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There is a close relationship between Alzheimer’s disease (AD) and diabetes

mellitus (DM), and the link between the two is often referred to as type 3

diabetes mellitus (T3DM). Many natural bioactive compounds have shown the

potential to treat AD and diabetes. We mainly review the polyphenols represented

by resveratrol (RES) and proanthocyanidins (PCs) and alkaloids represented

by berberine (BBR) and Dendrobium nobile Lindl. alkaloids (DNLA) from the

perspective of T3DM to review the neuroprotective e�ects and molecular

mechanisms of natural compounds in AD.
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Introduction

Alzheimer’s disease (AD) is a common neurodegenerative disease that brings a heavy

burden to patients, families, and society (Jia et al., 2018; Alzheimer’s Disease International,

2019). Although aducanumab, lecanemab and GV971 brought new hope for treating AD

in recent years, these drugs are still controversial (Biogen, 2019; Wang et al., 2019; The

Lancet, 2022). Therefore, actively exploring the pathogenesis and treatment of AD has

important scientific significance and social value. Finding natural bioactive compounds from

plants to treat diseases has a long history and has achieved a lot of brilliant results. For

example, quinine extracted from Cinchona calisaya has antimalarial effects, and paclitaxel

extracted from the Pacific yew has anti-cancer effects. In terms of AD treatment, there is also

Huperzine-A from a plant called Chinese clubmoss (Huperzia serrata) that has been put into

clinical use in AD therapy. This reminds us that natural bioactive compounds are a treasure

trove of drugs that could potentially be used in the treatment of AD.

With the continuously deepening understanding of AD, the close connection between

diabetes mellitus (DM) and AD has attracted more and more attention. The results of

epidemiology show that elderly people with diabetes have a higher risk of AD than peers

with non-diabetes. DM, especially type 2 diabetes mellitus (T2DM), increases the risk

of AD (Tolppanen et al., 2013). Basic studies have also found that 3 × Tg-AD mice

showed age-dependent impaired glucose tolerance (Vandal et al., 2015). The brain of

mice with DM showed hyperphosphorylation of tau levels and accumulation of β-amyloid
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(Aβ) plaque (Oliveira et al., 2021). Aβ is a product of amyloid

precursor protein (APP) and is degraded or cleared by an insulin-

degrading enzyme (IDE) (Lee et al., 2017; Díaz et al., 2022;

Imbimbo et al., 2023). Tau primarily provides stabilization to

microtubules in the part of axons and dendrites and shows a

loss of microtubule binding for the hyperphosphorylation in AD.

Moreover, the glycogen synthase kinase 3β (GSK3β) and mitogen-

activated protein kinases affect phosphorylate tau (p-tau) and the

formation of neurofilaments (Rawat et al., 2022). Kinesin-I heavy

chain (KIF5B) and histone deacetylase (HDAC) are involved in

tau homeostasis in AD (Simões-Pires et al., 2013; Selvarasu et al.,

2022), which relates to the ubiquitin–proteasome system primarily

clearing pathological tau and the autophagy–lysosome pathway

degrading tau at the late stage of the formation of neurofibullary

tangles (NFTs) (Rawat et al., 2022). Some compounds, such

as phenolics, flavonoids, and alkaloids, have the potential to

treat AD by targeting tau (Durairajan et al., 2022). Apart from

pathological features, T2DM and AD share molecular mechanisms

and potential targets, including insulin/IGF-1 signaling, GSK3β,

inflammation, mitochondrial dysfunction, and the ApoE4 allele

(Hamzé et al., 2022). Insulin resistance and/or deficiency

have complex interactions with mitochondrial dysfunction, Aβ

deposition, tau hyperphosphorylation, etc., thereby promoting the

occurrence and development of AD (Zhang et al., 2018). Therefore,

the hypothesis was put forward that AD in connection with type

2 diabetes mellitus is considered to be “type 3 diabetes mellitus

(T3DM)” (Steen et al., 2005).

Moreover, some clinical studies have shown that anti-diabetic

medications have a certain role in the treatment of cognitive

dysfunction caused by DM (Akimoto et al., 2020). Many extracts

from traditional Chinese herbs can be used for both DM and

AD. Therefore, there is a search for anti-AD drugs based on

these mechanisms in natural bioactive compounds. It is helpful for

patients with AD with elevated blood glucose (BG) as the early

manifestation or with diabetes.

