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understanding of extracellular 
vesicles to treat neuropathic pain
Kexin Zhang , Pei Li , Yuanyuan Jia , Ming Liu  and Jingjing Jiang *

Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 
China

Extracellular vesicles (EVs) including exosomes are vesicular vesicles with 
phospholipid bilayer implicated in many cellular interactions and have the ability 
to transfer multiple types of cargo to cells. It has been found that EVs can package 
various molecules including proteins and nucleic acids (DNA, mRNA, and 
noncoding RNA). The discovery of EVs as carriers of proteins and various forms of 
RNA, such as microRNAs (miRNA) and long noncoding RNAs (lncRNA), has raised 
great interest in the field of drug delivery. Despite the underlying mechanisms 
of neuropathic pain being unclear, it has been shown that uncontrolled glial 
cell activation and the neuroinflammation response to noxious stimulation 
are important in the emergence and maintenance of neuropathic pain. Many 
studies have demonstrated a role for noncoding RNAs in the pathogenesis of 
neuropathic pain and EVs may offer possibilities as carriers of noncoding RNAs 
for potential in neuropathic pain treatment. In this article, the origins and clinical 
application of EVs and the mechanism of neuropathic pain development are 
briefly introduced. Furthermore, we demonstrate the therapeutic roles of EVs in 
neuropathic pain and that this involve vesicular regulation of glial cell activation 
and neuroinflammation.
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1. Introduction

Neuropathic pain is defined as “pain initiated or caused by a primary lesion or dysfunction 
of the nervous system” by the International Association for the Study of Pain (IASP). Neuropathic 
pain can be classified into peripheral and central pain based on the sources of the lesion or 
disease (Scholz et al., 2019). Nociceptors that are defined as primary afferent sensory neurons 
can be activated by noxious stimuli and transmit pain signals to SDH (Basbaum et al., 2009). 
The imbalance between synaptic excitation and inhibition in the SDH leads to aberrant 
somatosensory signals which are subsequently conveyed to the brainstem and higher brain 
regions (Tsuda et al., 2017). Up to 8% of the general population suffer from neuropathic pain, 
which is refractory to recent clinical therapies and seriously affects their quality of life. Therefore, 
novel, efficacious treatment strategies are urgently needed, but the exact molecular and cellular 
mechanisms underlying neuropathic pain remain unclear. A large part of cell–cell 
communications and molecular signaling pathways come into play during regulation of the 
sensitization of nociceptive pathways. The development and maintenance of neuropathic pain 
is coupled with the interactions between neurons-glial cells, and neuronal-immune cells (Vicario 
et al., 2020; Yu et al., 2020b).

OPEN ACCESS

EDITED BY

Jagdeep K. Sandhu,  
National Research Council Canada (NRC), 
Canada

REVIEWED BY

Arsalan S. Haqqani,  
National Research Council Canada (NRC), 
Canada
Dylan Burger,  
University of Ottawa,  
Canada
Pranav Sharma,  
Xosomix LLC,  
United States

*CORRESPONDENCE

Jingjing Jiang  
 jjj_sj@163.com

SPECIALTY SECTION

This article was submitted to  
Neuroinflammation and Neuropathy,  
a section of the journal  
Frontiers in Aging Neuroscience

RECEIVED 25 December 2022
ACCEPTED 09 February 2023
PUBLISHED 03 March 2023

CITATION

Zhang K, Li P, Jia Y, Liu M and Jiang J (2023) 
Concise review: Current understanding of 
extracellular vesicles to treat neuropathic pain.
Front. Aging Neurosci. 15:1131536.
doi: 10.3389/fnagi.2023.1131536

COPYRIGHT

© 2023 Zhang, Li, Jia, Liu and Jiang. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted which 
does not comply with these terms.

