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introduction

Introduction

The amyloid precursor protein (APP) is infamous for its putatively critical role in the

pathogenesis of Alzheimer’s disease (AD) (Kim et al., 2022; Lee et al., 2022; Öhman et al., 2022;

Thorwald et al., 2022). However a recent study found that autolysosome acidification declines in

neurons age more than 4 months before amyloid β-protein (Aβ) deposited extracellularly (Lee

et al., 2022). Endolysosome de-acidification increases intraneuronal and secreted levels of Aβ

(Hui et al., 2019). On the other hand, autolysosome acidification increases the degradation of

accumulated Aβ in autophagic vacuoles (AVs; Nie et al., 2018) and promotes glial clearance of

oligomeric amyloid-β (oAβ; Huang et al., 2022). Therefore, autolysosome acidification declines

directly result in Aβ aggregation. APP accumulates selectively within enlarged and de-acidified

lysosomes. In more compromised yet still intact neurons, profuse Aβ-positive AVs pack into

large membrane tubules. Then lysosomal membrane permeabilization, cathepsin release and

lysosomal-mediated cell death occur, accompanied by microglial invasion (Lee et al., 2022).

Thus, Aβ accumulation may be the “result” rather than the “cause”. The finding prompts

rethinking of the conventionally accepted sequence of AD plaque formation and may help

explain the inefficiency of Aβ/amyloid vaccines and Aβ/amyloid-targeted therapies (Lee and

Nixon, 2022).

Lysosomal overloading hypothesis

It is well-known that patients with type II diabetes have increased probability of developing

AD (Watson, 2014; Hamzé et al., 2022; van Arendonk et al., 2022). In 2014, James D Watson

proposed that type II diabetes is a redox disease (Watson, 2014). The diabetic cells may have

higher reductive redox potentials than non-diabetic cells. Insulin resistance and type II diabetes

may develop through insufficient supplies of key reactive oxygen species (ROS) that creates

an oxidative redox potential required to oxidize the free sulfydryl groups of cysteine into the

disulphide bonds used to stabilize the 3D conformation of key proteins controlling blood sugar

levels. Physical exercise, by generating ROS, reverses the reductive redox potential in diabetic

cells and therefore alleviates the progression of diabetes (Watson, 2014). We speculate that

there may be a similar pathogenic mechanism for AD. Like type II diabetes, as Alzheimer’s

disease progresses, the endoplasmic reticulum (ER) of cells in stressed hippocampal regions

largely accumulate unfolded or misfolded proteins (Hoozemans et al., 2009). Although the

formation of inter-molecular disulfide bondmay accelerate aggregation of Aβ fibrils, introducing
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intra-molecular disulfide bonds at certain positions inhibited Aβ

fibrillization (Shivaprasad and Wetzel, 2004). Pathogenesis of AD

depends on the balance between the rate of misfolded protein

production and the rate of lysosomal clearance. This assumption

has been proved by a mouse experiment: activated neural stem cells

(NSCs) had active proteasomes; while quiescent NSCs contained

large but inactive lysosomes. During aging, quiescent NSCs showed

defects in their lysosomes and increased accumulation of peptide

aggregates (Leeman et al., 2018). While physical and mental exercises

enhance oxygen consumption and may generate the oxidative redox

potential needed for proper folding of these proteins (Figure 1).

A prospective cohort study indicated that frequent exercises,

housework-related activities, and friend/family visits were associated

with a reduced risk of multiple types of dementia (Guo et al., 2022;

Zhu et al., 2022).

Enhancement of the autophagic/lysosomal pathway may be an

effective solution to promote clearance of misfolded proteins and

prevent the occurrence of AD (Figure 1). Rapamycin, a well-known

autophagy stimulator, has beneficial effects in a number of animal

models of neuro-degeneration including AD (Kaeberlein and Galvan,

2019). However it is also an immunosuppressant and may increase

a risk of infection for the old people. Carbamazepine an mTOR

(mechanistic target of rapamycin kinase)-independent autophagy

stimulator, prevented the compromised autophagic flux in septic

mouse liver (Lin et al., 2014) and restored the mitophagic flux caused

by a decline in lysosomal acidification (Ebrahimi-Fakhari et al., 2016;

Chan et al., 2022). However, it is an antiepileptic drug and may

not be applicable to all AD patients. Metformin treatments activated

chaperone-mediated autophagy and improved disease pathologies in

an AD mouse model (Xu et al., 2021). However, the available clinical

evidences do not support the idea that metformin could reduce risk

of AD (Luo et al., 2022), which may be because of complex effects of

metformin on cellular metabolic process pathways.