There are many bioactive compounds that improve BG or play

a role in neurological protection. For example, protopine (PRO)

may have utility in the treatment of T2DM (Moser et al., 2014).

In another example, the Bromo-PRO (PRO-Br), a novel PRO

derivative, promotes the clearance of pathogenic tau by enhancing

the expression of heat shock protein 70 and lysosome-associated

membrane protein 2A (Sreenivasmurthy et al., 2022a,b). Similarly,

tetrandrine (TET) as a P-glycoprotein (P-gp) inhibitor works in

T2DM (Shan et al., 2013) and reduces tau aggregation by rescuing

lysosomal Ca2+ homeostasis in AD (Tong et al., 2022). Here, we

mainly review the polyphenols represented by resveratrol (RES)

and proanthocyanidins (PCs), alkaloids represented by berberine

(BBR), and Dendrobium nobile Lindl. alkaloids (DNLA) from the

perspective of T3DM to review the neuroprotective effects and

molecular mechanisms of natural compounds in AD.

Polyphenols

Polyphenols are widely found in grapes, tea, cocoa, and

other plants, including flavonoids, tannins, phenolic acids, and

anthocyanins. The common feature of polyphenolic compounds is

their good antioxidant activity. Many natural bioactive compounds

with anti-AD potential are polyphenolic compounds. Here, we

choose RES and PCs to review the role and mechanism of these

natural bioactive compounds in AD from the perspective of T3DM.

Resveratrol

Resveratrol is a non-flavonoid polyphenolic compound. RES

and its derivatives are mainly found in plants such as the genus

Vitis L, genus Polygonum, genus Arachis, and genus Veratrum. It is

an antioxidant produced by many plants when stimulated (Huang

J. et al., 2020). Studies have shown that RES has anti-inflammatory,

anti-oxidation, anti-aging, and other effects (Moussa et al., 2017;

Huang J. et al., 2020). In particular, RES also has the potential

to regulate insulin signaling pathways, improve BG, and improve

cognitive function.

In DM, RES shows significant therapeutic potential in

ameliorating key symptoms of DM as well as the other concurrent

indicators. In clinical trials, RES modulates BG (Szkudelska et al.,

2021), HA1c, systolic blood pressure, total cholesterol (Bhatt et al.,

2012), and low-density lipoprotein levels in patients with T2DM

(Asadi et al., 2017). Furthermore, longer RES intervention time

(≥ 6 months) increases total antioxidant status levels in a dose-

dependent manner in patients with T2DM (Bo et al., 2017). The

anti-diabetic effect of RES is mainly manifested as improving

the level of insulin resistance, enhancement of glucose uptake

and metabolism, and preservation of islet β-cells (Szkudelski and

Szkudelska, 2011). RES has some insulin-sensitizing effects, mainly

by activating silent information regulator 1 (SIRT1), AMP-activated

protein kinase (AMPK), and forkhead box protein O1 (FOXO1) to

regulate NADPH, reactive oxygen species (ROS), and peroxisome

proliferators-activated receptors (PPAR) levels, thereby improving

mitochondrial function and oxidative stress and relieving insulin

resistance (Huang D. D. et al., 2020). Moreover, RES may also

increase glucose uptake and metabolism by activating insulin

receptor substrate (IRS), PI3K/Akt, AMPK signaling pathways,

and endogenous GLUT4 translocation (Chi et al., 2007; Sin et al.,

2015). In addition, RES can protect islet β-cells by inhibiting the

inflammatory and reducing ROS levels, which is related to the

regulation of SIRT1, AMPK, FOXO1, Nrf2, and NF-κB (Zheng

et al., 2013; Guo et al., 2014). In conclusion, the improvement effect

of RES on diabetes is related to the activation of SIRT1 and insulin-

related signaling pathways, thereby inhibiting inflammation and

oxidative stress, and improving mitochondrial function.