TYPE Review
PUBLISHED 03 March 2023
DOI 10.3389/fnagi.2023.1131536

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2023.1131536%EF%BB%BF&domain=pdf&date_stamp=2023-03-03
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1131536/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1131536/full
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1131536/full
mailto:jjj_sj@163.com
https://doi.org/10.3389/fnagi.2023.1131536
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2023.1131536


Zhang et al. 10.3389/fnagi.2023.1131536

Frontiers in Aging Neuroscience 02 frontiersin.org

EVs were identified as particles naturally released from the cell 
that are delimited by a lipid bilayer and cannot replicate (Théry et al., 
2018). EVs are classified typically based on their size, biogenesis, and 
biophysical properties: exosomes, microvesicles and apoptotic bodies, 
many of which show pleiotropic biological functions (Rufino-Ramos 
et al., 2017; O’Brien et al., 2020). Exosomes are a specific EVs subtype 
which are considered to be of endosome-origin and ∼30 to ∼200 nm 
in diameter (Pegtel and Gould, 2019). EVs were initially thought to 
function only as cellular ‘garbage’ disposals, but with accumulating 
evidence concerning their origin, composition and transportation, 
and intercellular signal transmission, it has become clear that EVs 
have multiple functions. EVs that mediate autocrine, paracrine, and 
endocrine effects are taken up by surrounding cells or circulate in the 
blood and are eventually taken up by distal cells (El Andaloussi et al., 
2013). EVs with different cargo act as master switches orchestrating 
both immune and neuronal processes, suggesting that they are 
involved in many pathophysiological processes such as neuropathic 
pain (Barile and Vassalli, 2017; Sosanya et al., 2020). EVs derived from 
different cells contain different cargo compositions including nucleic 
acids, proteins, lipids, amino acids, and metabolites and participate in 
numerous physical and pathological processes (Zhang Y. et al., 2019). 
Studies found that exosomes secreted from specific areas are involved 
in human neuropathic pain conditions such as mPFC and NAc can 
enhance allodynia in mouse CCI models (Yu et al., 2020a). In this 
review, we  explore the molecular and cellular mechanisms and 
therapeutic potential of EVs for neuropathic pain. Because of the hard 
differentiation, the exosome terminology is used if clarified in the 
references and the term EV is used if the differentiation is unclear here.

2. Extracellular vesicles

2.1. Biogenesis of EVs

EVs are formed when the plasma membrane double invaginates 
and eventually generates the MVB, which can be  degraded in 
lysosomes or fuse with cell membranes to release inclusions as EVs 
(Bebelman et al., 2018; Kalluri and LeBleu, 2020). The biogenesis and 
transport of EVs are associated with a large number of proteins, 
including ESCRT, Ras-related proteins GTPase Rab, ceramide, and 
phospholipids (Trajkovic et al., 2008; Mathieu et al., 2019). Exosomes 
are made of lipid bilayer structures and appear biconcave or 
cup-shaped when produced by artificially drying during TEM (Yellon 
and Davidson, 2014; Lobb et  al., 2015). Bilayer lipid vesicles in 
solution are nearly spherical. The method of purification and 

processing for EM can lead artifactual observation of different shapes 
(Chernyshev et al., 2015). EVs generated by cells including neurons, 
glial cells and immune cells can promote cell-to-cell communication 
and regulate biological processes after nerve injury (López-Leal et al., 
2020). In addition, MSCs including bone marrow MSCs, gingival 
MSCs, adMSCs, and hucMSCs can release EVs to regulate the 
pathological progression after nerve injury (Bryk et al., 2022; Zhang 
Y. U. et al., 2022). EVs derived from different cells contain different 
signaling molecules and surface antigens as well as different cargos 
including unique proteins, lipids, and genetic material (Toh et al., 
2018). This intercellular communication involves two different 
mechanisms an ESCRT-dependent mechanisms and an ESCRT-
independent mechanisms (D'Agnelli et  al., 2020). EVs can affect 
phenotypic and molecular alterations of receptor cells by direct or 
indirect delivery of signaling molecules to receptor cells through 
binding with cell surface receptors and receptor-mediated endocytosis 
or direct membrane fusion (Meldolesi, 2018; Van Niel et al., 2018; 
Figure 1).