Lysosome lysis occurs and the proteases are released, causing β-

Amyloid accumulation and neuron death (Lee et al., 2022). Thus

the lysosome integrity protectants (elastase inhibitors) should be also

considered for the AD treatment, such as Ulinastatin (Yamasaki et al.,

1996) and Sivelestat (Iwata et al., 2010) (Figure 1). However, no

clinical data about therapeutic effect of either of them are available

so far. Such clinical trials should be undertaken.

In general, both autophagy-stimulators and lysosomal acidifiers

showed therapeutic effects to neurodegenerative diseases by

increasing clearance of pathologic proteins, such as Aβ in AD and

α-synuclein (α-syn) in Parkinson’s disease (PD; Moors et al., 2017;

Limanaqi et al., 2021; Perez et al., 2022). However, broad stimulation

of autophagy may cause a wide spectrum of dose-dependent

side-effects, suggesting that its clinical applicability is limited

(Moors et al., 2017). The targeted manipulation of downstream

autophagy-lysosomal-pathway components (Moors et al., 2017),

or some natural active components (see below for details), may be

attractive strategies for the development of novel pharmacological

therapies in neurodegenerative diseases.

Dietary therapy hypothesis

Early features of AD includes a region-specific decrease in brain

glucose metabolism, which may affect brain function profoundly

(Henderson, 2008; Taylor et al., 2019; Lilamand et al., 2021). One

FIGURE 1

Pathogenesis of Alzheimer s disease and the relevant drugs and dietary

therapies. Physical / mental exercises generate the oxidative redox

potential required to oxidize the free sulfydryl groups of cysteine into

the disulphide bonds for proper protein folding. Lysosomal

overloading (misfolded protein over-accumulation) induces lysosomal

membrane permeabilization, amyloid β-protein accumulation and

Alzheimer’s disease onset. VD3 activates protein disulfide isomerase

family A member 3 and thus may reduce misfolded proteins.

Rapamycin, carbamazepine and metformin are autophagy stimulators.

Glucose starvation, trehalose, VD3, and curcumin promote

autophagosome-lysosome fusion and/or lysosomal acidification.

Lysosome integrity protectants Sivelestat and Ulinastatin may also

protect neurons from lysosomal-mediated cell death. Palmitic acid

(PA) causes autophagy impairment; however, oleic acid (OA) or linoleic

acid (LA) counteracts PA’s detrimental e�ects on neurons.

promising treatment is to supplement the normal sugar supply of

the brain with ketone bodies (KB). KB are usually produced from

fat stores when glucose supply is limited, e.g. prolonged fasting. KB

can be generated through the administration of low-carbohydrate,

low-protein, high-fat, ketogenic diets (Henderson, 2008). Although

high-fat diets may not be suitable for the people with hyperlipidemia,

human trials reported significantly cognitive benefits, improved brain

metabolism and biomarker changes under ketogenic diets (Taylor

et al., 2019; Lilamand et al., 2021).

On the other hand, beneficial effects of ketogenic diets on AD

may also be attributed to the enhanced lysosomal activity induced

by glucose starvation. Glucose starvation promotes the assembly

of a lysosomal AMPK (AMP-activated protein kinase) activating

complex, consisting of V-ATPase, AMPK, liver kinase B1 (LKB1),

AXIN (Axis inhibitor), aldolase, and Ragulator-RAG (Ras-related

GTPase), and then induces lysosomal acidification mediated by V-

ATPase (González et al., 2020).

Besides glucose, trehalose also regulates autophagy and lysosomal

functions. Trehalose, a glucose disaccharide with a flexible α-

1-1’-glycosidic bond, induces mTOR-independent autophagy by

promoting AMPK pathways and functions as a chaperone on

proteins folding (Pupyshev et al., 2022) (Figure 1). In a mouse

model of amyotrophic lateral sclerosis (ALS), trehalose rescued
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impaired autophagosome-lysosome fusion caused by the disease, and

therefore significantly delayed onset of the disease (Zhang et al.,

2014; Yuan et al., 2017). And in an AD mouse model, trehalose

reduced colocalization of APP and β-site amyloid precursor protein

cleaving enzyme 1 (BACE1) in the neuron (Benito-Cuesta et al.,

2021). Nevertheless, a large part of trehalose would be broken down

into glucose by trehalase on the intestinal mucosa (Richards et al.,

2002). It is still unclear how much trehalose should be taken by

oral administration to reach an effective serum concentration. We

suggest that a part of carbohydrates in ketogenic diets could be

replaced by trehalose to achieve a synergistic inducing effect on

lysosomal acidification.