In AD, RES may be effective in the prevention or treatment. In

clinical trials (NCT01504854), oral RES can ameliorate cognitive

function in subjects with mild to moderate AD, which involves

the regulation of neuroinflammation (Moussa et al., 2017). It

restores abnormally high levels in the proteolytic activity of the

ubiquitin-proteasome system (Labban et al., 2021). On the one

hand, it increases levels of neurotrophins, synaptic markers, and

SIRT. On the other hand, it decreases the accumulation of Aβ

oligomers, the markers of apoptosis, autophagy, endolysosomal

degradation, and ubiquitination in the brains of 3× Tg (Broderick

et al., 2020). In vitro, 50 µmol/L RES for 12 h significantly

reduces the levels of pS396 and pS199 by regulating CDK5

and GSK-3β activity in the cell (Fang et al., 2021). In another
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Aβ-induced cell model, RES attenuates Aβ-mediated microglial

inflammatory responses by inhibiting the TLR4, NACHT, LRR,

NLRP3, and STAT cascade signaling pathways (Capiralla et al.,

2012; Feng and Zhang, 2019). Furthermore, it also reduces

microglia-dependent Aβ toxicity by activating SIRT1 and inhibiting

NF-κB and microglial overactivation (Chen et al., 2005; Steiner

et al., 2016; Locatelli et al., 2018). Therefore, Res can delay

or prevent key pathological indicators of AD, abnormal Aβ,

and tau through anti-oxidation, anti-inflammatory function, and

improving mitochondrial function, ultimately improving the

spatial learning and memory ability in AD. These functions are

similar to its basic mechanism of anti-diabetes and are related to

activating SIRT1 and insulin-related signaling pathways.

Proanthocyanidins

Proanthocyanidins, a class of polyphenolic compounds, are

widely distributed in plants, such as grapes, black wolfberry, and

blueberry (Maria, 2014). PCs have antioxidants and anti-cancer,

anti-inflammatory, cardioprotective, and antibacterial effects. They

are promising in the treatment of chronic metabolic diseases such

as cancer, DM, and cardiovascular disease (Valencia-Hernandez

et al., 2021). They also play a protective role in neurodegenerative

diseases, such as AD and Parkinson’s disease (Zhang et al., 2019;

Zhao et al., 2019).

In DM, PCs improve the damage induced by the diet in

insulin-resistant models, glycemia, and insulin sensitivity. PCs

target several tissues involved in glucose homeostasis. In insulin-

sensitive tissues, PCs modulate glucose uptake and lipogenesis

and improve their oxidative/inflammatory state. In the pancreas,

PCs modulate insulin secretion and production and β-cell mass,

although the available results are divergent (Gonzalez-Abuin et al.,

2015). Since PCs may be extracted from different plants, they can

also be differentiated into different PCs, such as apple procyanidins

(APCs) and lotus seedpod oligomeric PC (LSOPC). However,

their hypoglycemic effects are not the same. Specifically, APCs

ameliorate insulin resistance by improving hepatic insulin signaling

through the suppression of hepatic inflammation in ob/ob mice

(Ogura et al., 2016). Meanwhile, LSOPC and synbiotics may

regulate glucose disposal in peripheral target tissues through

the p66Shc-mechanistic/mTOR signaling pathway in high fat

and streptozotocin (STZ)-induced diabetes (Li X. et al., 2017).

Furthermore, A- and B-type PC oligomers from different cinnamon

species also improve insulin sensitivity to decrease BG in T2DM

(Lu et al., 2011). In addition, A-type PC oligomers mainly improve

insulin concentration in the blood and pancreas, whereas B-type

PC oligomers promote lipid accumulation in the adipose tissue and

the liver (Chen et al., 2012). In conclusion, although various PCs

have different mechanisms of action in DM, what these effects have

in common is improving insulin resistance and increasing insulin

sensitivity, and anti-inflammatory and anti-oxidative stress are at

the core of these effects.

In AD, PCs may promote cognitive function and thus be

beneficial to alleviate AD. PCs can enhance synaptic plasticity by

upregulating SIRT1 to improve cognition (Michán et al., 2010;

Yokozawa et al., 2011). Notably, PCs and some of their metabolites

stimulate CREB, acting as a molecular switch from short- to long-

term memory, based on the interplay of the CREB-SIRT1 axis

(Zhao et al., 2019). Grape seed PCs (GSPCs) improve isoflurane-

induced cognitive dysfunction by protecting against perturbing

antioxidant enzyme activities and the NR2B/CREB pathway (Gong

et al., 2020). In addition, the PCs effectively inhibit the aggregation

of human islet amyloid polypeptide (hIAPP) and Aβ through

hydrophobic and hydrogen bonding interactions and also dissolve

the aged fibrils (Xu et al., 2021). LSOPC inhibits the formation of

advanced glycation end-products by scavenging reactive carbonyls,

helping to prevent age-associated diseases represented by AD

(Wu et al., 2013). Overall, based on the strong physicochemical

properties and antioxidant capacity of PCs, PCs have potential use

in anti-AD treatments, although they are still a long way from

being used in clinical drugs, and are also great as a functional

food ingredient.