Within the endosomal system, cargos including proteins and 
nucleic acids are internalized from extracellular space. Cargos are 
sorted into early endosomes and then mature into MVB through a 
process that involves interactions with the Golgi complex. MVB can 
be degraded in lysosomes or fuse with cell membranes to release 
inclusions as EVs. The biogenesis and transport of EVs are associated 
with ESCRT and non-ESCRT. ER, endoplasmic reticulum; MVB, 
multivesicular bodies.

2.2. Clinical application of EVs

As biomarkers for diagnose and treatments, EVs are at an 
emerging stage of clinical application. EVs mediating intercellular 
communication trigger immune responses, inflammatory responses, 
and many other processes (Harrell et  al., 2019; Qiu et  al., 2021; 
Ashrafizadeh et al., 2022). Exosomes presenting in biological fluids 
and carrying specific membrane proteins are internalized by recipient 
cell through soluble and juxtacrine signaling events, fusion, and 
receptor/raft-mediated endocytosis, as well as phagocytosis, and 
regulate multiple physiological and pathological processes (Hu et al., 
2020). The characteristic properties of exosomes during delivery of 
functional cargos is that they can target specific cells, which also 
favors their use as therapeutic vehicles (Hessvik and Llorente, 2018). 
Exosomes affect neuroinflammation and neuropathic pain by 
delivering proteins, mature miRNAs, and translatable transcripts 
(Ramanathan and Ajit, 2016). MiR-25-3p, miR-320B, miR-93, 
miR-126-3p, and RNU48 from serum-derived exosomes in patients 
with complex regional pain syndrome show significant differential 
expression (McDonald et  al., 2014). Carrying miR-181c-5p 
containing exosomes repress CCI-induced neuropathic pain through 
inhibition of neuroinflammation (Zhang Y. U. et al., 2022), which 
provided the therapeutic rationale for studying EVs to treat 
neuropathic pain.

3. Pathogenesis of neuropathic pain

Neuropathic pain constitutes a significant proportion of all 
chronic pain suffers. Most patients with neuropathic pain complain of 

Abbreviations: EVs, extracellular vesicles; ESE, early-sorting endosome; MVBs, 

multivesicular bodies; CCI, chronic constriction injury; SCI, spinal cord injury; SNI, 

spared nerve injury; ICAM-1, intercellular adhesion molecule-1; adMSCs, adipose-

derived mesenchymal stem cells; ADSC, Adipose tissue-derived mesenchymal 

stem/stromal cells; EF-MSC, epidural fat-mesenchymal stem cells; NF200, 

neurofilament protein 200; GAP-43, growth-associated protein-43; hucMSC, 

human umbilical cord mesenchymal stem cells; mPFC, medial prefrontal cortex; 

NAc, nucleus accumbens; TNF-α, tumor necrosis factor-alpha; IL-6, interleukin-6; 

SDH, spinal dorsal horn; TBI, traumatic brain injury; AT2R, type 2 angiotensin II 

receptor; NGF, Nerve growth factor; BMSC, bone marrow mesenchymal stem 

cell; TEM, transmission electron microscopy; circRNA, circular RNA.
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spontaneous pain, hyperalgesia (abnormal hypersensitivity to stimuli), 
and allodynia (nociceptive responses to non-noxious stimuli under 
normal states). Studies have shown that the disappearance of myelin 
breakdown after peripheral nerve injury-induced inflammation is 
critical for axon regeneration (Ying et  al., 2018). Their presence 
impedes nerve repair. The pain signals are transmitted into the central 
nervous system, including the SDH by the primary afferent 
nociceptors on DRGs (Navarro et  al., 2007; Chen et  al., 2020). 
Moreover, with SDH synthesizing and releasing a variety of classical 
inflammatory mediators, nociceptor sensitization leads to ectopic 
firing and erroneous conduction velocities which changes the 
sensitization of supraspinal nociceptor neurons through ascending 
transmission, and finally causes neuropathic pain (Macone and Otis, 
2018). The sprouting nociceptive fibers terminate in an unusual way 
in the denervated skin, with significant allodynia occurring months 
after nerve injury (Gangadharan et al., 2022). Evidence has added to 
a growing appreciation of the complex link between neuropathic pain 
and nerve regeneration (Xie et al., 2017). Changes in ion channels, 
activation of immune cells, compounds released by glial cells, and 
epigenetic modifications are all involved in neuropathic pain 
(Finnerup et  al., 2021). Furthermore, mast cells, macrophages, 
neutrophils, and their released mediators are associated with 
neuropathic pain. Agtr2-expressing macrophages at the site of nerve 
injury triggers neuropathic pain caused predominantly by immune 
cells (Shepherd et al., 2018).

