably, three of the signal transportation
pathways involve membrane transport by G proteins, PIP2

hydrolysis production of secondary messengers, and EPH-Epherin

long-term potentiation (LTP) (see Figure 2B).
Interestingly, among the 75 genes described by Bellenguez et al.

(2022), only seven (TMEN106B, MS4A4A, ADAMTS1, ABCA1,
HLA-DQA1, CD2AP, and CR1) were not removed by CEMiTool’s
filtering method and underwent co-expression analysis. With the
exception of HLA-DQA1, all genes were grouped into module 2
(M2) in AD group, which is enriched by all TLR-related AD-
exclusive pathways. HLA-DQA1 was not group in any module
in AD samples, however, it was grouped in module 4 (M4) in
NC samples.

3.3. Di�erential co-expression network and
hub genes with di�erential co-expressed
links

To perform the DGCNA, we assembled all identified genes
from within the co-expressed modules found in AD or NC
groups. Therefore, a total of 1,365 genes were evaluated using
their links and correlations as basis. The DGCNA generated
a differential co-expressed network, hereafter AD-DiffCoexpNet,
that comprises 47 genes and 47 differentially co-expressed
links (Figure 3, Supplementary Table 1). The AD-DiffCoexpNet
overlaps with STRING interaction data, concerning 13 genes in
a multi-edge protein-protein interaction network (PPI) with high
confidence (>0.7) (see Figure 3B). The PPI was evidenced by
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FIGURE 1

General distribution of genes from both co-expression and di�erential co-expression analysis. (A) Simplified representation of co-expressed gene

hubs and their respective gene modules identified by CEMiTool in the fusiform gyrus of Alzheimer’s disease. (B) Distribution of co-expressed genes

across each condition. (C) Distribution of co-expressed gene hubs across each condition. (D) The overall intersection of co-expressed gene hubs in

AD, di�erential co-expressed genes (DCG), and genes with di�erential co-expressed links (DCL) in AD.

curated databases, including experimental data, genomic context
information, and text-mining data.

Hub analysis identified three DCGs out of a total of 47 genes
in the network. The genes identified were Family with Sequence
Similarity 153 Member B (FAM153B), which exhibited 31 DCLs,
Cytochrome P450 Family 2 Subfamily C Member 8 (CYP2C8) with
11 DCLs, and Creatine Kinase, Mitochondrial 1B (CKMT1B) with
five DCLs. As shown, AD-DiffCoexpNet underlined these DCGs
with the highest number of DCLs compared to the other genes.
For CKMT1B, CYP2C8, and FAM153B, we performed resampling
analysis (100x) to assess the stability of their identification of these

genes as DCGs, that accuracy values result in 0.64, 0.73, and 0.87,
respectively (see Figure 3C).

Gene ontology (GO) analysis showed that the differentially
co-expressed genes (DCGs) were not enriched for neuronal
processes (see Figure 3A). Nonetheless, the network structure
suggests that DCGs play an important role in the brain since they
were found to be directly associated with genes involved in the
regulation of synapse assembly, neurotransmitter levels, nervous
system development, synaptic vesicle exocytosis, modulation
of chemical synaptic transmission, and neurotransmitter
transport (GO FDR ≤ 0.05).
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FIGURE 2

Distribution of over-represented pathways across each condition. (A) Overall functional enrichment analysis highlights 11 pathways with statistical

significance (FDR <= 0.05) in Alzheimer’s Disease. (B) Table with significant pathways for Alzheimer’s Disease group and its respective modules.

Gene expression in GTEx database suggests high expression
of CKMT1B and FAM153B in the cerebellar hemisphere and
cerebellum (see the heatmap in Figure 3D). To get more confident
molecular insights in AD, we investigated the overlap of DCGs and
DCLs on AD-DiffCoexpNet in different cohorts and brain regions,
including ROSMAP, MSBB, and Mayo RNA-seq data. Our analysis
showed that the co-expression patterns of the AD-DiffCoexpNet
are region-specific and not consistent across different cohorts and
regions. Specifically, we observed a low level of adjusted mutual
information between DGCNA in the fusiform gyrus and other
brain regions. Figure 3F illustrates the adjusted mutual information
values between the identified networks, showing a range of 0.0
to 0.4. The highest AMI is shown between the gyrus fusiform,
cerebellum, and temporal cortex in the Mayo cohort, a lower

similarity is observed when compared to MSBB brain regions, and
no similarity is shown with the ROSMAP cohort. Despite the low

AMI values (<0.40), we identified 12 genes with differential co-
expression links (CDH18, BEX5, SV2B, CHRNB2, CRYM, CHGB,
SVOP, GAD2, PAK1, GAP43, NELL1, RAB3A) that were common

between the gyrus fusiform, the cerebellum, and the temporal
cortex. These findings suggest that although the co-expression

pattern (DCGs and DCLs) in the gyrus fusiform is region-specific,
some gene correlations are still common across different regions.
Interestingly, we did not find the three DCGs (FAM153B, CYP2C8,
CKMT1B) from the fusiform gyrus in other investigated regions,
which also may suggest that these DCGs are tissue-specific.