Alkaloids

Alkaloids are a type of organic compound containing nitrogen.

Most alkaloids are distributed in higher plants, especially in

dicotyledon. Most alkaloids have a complex ring structure and

significant biological activity. Many well-known natural bioactive

compounds are alkaloids, such as ephedrine and atropine, which

have played a vital role in the treatment of diseases. BBR, DNLA,

TET, and PRO have potential in DM and AD. Here, we review the

role of alkaloids represented by BBR andDNLA in DM and AD and

put forward ideas for the use of alkaloids in T3DM.

Berberine

Berberine, one of the alkaloids extracted from a traditional

Chinese herb, is mainly isolated from Coptis chinensis, Berberis

vulgaris, Hydrastis canadensis, and Phellodendron amurense (Neag

et al., 2018). BBR has shown some potential in the treatment of both

DM and AD.

Berberine shows great potential in the treatment of DM.

First, BBR dramatically reduces serum insulin levels and alleviates

insulin resistance (Wang et al., 2018), working through promoting

RXRA, reducing KCNQ1 and NR3C1 (Di et al., 2021), and

attenuating palmitate-induced mitochondrial injury and apoptotic

death. Moreover, BBR significantly prevents β-cell apoptosis and

may improve islet β-cell function in T2DM (Li J. et al., 2019).

Second, BBR upregulates glucokinase (GK) in liver fractions and

liver glycogen content to an anti-diabetic effect by the dissociation

of glucokinase GK fromGK regulatory protein in db/dbmice (LiM.

et al., 2019). In addition, BBR is a substrate of P-gp. However, the

oral bioavailability of BBR is less than 5%. Therefore, researchers

use TET, another P-gp inhibitor, as an adjuvant component to

potentiate the hypoglycemic efficacy of BBR (Shan et al., 2013).

Finally, intestinal microbiota may serve as a potential target for

berberine treatment of T2DM (Li et al., 2017). BBR could alleviate

symptoms in T2DM rats by affecting gut microbiota composition

and reducing the concentration of aromatic amino acids (Xu

et al., 2020; Yao et al., 2020) such as decreasing the Bacteroidetes,

Bacteroidetes/Firmicutes ratio, andMuribaculaceae, and increasing
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Allobaculum (Zhao et al., 2021). Clinical studies related to this

also verified the effect. Furthermore, the hypoglycaemic effect of

BBR is mediated by the inhibition of deoxycholic acid (DCA)

biotransformation by Ruminococcus bromii (NCT0286126) (Zhang

Y. et al., 2020). In summary, the anti-DM effect of BBR is related

to affecting tissues such as the pancreas and liver and regulating

intestinal flora.

At the same time, BBR also has potential in AD treatment. BBR

may prevent the formation of NFTs and the disaggregation of Aβ in

AD by limiting neuroinflammation and oxidative stress (Hussien

et al., 2018; Akbar et al., 2021). In vivo, BBR rescues synapse

damage and limits tau hyperphosphorylation in APP/PS1 mice

possibly via inhibiting the NF-κB pathway and activating the liver

kinase B1 (LKB1)/AMPK pathway, and these attenuate cognitive

deficits (He et al., 2017; Cai et al., 2019). It also reduces APP and

beta-site amyloid precursor protein cleaving enzyme 1 (BACE1)