Neuroinflammation which is a localized form of inflammation in 
the peripheral nervous and central nervous systems is becoming 
increasingly implicated in neuropathic pain (Ji et al., 2014; Jiang et al., 
2020). In the DRG, nerve injury not only causes neuronal changes but 
also leads to the activation of peripheral glial cells such as Schwann 
cells and satellite glial cells, eventually leading to neuroinflammation 
and neuropathic pain (Ji et al., 2013; Yuan et al., 2020). Activated 
central glial cells also cause diverse alterations that change neural 
excitability, leading to the development of neuropathic pain (Kohno 
and Tsuda, 2021).

The discovery of extensive epigenetic regulation such as 
noncoding RNA modification, DNA methylation, and histone 
acetylation provides a novel perspective on the mechanism of 
neuropathic pain. Noncoding RNAs, are an important class of RNA 
molecule that typically does not encode detectable proteins, may 
regulate neuropathic pain via multiple and complex mechanisms. 
Peripheral noxious stimuli drives expressional changes in noncoding 
RNAs, such as miRNA, lncRNA, and circRNA, and these changes are 
associated with the aberrant expression of its target mRNA and the 
occurrence and development of neuropathic pain (Li L. et al., 2019; 
Zhang S. B. et  al., 2019). Specifically, miRNA and lncRNA can 
be functionally shuttled between cells via exosomes and are termed 
exosomal shuttle RNA (Valadi et al., 2007), and how these exosomes 
function as exosomal shuttle RNA carriers in neuropathic pain 
represents our next research question.

FIGURE 1

Illustration of EVs biogenesis, cargo sorting, and release.
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4. Extracellular vesicles regulate 
neuropathic pain

4.1. Extracellular vesicles regulate 
neuropathic pain via glial cell activation

Glial cells, also known as neuroglia, modulate neurotransmission 
at the synaptic level. Now it has been found that glial cells play an 
important role in neuroinflammation and neuropathic pain (Tsuda 
and Inoue, 2016; Hirbec et al., 2020). Glial cells are located in DRGs, 
spinal cord and brain, and show a series of changes such as a shifting 
phenotype and release of inflammatory mediators in response to a 
damaging signal within the nervous system to drive central and 
peripheral sensitization and participate in neuropathic pain evolution 
(Chen et al., 2018; Matsuda et al., 2019).

Microglia (macrophages residing in the central nervous system) 
are sensors for the detection of abnormal alterations in response to 
internal and external insults in the central nervous system (Ji et al., 
2016). Studies have found that in SCI models exosomes were delivered 
to the injury site and significantly enhance axonal regeneration, 
reduce cell apoptosis, and reduce activation of microglia and 
astrocytes (Guo et  al., 2019). MSC-derived EVs can promote 
phenotype transformation and function of macrophages/microglia 
from pro-inflammatory M1 to anti-inflammatory M2 types. The 
activation of glial cells requires the participation of pro-inflammatory 
factors which may be  related to miRNAs in exosomes, such as 
miR-34a-5p, miR-21, and miR146a-5p (Domenis et  al., 2018). 
Previous studies have shown that TBI is associated with neuropathic 
pain (Leung, 2020). Exosomes mediate neuron-glial cell intercellular 
communication and following TBI, microglia reduce the release of 
exosomes containing miR-5,121 to inhibit neurite outgrowth and 
synapse recovery of neurons (Zhao et al., 2021).