The expression-based prediction was accessed with XGBoost
in a binary setting (AD x non-AD), which was trained for DE
genes (Cavalcante et al., 2022), co-expressed gene hubs, DCGs,

DCGs combined with co-expressed gene hubs and the entire
AD-DiffCoexpNet. Of these gene sets, the expression of genes
in AD-DiffCoexpNet combined with XGBoost showed moderate
predictive power for diagnosing AD in the fusiform gyrus, with an
average AUC test score of 0.75 (+/-0.07) and an average test error
of 0.21 (+/- 0.06). Differential co-expressed gene hubs showed the
lowest predictive values (AUC≈ 0.52) as shown in Figure 3E.

4. Discussion

Previous studies investigated co-expression patterns in
different brain tissues and identified co-expression networks for
late-onset Alzheimer’s disease. Zhang et al. (2013) performed a
multi-tissue analysis and found strong segregation between brain
regions by identifying modules using the WGCNA algorithm and
using an approach called modular differential connectivity to
find functions and pathways with significant differences across
conditions. The study also identified TYROBP as a key regulator
for the immune/microglia pathway, which was not identified in the
current analysis.

Mostafavi et al. (2018) explore the frontal cortex through a
system biology analysis in order to identify a molecular network
to prioritize groups of genes that influence cognitive decline
or neuropathology in AD. Samples were collected from two
cohorts, which shared clinical and neuropathological standards,
thus allowing for joint analyses. Their study used a module-trait
network approach, which isolates genes into modules according to
their co-expression patterns and known factors that could influence
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FIGURE 3

Di�erential co-expression Network. (A) Di�erential co-expressed sub-network identified by di�coexp with 65 genes and 47 di�erential expressed

links. The three highly connected DCGs are highlighted as orange nodes. (B) STRING database highlights a multi-edge protein-protein interaction

sub-network for di�erentially expressed genes. Di�erent colors in edges represent evidence of interaction based on co-expression. Most

importantly, these interactions are evidenced by curated databases (pink edges) and experimentally determined (black edges). (C) Stability (accuracy)

of DCGs after the 100-fold sample bootstrap tests. (D) Baseline expression level of the three identified DCGs on 13 tissues of normal brains cataloged

in GTEx. (E) Test AUC mean and Test error mean of 5-fold cross-validation of XGboost regarding sets of genes. (F) Pairwise Adjusted Mutual

Information for di�erential gene co-expression networks.
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correlations, such as cell type prevalence. Modules with direct
correlation to cognitive decline and other AD traits were isolated
using Bayesian networks and were ranked to prioritize genes for in
vitro validation.

Our research differed inmethodological aspects.We investigate
RNA-seq data from the fusiform gyrus and other large brain cohorts
(ROSMAP, MSBB, and Mayo). Gene module identification was
executed by CEMiTool, which automatizes parameter selection
for the co-expression analysis, avoiding parameter-selection bias.
Regarding the identification of differences across conditions, our
study performed a differential co-expression analysis to focus on
identifying genes/transcripts with significant differences in co-
expression between groups and observing how they act in the
nervous system.

Co-expression analysis and DGCNA are powerful tools that
can aid in the discovery and improvement of knowledge related to
the molecular architecture of complex diseases. In this study, the
identification of hub genes, co-expressed genemodules, and anAD-
DiffCoexpNet has provided valuable insights. Gene co-expression
networks have the potential to reveal the behavior of groups of
genes simultaneously, allowing for the identification of modules
of correlated genes that may have potential molecular function
and enrichment for functional pathways in specific conditions,
such as healthy or disease cases (Chen et al., 2008). On the other
hand, differential co-expression networks can identify pairs of
genes with significant differences in their correlation levels between
conditions, thereby highlighting regulatory elements. By utilizing
these powerful tools, researchers can gain a better understanding
of the molecular mechanisms underlying complex diseases. This
knowledge can help to identify potential therapeutic targets and
ultimately improve patient outcomes.