Vitamins may also be supplied in the ketogenic diet. Vitamin

D3 (VD3) promoted lysosomal degradation through inducing the

nuclear translocation of PDIA3 (protein disulfide isomerase family A

member 3) - STAT3 (signal transducer and activator of transcription

3) protein-complex and up-regulated the MCOLN3 (mucolipin 3)

channel subsequently, which resulted in Ca2+ releasing from the

lysosome and the normal lysosomal acidification (Hu et al., 2019;

Chan et al., 2022). VD3 and VE and their combination improved

memory and learning deficit, and decreased neuronal loss and

oxidative stress in a rat model of AD (Mehrabadi and Sadr, 2020). It is

interesting to note that PDIA3 also acts as a chaperone, responsive to

ER stress, to facilitate correct disulfide bond formation and protein

folding (Mahmood et al., 2021). Thus, VD3 may be helpful to

reduce misfolded proteins in neurons and relieve lysosomal burden

from the source (Figure 1), although this assumption needs further

experimental validation.

Disorder of lipid metabolism, especially when the palmitic

acid (PA) accumulates, would cause lipid-overload lipotoxicity

and inhibit the autophagic flux in neurons, which is the whole

autophagic process from the synthesis of the autophagosomes to their

lysosomal fusion and degradation (Fang et al., 2020; Hernández-

Cáceres et al., 2020; Chung, 2021; Vesga-Jiménez et al., 2022).

PA induces APP palmitoylation and enhances Aβ accumulation

via proteolytic processing of APP by multiple enzymes, such as

BACE1, β-secretase, and γ-secretase (Kim et al., 2017; Zareba-

Kozioł et al., 2018). A recent study demonstrated that, the Silence

information regulator 3 (SIRT3), an NAD+ dependent deacetylase

enzyme regulating multiple mitochondrial proteins, is also involved

in the neuro-inflammation during the onset of AD (Tyagi et al.,

2021). A combination of high glucose and PA treatments resulted in a

significant decline in expression level of SIRT3. And in Sirt3-silenced

mouse brain-derived endothelial cells, the neuro-inflammatory

response was exacerbated (Tyagi et al., 2021). Many researchers

proposed the use of unsaturated fatty acids (UFA), such as oleic acid

(OA) or linoleic acid (LA), as a potential therapeutic approach against

AD, because that these UFA could counteract PA’s detrimental effects

on cells (Piomelli, 2013; Vesga-Jiménez et al., 2022). For example,

oleic acid ingestion stimulates oleoylethanolamide mobilization into

the mucosal cells of the gut, which triggers a peroxisome proliferator-

activated receptor (PPAR)-mediated signals that travel through the

afferent vagus nerve to the hypothalamus, augmenting satiety and

showing beneficial effects to the nervous system (Piomelli, 2013).

Some plant natural products are also autophagy stimulators, such

as berberine and curcumin (Figure 1). The combination of berberine

and curcumin treatment reduced the APP and BACE1 levels and

increased AMPK phosphorylation and autophagy (Lin et al., 2020).

However, berberine is a broad-spectrum antibiotic, and a long-term

usemay easily lead to an intestinal flora disorder. Curcumin repressed

mTORC1 signaling in by two mechanisms involving deactivation

of IRS-1 (insulin receptor substrate-1) and excitation of AMPK

(Kaur andMoreau, 2021). Curcumin also promoted autophagosome-

lysosome fusion (Kang et al., 2019) and inhibited tau protein

hyper-phosphorylated oligomerization, which is another pathogenic

mechanism of AD (Rane et al., 2017). Curcumin is relatively safe, but

its stability and pharmacokinetics are low (at neutral or alkaline pH,

the oral bioavailability of curcumin in rats is less than 1%; Nelson

et al., 2017). Nevertheless, a study with healthy human volunteers

found that concomitant administration of 20mg piperine increased

bioavailability of curcumin (at a dose of 2 g) by 20 times (Shoba et al.,

1998). Hereby, turmeric powder and pepper powder may also be

added in the ketogenic diet.

Conclusions and perspectives

In summary, during aging, misfolded proteins accumulate,

especially when physical and mental exercises are lacking. When

the accumulation level reaches a level beyond the clearance capacity

of lysosomes, Aβ accumulation and AD occur. Some autophagy-

stimulating drugs or lysosomal acidifiers showed therapeutic effects

to AD. Besides, ketogenic diets with low-carbohydrate administration

may have neuro-protective benefits to AD patients. Trehalose, VD3,

unsaturated fatty acids (UFA), curcumin may also be incorporated

into the ketogenic diet. If merely dietary regulation with over-the-

counter drugs (like VD3) can achieve significantly curative effects on

AD, it would be a particularly attractive research direction. However,

the relevant studies are just beginning, and a large number of clinical

trials are warranted. Nevertheless, for the patients with middle and

late stage AD, dietary therapies may not be very effective, and

therefore highly potent and relatively safe autophagy stimulators or

lysosome activators still need to be developed.
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