The expression of lncGm37494 targeting miR-130b-3p to regulate 
microglia polarization is increased in exosomes secreted by ADSCs 
under hypoxia, and has been suggested that exosomes can repair SCI 
by delivering lncGm37494 (Shao et  al., 2020). Intravenous 
administration of hucMSC-derived exosomes significantly inhibits the 
transcription levels of astrocytes and microglia, suggesting a reduced 
inflammatory state from SCI (Kang and Guo, 2022), and single and 
continuous intrathecal infusion of hucMSC-derived exosomes after 
SNL can prevent and reverse neuropathic pain. Moreover, it has been 
found that the analgesic effects of exosomes may involve their actions 
on neurons and glial cells (Shiue et al., 2019).

As the most abundant glial cell in the peripheral nervous system, 
Schwann cells undergo phenotypic modulation, proliferate and 
interact with nociceptive neurons by releasing glial mediators (growth 
factors and cytokines) after nerve injury. These dramatic alterations in 
Schwann cells promote nerve regeneration and eventually influence 
neuropathic pain (Dubový, 2011; Wei et al., 2019). During neuropathic 
pain, many receptors on Schwann cells are differentially expressed, 
such as P2X4R, HCAR2 (Boccella et al., 2019; Su et al., 2019). Recent 
studies have proved the presence of growth factors such as BDNF, 
NGF, FGF-1, IGF-1, and GDNF in adMSC exosomes. Furthermore, 
adMSCs-derived exosomes which internalized into the Schwann cells 
exhibited the ability to promote Schwann cell proliferation in vitro and 
enhance nerve regeneration following SNI in vivo (Bucan et al., 2019), 
and interestingly, BDNF and NGF have been identified to correlate 
with neuropathic pain (Dai et al., 2020; Wu et al., 2021). In addition, 

exosomal miR-21 was shown to promote the Schwann cell 
proliferation and the expression of NGF, BDNF, and GDNF after 
peripheral nerve injury. And exosomal miR-21 secreted by Schwann 
cells can promote neurite outgrowth and functional repair after SNI 
(Liu Y. P. et al., 2022; Figure 2).

Lesions of the nervous system from the peripheral nociceptor to 
the spinal cord and brain may give rise to neuropathic pain. This 
figure shows the interaction between EVs and glial cells in the central 
and peripheral nervous system. adMSC, adipose-derived 
mesenchymal stem cells, hucMSC, human umbilical cord 
mesenchymal stem cells, ADSC, Adipose tissue-derived mesenchymal 
stem/stromal cells.

4.2. Extracellular vesicles regulate 
neuropathic pain via neuroinflammation

Neuroinflammatory activation of glial cells and immune cells after 
nerve injury is being increasingly implicated in neuropathic pain 
(Chambel et al., 2020; Karri et al., 2022). EVs pose tremendous anti-
inflammatory capacity following nerve injury and the roles of EVs in 
neuropathic pain will be  a particularly interesting area of 
future inquiry.

EF-MSCs secrete EVs to repress NLRP3 inflammasome activation 
and to inhibit the expression of inflammatory cytokines related to 
neuroinflammation after SCI (Huang et  al., 2020). Macrophages 
change their polarization to anti-inflammatory phenotype which can 
effectively control the development of inflammation (Ma et al., 2020). 
HucMSC-derived exosomes can stimulate bone marrow-derived 
macrophages to transform into M2 type, which can also inhibit 
inflammation through decreasing inflammatory factors such as 
TNF-α, MIP-1α, IL-6 and IFN-γ (Sun et  al., 2018). MSC derived 
exosomes can relieve microglia/macrophage and astrocyte-mediated 
neuroinflammation in rats after TBI (Zhang et  al., 2020). Studies 
suggest a critical role for proteins in the mediation of signaling 
mechanisms underlying neuropathic pain after SNI. Furthermore, the 
compliment protein C5a and ICAM-1 were found to be significantly 
up-regulated in EVs purified from SNI mouse serum (Jean-Toussaint 
et al., 2020). C5a can help induce the expression of inflammatory 
factors in microglia and promote the development of their 
inflammatory status (Liu et  al., 2018). Furthermore, C5a and its 
receptor C5aR can simultaneously participate in the process of 
neuropathic pain (Quadros and Cunha, 2016).