4.1. FNDC3A, NRIP1, PKN2 and TMTC2 are
co-expressed hubs in AD modules

We identified four hub genes, namely FNDC3A, NRIP1,
PKN2, and TMTC2, which were exclusively present in the AD
module. These hubs were prioritized among all co-expressed
hubs based on CEMiTool’s gene-gene interaction networks, which
indicated that they had a high degree of connectivity within
their respective module’s interaction networks. Furthermore, their
exclusive presence in the AD co-expression modules boosts their
potential relevance to AD pathology.

Previous experiments have reported Fibronectin Type III
Domain-Containing 3A (FNDC3A) expression in the whole adult
brain and odontoblasts Carrouel et al. (2008). The gene may
be involved in glycosaminoglycan synthesis, which is one major
part of the glycocalyx that acts on essential cell processes.
Deregulated FNDC3A expression may impact Heparan Sulfate
Glycosaminoglycan (HSGAG) levels, which promotes therapeutic
application against AD. The knockout of HSGAG genes decreases
the proliferation of β-amyloid fibrils in the brain (Snow et al.,
2021).

Other co-expressed hubs play different roles in normal cellular
function. The Nuclear Receptor-Interacting Protein 1 (NRIP1)
plays a role in metabolic dysregulation and inflammation processes

and has a dual regulation function. It negatively regulates energy
homeostasis and positively regulates inflammatory response in
macrophages, by indirect interaction between Nuclear Factor
Kappa B (NF-κB) and TLR-induced proinflammatory cytokines.
Depletion of this gene was observed in the interruption of axonal
degeneration (Ranea-Robles et al., 2022).

In addition, the Transmembrane O-Mannosyltransferase
Targeting Cadherins 2 (TMTC2) encodes an integral membrane
protein within the endoplasmatic reticulum (ER). The protein
contains multiple clusters of tetratricopeptide domains and
binds to the calcium uptake pump SERCA2B and to the
carbohydrate-binding chaperone calnexin. Through live cell
calcium measurements, Sunryd et al. (2014) report that the
overexpression of TMTC2 results in a reduction of calcium release
from ER, while its knockdown stimulates calcium release, implying
that the gene is involved in ER calcium homeostasis. Mutations in
TMTC2 were previously reported in sensory organ disorders, such
as sensorineural hearing loss and auditory neuropathy spectrum
disorder (Guillen-Ahlers et al., 2018).

4.1.1. Gene co-expression analysis in fusiform
gyrus reveals links with glaucoma

Based on the literature review, there is no established
association between Protein Kinase N2 (PKN2) and
neurodegeneration or direct involvement in AD development.
Whereas interestingly, genetic variants, such as single nucleotide
polymorphisms in exons of PKN2 have been associated with
elevated intraocular pressure, which may increase the risk for
glaucoma (Gao et al., 2018). An initial study by (Wostyn et al.,
2009) emphasizes links between AD and glaucoma. Interestingly,
AD patients also show optic nerve degeneration and loss of
retinal ganglion cells, β-amyloid and tau protein deposition
in the retina Wostyn et al. (2009); Ramirez et al. (2017), and
alteration of functional connectivity between visual areas dedicated
to recognition like the fusiform and the inferior temporal gyri.
Despite these overlaps, some links between both diseases are still
under-represented, such as intraocular pressure mechanisms (Sen
et al., 2020).

Associations between AD and glaucoma were also previously
reported in TMTC2 researches. Eisenhaber et al. (2021) briefly
reviewed GWAS studies of the gene in ethnic-specific cohorts.
The first study was performed in a Japanese cohort, claiming that
TMTC2 was a susceptible locus associated with primary open-
angle glaucoma. However, follow-up studies in different ethnicity
cohorts could not confirm those findings. Later, a multiethnic
GWAS study identified TMTC2 among many novel risk loci for
glaucoma (Choquet et al., 2018).

Genetic comorbidity between AD and glaucoma is still
unexplored, and consequently, how molecular changes affect both.
Recently, Zhao et al. (2021) performed a meta-analysis of cohort
studies to evaluate the association between glaucoma and AD.
Based on Zhao et al. (2021), the meta-analysis concluded that
glaucoma is not an independent risk factor for dementia-related
diseases. Given the importance of PKN2 in our results, we
theorize that AD might play a function in the development of
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glaucoma disease, however, further studies are needed to support
our hypothesis.

4.2. Over-represented pathways in AD
modules

Over-representation pathway analysis in co-expression
networks revealed molecular mechanisms in fusiform gyrus
associated with TLR cascades (TLR2, TLR4, TLR1:TLR2,
TLR6:TLR2 and MyD88:Mal cascades), G protein signaling
events (activation of potassium gates channels and inhibition of
voltage-gated Ca2+ channels), PIP2 hydrolysis, and EPH-Epherin

mechanisms. These pathways play important roles in the immune
response, synaptic transmission, and neuroplasticity, which are all
processes that have been implicated in AD pathology.