MSC-derived EVs can facilitate macrophage/microglia 
polarization from M1 to M2 phenotype. miR-21 and miR-19b in 
EVs derived from differentiated PC12 cells and MSCs can suppress 
apoptosis of neurons by decreasing the expression of PTEN which 
can be applied during post-SCI repair (Xu et al., 2019). We found 
that miR-216a-5p inside MSC-derived exosomes targeted TLR4 and 
shifted this M1/M2 polarization to inhibit neuroinflammation after 
SCI which was mediated by microglial activation (Liu et al., 2020). 
Exosomes derived from huc-MSC were found to deliver 
miR-199a-3p/miR-145-5p to neurons causing attenuation of the 
release of inflammatory factors and promotion of neuronal neurite 
outgrowth following SCI (Wang et al., 2021). circRNA is a type of 
noncoding RNA that forms a covalently closed continuous loop. 
Many of them are enriched in EVs, but whether EV circRNAs 
regulate neuropathic pain is still a shortage of investigation 
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(Marangon et  al., 2023). Circ_003564, a recently discovered 
circRNA, acted as a critical effector in BMSC-exosome-mediated 
pyroptosis in the SCI model and these exosomes containing 
circ_003564 may contribute to treatment efficacy in SCI (Zhao 
et al., 2022). lncRNA H19 in BMSC derived exosomes can further 
regulate microglia polarization to release neuroinflammatory 
signals via sponging miR-29b-3p (Zong et al., 2021). Significantly, 
the treatment using lncRNA TCTN2-modified exosomes 
significantly improved functional in vivo recovery in SCI rats and 
alleviated LPS-induced inflammation in vitro (Liu J. et al., 2022; 
Figure 3).

This figure illustrates that multiple cells secrete EVs to glial cell 
and immune cell to mediate neuroinflammation after nerve injury. 
EF-MSC: epidural fat-mesenchymal stem cells, MSC: mesenchymal 
stem cells, hucMSC: human umbilical cord mesenchymal stem cells.

4.3. Extracellular vesicles regulates 
neuropathic pain via miRNA

Diverse evidence has shown that RNA molecules inside EVs are 
generally less than 300 nt in length which is smaller than human 
mRNA, indicating a role for noncoding RNA (Chen et al., 2010). 
Furthermore, miRNAs represent an important cargo type in EVs can 
obstruct the expression of target genes by inhibiting target mRNA 
translation and accelerate mRNA degradation. These miRNA are 
protected from RNase by the exosomes or cellular membranes even in 
extreme cases (Koga et al., 2011). The miRNAs enriched in EVs are 
phagocytosed by receptor cells and can mediate cell-to-cell 

communication thus participating in the occurrence and maintenance 
of neuropathic pain (Sosanya et al., 2020).

The expression levels of miR-21 in exosomes derived from blood 
serum is significantly increased in the pSNL model, and exosomal 
miR-21 is likely to be a diagnostic biomarker for neuropathic pain 
(Hori et al., 2016). This confirmed that SNI induced upregulation of 
miR-21-5p, let7b, miR-124, and miR-134 expression in the lumbar 
DRG and DRG sensory neurons can release exosomes containing 
miR-21-5p which were subsequently internalized by macrophages and 
converting them to the M1 type. The study also indicated that 
intrathecal injection of the miR-21 antagomir inhibits hyperalgesia 
and relieves neuropathic pain (Simeoli et al., 2017).

Intravenous and intrathecal administration of MSCs effectively 
relieves neuropathic pain following CCI or SCI (Yousefifard et al., 
2016; Al-Massri et al., 2019) and MSC exosome therapy has shown the 
same functions as MSCs therapy, such as anti-inflammation, 
regulation of the immune system, and regulation of cell differentiation 
(Lee et  al., 2021). In CCI rats, miR-181c-5p from MSC-derived 
exosomes were found to be significantly downregulated in a time-
dependent manner. Intrathecal administration of exosomal 
miR-181c-5p which targets microglia and inhibits the secretion of 
inflammatory factors alleviated neuropathic pain and the 
neuroinflammatory response after CCI (Zhang Y. U. et al., 2022).

In the CCI model, downregulated miR-183 in the sciatic nerve 
targeting transcription factor FoxO1 and tight junction protein 
claudin-5 promoted mechanical hypersensitivity. Exosomal miR-183 
was found decreased from sera of complex regional pain syndrome 
patients and can regulate neuropathic pain state via regulating 
microvascular barrier (Reinhold et al., 2022). In conclusion, our study 

FIGURE 2

EVs regulate glial cell activation in the central and peripheral nervous system after nerve injury.
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assesses exosomal noncoding RNAs as one modifier of neuropathic 
pain (Table 1).

5. Conclusion and perspectives

The main manifestations of neuropathic pain such as 
spontaneous pain, hyperalgesia, and hyperalgesia, will last for long 
periods (Kuner and Flor, 2016). Primary sensory neurons show 
alternations in ion channels and pain-related gene expression, and 
after receiving noxious stimuli in the peripheral nervous system. 
Then pain signals are transmitted upwards to the spinal cord and 
brain, resulting in central sensitization which is an increased 
responsiveness to nociceptive neurons to normal or subthreshold 
afferent input in the central nervous system (Zhang J. et al., 2021). 
Currently there is no general consensus for the underlying 
mechanism of neuropathic pain as it is complex and multifactorial. 
In recent years cell transplantation therapy has received widespread 
attention in the clinical literature. Pluripotent stem cell-derived 
GABAergic neuron transplants were shown to relieve neuropathic 
pain induced by both peripheral and central nerve injuries (Dugan 
et al., 2020; Manion et al., 2020). However, concerns have been raised 
about the safety of cell transplantation therapy for clinical use, 
because cell-therapy presents inherent risks, such as microvascular 
obstruction, malignant tumor formation, and high cost (Jeong et al., 
2011; Lou et  al., 2017). The occurrence and development of 
neuropathic pain is accompanied by intercellular signal transduction. 
EVs were demonstrated to promote cell activation, regulate 
neuroinflammation and immune response, and promote angiogenesis 

and axonal growth after nerve injury (Yu et al., 2021). Exosomes, 
representing a subtype of EVs, have also been a popular studied 
paracrine topic during the past two decades and are used as a 
treatment strategies for neuropathic pain (Dong et  al., 2019). 
Exosomes are efficient and safe nanocarriers for pain-targeted gene 
therapy via intranasal delivery and tail vein injection because of their 
small molecular weight, ease of transit across the blood–brain barrier 
and other advantages (Sun et al., 2018; Guo et al., 2019). The use of 
exosomes could radically eliminate the risk of rejection and offer 
substantial neuroprotective effects with potential immunoprotective 
and anti-inflammatory roles (Shojaei et al., 2019).

EVs hold great potential for clinical application with their 
excellent biocompatibility and bi-layered lipid structures, but the 
clinical application of EVs faces many challenges, including low 
yield, impurity and loading efficiency (Tran et al., 2020). Engineered 
EVs carrying therapeutic molecules hold promise as alternative 
therapies. The barriers to translation of exosomes remain the 
difficulty to precisely target the specific cell while limiting off-target 
biodistribution and the presence of naturally incorporated cellular 
genetic impurities with potential immunogenicity (Ha et al., 2016; 
Bunggulawa et  al., 2018; Gurung et  al., 2021). Specific, loosely 
associated, proteins and lipids may be  lost or masked during 
exosome isolation, and typical isolation protocols are not specific 
for exosomes which may influence their targeting behaviors 
(Kooijmans et al., 2016). With the expanded interest in the field, 
studies focus on an easy and efficient strategy to broaden, alter or 
enhance exosome targeting capability. Previous reports have 
suggested that surface modifications can increase the delivery 
ability of exosomes (Armstrong et al., 2017; Tian et al., 2018). The 

FIGURE 3

EVs regulate neuroinflammation state.
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low yield of exosomes is a bottleneck for clinical translation. It has 
shown that knocking down of Rab4 gene and optimization of 
culture conditions such as supplementing red cell membrane 
particles can augment the production of exosomes per cell without 
sacrificing the therapeutic efficacy (Zhang R. et al., 2022).