Reinforcing the amyloid and tau hypothesis. We identified
pathways enriched for G Proteins and consequently, for G
protein-Coupled Receptors GPCRs, which are involved in the
phosphorylation of tau through diverse downstream kinases, such
as GSK-3β , CDK-5 and ERKs signaling cascade, and interacts with
β-site APP Cleaving Enzyme 1 (BACE1), both which play a major
role in AD (Zhao et al., 2016; Deyts et al., 2019; Chidambaram and
Chinnathambi, 2020). Huang et al. (2017) reported that GPCRs are
successful targets for the therapeutic action on the central nervous
system. Interestingly, APP/Go protein Gbeta/gamma-complex
signaling was reported to mediate β-amyloid-dependent neuronal
degeneration in hippocampal neurons of mice models, implying
that the complex may be a promising target for therapeutic
interventions in AD (Bignante et al., 2018).

Also, TLRs cascades trigger rapid inflammatory reactions and
play a crucial role in the activation of inflammatory cascades
and hypoxic-ischemic events, contributing to neuroprotective
or detrimental effects of cerebrovascular diseases induced
neuroinflammation (Ashayeri Ahmadabad et al., 2021; Ciesielska
et al., 2021). Recently, necroptosis mediated by TLRs has been
pointed to as a novel pathway associated with neuroinflammation
(Yu et al., 2021).

The EPH receptors and their ligands, Ephrins, are involved
in short-distance cell-cell signaling, regulating many neurological
processes not only during development but also in adulthood.
These processes include developmental cell sorting and synaptic
plasticity, making the EPH-Ephrin signaling pathway essential
for many physiological functions. Studies in AD-animal models
have reported both beneficial effects and dysfunctions in synaptic
plasticity and spine morphology due to EPH dysregulations,
suggesting that the pathway might play an important role in AD
(Kania and Klein, 2016). Furthermore, other studies support the
association between EPH-Epherin signaling and AD pathogenesis.
For instance, Buhl et al. (2022) investigated the effect of mutant
EphA1 receptors on a Drosophila model and observed changes in
behavior and neurophysiology related to AD. Meanwhile, Ganguly
et al. (2022) studied the possible therapeutic implications of
inhibiting the EphA-4 receptor for the targeted therapy of AD.

Phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis,
mediated by phospholipase C (PLC), generates two major second
messengers, inositol 1,4,5-triphosphate (IP3) and diacylglycerol.

Diacylglycerol activates protein kinase C (PKC), which plays a
crucial role in the functional control of various proteins. The
activation of PLCβ by Gq proteins and subsequent regulation
of diverse cellular processes make them major disease drivers
(Carr et al., 2021; Kankanamge et al., 2021). He et al. (2019)
reports that synaptic induction of metabotropic glutamate receptor
5 (mGluR5) can hydrolyze PIP2, which underlies the reduced
release probability in early AD (presynaptic), or can function as a
β-amyloid receptor (postsynaptic). This finding suggests that an
increase in presynaptic PIP2 levels may improve cognition in AD.

4.3. Di�erential co-expressed network
predicts dementia moderately

While co-expression network analysis can reveal biological
mechanisms, it does not necessarily indicate causality. However,
newer methods such as DGCNA can improve the identification
of genes that regulate complex diseases such as Alzheimer’s.
We identified FAM153B, CYP2C8, and CKMT1B as highly
differentially co-expressed genes with potential implications
in neurodegeneration, despite not being directly enriched in
neuronal-related processes. Although FAM153B is highly expressed
in the cerebellar hemisphere and cerebellum andmay have a crucial
role in neurons, its function remains poorly understood, with no
reported findings as of yet. In contrast, theCYP andCKMT families
have been implicated in neurodegeneration. CYP2C8 belongs to
the Cytochromes P450 superfamily of enzyme-encoding genes and
is involved in many metabolic pathways, that metabolize over
90% of drugs, including cholinesterase inhibitors such as tacrine,
donepezil, and galantamine (Cacabelos et al., 2007).

Cholinesterase and acetylcholinesterase inhibition has shown
potential in reducing neurodegenerative effects in patients with AD
(Sharma, 2019), which likewise encourages the development of new
cholinesterase inhibitors, since current agents may cause several
side effects. While CKMT1B is a mitochondrial creatine kinase
encoding gene commonly co-expressed with other creatine kinases
and is particularly found in tissues with high-energy demands,
such as the brain. The gene is considered a major target of
oxidative-inducedmolecular damage in ischemic, cardiomyopathy,
and neurodegenerative diseases (Shi et al., 2021).