Glial cells have been found to be a vital component of neuropathic 
pain and are widely activated during the pain conditions. It is 
demonstrated that glial cells proliferate, change their morphology and 
function, change the expression of pain-related genes, and release 
diffusible factors to affect other cells after a noxious stimulation  
(Li T. et al., 2019). Activated glial cells release inflammatory factors, 
such as TNF-α and IL-6, to promote neuroinflammation, and lead to 
constant painful irritation of the sensory nerves. Studies have provided 
evidence that microglia can shed new light on the underlying 
molecular and cellular mechanisms of neuropathic pain (Inoue and 
Tsuda, 2018). EVs secreted by peripheral macrophages regulate 
microglial polarization and increase microglia autophagy after SCI via 
the PI3K/AKT/mTOR signaling pathway (Zhang B. et al., 2021).

As a hot topic in epigenetic research, noncoding RNAs can 
be  encapsulated by EVs and target receptor cells in a paracrine 
manner to regulate a variety of diseases processes. Recently, several 
studies have demonstrated that vesicular miRNAs can regulate 
neuropathic pain. Exosome-encapsulated miR-21 can regulate the 
occurrence and development of neuropathic pain (Simeoli et  al., 
2017). Compelling evidence supports the existence of lncRNA and 
circRNA in body fluids have further clinical implications (Wang et al., 
2019; Liu J. et al., 2022). However, the effects and clinical application 
of vesicular lncRNA and circRNA in neuropathic pain need 
further exploration.
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TABLE 1 Exosomal noncoding RNAs regulate neuropathic pain.

Specific 
conditions

miRNA in 
exosomes

Site Noncoding RNAs’ contributions Regulatory 
mechanism

Reference

SNI miR-21-5p DRG Exosomal miR-21-5p was internalized by macrophages 

and polarized macrophages to M1 type.

Noncoding RNAs regulate 

glial cell activation.

Simeoli et al. (2017)

SCI lncGm37494 ADSC lncGm37494 in exosomes targeted miR-130b-3p to 

regulate microglia polarization.

Shao et al. (2020)

SCI miR-216a-5p MSC Exosomal miR-216a-5p targeted TLR4 and shifted M1/M2 

polarization to inhibit neuroinflammation.

Noncoding RNAs regulate 

neuroinflammation.

Liu et al. (2020)

SCI miR-199a-3p/ 

miR-145-5p

huc-MSC Exosomal miR-199a-3p/ miR-145-5p were internalized by 

neurons to attenuate the release of inflammatory factors.

Wang et al. (2021)

SCI circ_003564 BMSC Exosomal circ_003564 was internalized by neurons to 

relieve pyroptosis.

Zhao et al. (2022)

LPS lncRNA H19 BMSC Exosomal lncRNA H19 regulates microglia polarization to 

relieve neuroinflammation via sponging miR-29b-3p.

Zong et al. (2021)

SCI lncRNA TCTN2 MSC lncRNA TCTN2 improved functional recovery of SCI rats 

by miR-329-3p/IGF1R axis.

Liu J. et al. (2022)

CCI miR-183 Sera Decreased sera exosomal miR-183 contributed to 

neuropathic pain state via regulating microvascular 

barrier.

Noncoding RNAs regulate 

neuropathic pain

Reinhold et al. (2022)

CCI miR-181c-5p MSC Exosomal miR-181c-5p targeted microglia and inhibited 

the secretion of inflammatory factors to alleviate 

neuropathic pain.

Zhang Y. U. et al. (2022)

SNI miR-21 Schwann cell Exosomal miR-21 was upregulated to promote Schwann 

cell proliferation after peripheral nerve injury.

Liu Y. P. et al. (2022)
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