Several studies have suggested that co-expressed hubs with
high connectivity tend to be biologically important and have a
higher likelihood of being differentially expressed, but more studies
need to be performed to investigate this aspect in differential co-
expressed network analysis. The relationship between the AUC of
co-expression hubs and the odds of being differentially expressed
or differential co-expressed is complex and may be tissue-specific.
Thus, it is important to consider multiple factors and carefully
evaluate the performance and biological relevance of the model in
the specific context of the study. We report DCGs and DCLs in
Alzheimer’s disease using RNA-seq data from various brain regions
and cohorts, including the GTEx database, ROSMAP, MSBB, and
Mayo, that suggests our AD-DiffCoexpNet are specific to fusiform
gyrus. Nonetheless, we identified 12 genes with DLCs that were
common between the gyrus fusiform, cerebellum, and temporal
cortex, despite low adjusted mutual information (AMI) values. We
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also found that some genes are still common across different brain
regions, although DCGs like FAM153B, CYP2C8, and CKMT1B
were not found across any other investigated regions, suggesting
their tissue-specificity.

We have shown significant insights on mechanisms of
Alzheimer’s disease by employing state-of-the-art machine
learning techniques like XGBoost, demonstrating the robustness
and stability of the XGBoost models, DCGs, and AD-DiffCoepNet,
despite moderate prediction (AUC = 0.75). The method
incorporated DE genes, co-expressed gene hubs, DCGs, and the
AD-DiffCoexpNet. Similar AUCs have been reported for genotype-
based predictions (Araújo et al., 2013; Osipowicz et al., 2021).
Complex diseases such as AD involve multiple genetic variants
(Bellenguez et al., 2022), genes, pathways, and environmental
factors, making it challenging to identify the key biomarkers and
relationships that drive disease progression. The choice of machine
learning algorithms and model parameters can also affect the
accuracy of predictions in AD. Small datasets may lack diversity,
and may not capture the full range of biological variability needed
for accurate predictions, which have been improved by sharing
“omics” data in public databases. It is essential to carefully evaluate
and optimize each of these factors to improve the accuracy
of predictions.

Differential co-expression captured the strength of association
between genes in different conditions. In the case of AD-
DiffCoexpNet, it is possible that the regulation of genes is
influenced by transcription factors that either promote or inhibit
gene expression. There could also be promoter variants present
in AD samples that affect the binding of transcription factors
and the subsequent interactome, ultimately leading to changes
in gene expression levels. Further research is needed to confirm
this hypothesis. In healthy conditions, correlated genes are often
linked through shared regulatory elements, such as genetic variants,
transcription factors, enhancers, or chromatinmodifications. These
elements can affect the expression ofmultiple genes simultaneously,
resulting in differential co-expression patterns among related
genes. This differential gene co-expression can contribute to disease
progression and warrants further investigation. These findings
are important for understanding the restricted specificity of gene
co-expression networks in AD, which could have implications
for disease progression and treatment development. While our
study has provided new insights into the molecular mechanisms
underlying AD and dementia pathogenesis, it is important to note
that the small number of available fusiform gyrus samples is a
significant limitation. Unfortunately, this has prevented us from
performing experimental validation of our findings in this brain
region. Therefore, further studies with larger sample sizes are
necessary to confirm and extend our findings.

4.4. Final considerations

Our data-driven approach has led to the discovery of a
valuable differentially co-expressed gene network associated with
Alzheimer’s disease. The AD-DiffCoexpNet is enriched with crucial
neuronal-related processes, including neuron projection, synapses,
and neural system development, and highlights the association of

AD and complex biological gene-gene interaction networks. Our
study carefully examined RNA-seq experiments from the fusiform
gyrus and cross-brain regions and large brain cohorts. In fusiform
gyrus, seven novel candidate genes were identified co-expressed
in AD, including FNDC3A, NRIP1, PKN2, and TMTC2, as well
as differentially co-expressed genes such as FAM153B, CYP2C8,
and CKMT1B. In addition, the Toll-like Receptor Cascades are
the most prominent pathway involved in dementia processes.
To validate and strengthen our findings, we strongly encourage
functional validation in longitudinal cohorts. Overall, this research
significantly contributes to our understanding of the molecular
mechanisms involved in Alzheimer’s disease and has the potential
to inform future therapeutic interventions.
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