and facilitates Aβ clearance via autophagy in vitro (Huang et al.,

2017). Furthermore, BBR may inhibit protein kinase (PKR)-like

endoplasmic reticulum (ER) kinase (PERK)/eukaryotic initiation

factor 2alpha (eIF2α) signaling-mediated BACE1 translation and

attenuate ER stress (Liang et al., 2021). Apart from reducing

the Aβ accumulation, BBR inhibits the apoptosis of neurons and

promotes the formation of microvessels in the mouse brain by

enhancing brain platelet endothelial cell adhesion molecule-1,

vascular endothelial growth factor, etc. As the result, it promotes

the formation of new vessels with a complete structure and perfect

function, which in turn promoted the recovery of cerebral blood

flow. Ultimately, it ameliorates cognitive deficits in 3 × Tg AD

mice (Ye et al., 2021). In vitro, BBR protects neuronal cells against

Aβ partly through lncRNA BACE1 antisense (BACE1-AS)/miR-

132-3p axis, regulating the circular RNAs histone deacetylase 9

(circHDAC9)/miR-142-5p axis (Ge et al., 2020; Zhang N. et al.,

2020). Meanwhile, it can inhibit Aβ-induced microglial activation

via modulating the microglial M1/M2 activated state and the

suppressor of cytokine signaling1 (SOCS1) mediates the process

(Guo et al., 2021). In addition, it attenuates Aβ-induced neuronal

damage by regulating miR-188/nitric oxide synthase 1 (NOS1)

(Chen et al., 2020). Interestingly, BBR can also alleviate tau

hyperphosphorylation and axonopathy associated with diabetic

encephalopathy by regulating the PI3K/Akt/GSK-3β signaling

pathway (Wang et al., 2018). Based on the role of BBR in DM

and AD, it can be found that the basic anti-inflammation and

anti-oxidation of BBR are the key to the protective effect, and the

regulation of insulin-related signaling pathways and intestinal flora

also plays an important role.

Dendrobium nobile Lindl. alkaloids

As a pharmacologically active ingredient of Dendrobium nobile

Lindl. DNLA was originally extracted from D. nobile Lindl, a

traditional Chinese herbal medicine and medicinal material of

Guizhou province, and has significant protective effects in T2DM

and the nervous system, especially in AD.

Our previous studies show that DNLA reduces BG levels in

animal models of T2DM such as db/db and KK-Ay mice, improves

insulin resistance, and has a protective effect on pancreatic β cells

of pancreatic islets in these animals (Zhang, 2016; Chen, 2018;

Huang Q. et al., 2019). It increases the p-INSR level, IRS-1, and

after that, activates Akt (Chen, 2018). Furthermore, telomere length

is shortened in the pancreas of db/db mice, and DNLA can delay

shortening telomere length and increase the telomerase activity.

The action works may be related to upregulating TERT, TERC

mRNA, protein expressions of TRF2, and POT1, and decreasing

protein expression of TRF1 in the pancreas (Zhang, 2016). The key

to the protective effect of DNLA in DM is to regulate the insulin

signaling pathway and improve insulin resistance.

Our previous studies show DNLA can improve the neuronal

disruption caused by LPS, oxygen-glucose deprivation, and

reperfusion, and decrease neuronal apoptosis in the rat brain (Li

L. S. et al., 2017; Zhang et al., 2017; Liu et al., 2021). Furthermore,

we observed amelioration of the spatial learning performance in

AD model rats induced by Aβ25−35, APP/PS1, and SAMP8 mice

(Nie et al., 2016; Lv et al., 2020), and this effect may be related to a

decrease in the generation of Aβ by regulating APP, α-secretases

(ADAM10 and ADAM17), and BACE1 (Huang J. et al., 2019).

It also alleviates Aβ25−35-induced axonal injury by improving

autophagic flux in neurons, increasing Aβ clearance, activation of

autophagy activity, and upregulation of Klotho (Li L. S. et al., 2017;

Zhang et al., 2017; Lv et al., 2020), possibly via the suppression of

ER stress-related PERK signaling pathway, sequentially inhibiting

calpain 1, GSK-3β, and Cdk5 activities and eventually reducing the

p-tau (Liu et al., 2020). Notably, DNLA improved learning and

memory function in elderly normal mice. Based on the results of

DNLA in DM and AD, it is shown that DNLA is a potential insulin

sensitizer and has neuroprotective effects, which can significantly

improve the learning and memory ability of AD model animals.

Based on this, we speculate that the anti-AD effect of DNLA is

mainly achieved by regulating insulin-related signaling pathways,

thereby inhibiting the hyperphosphorylation of tau protein.

Summary

In short, some of the natural bioactive compounds that

have anti-DM effects have some potential in the treatment

of AD. Their potential anti-AD ability is mainly based on

anti-inflammation, anti-oxidation, regulation of insulin signaling

pathway, and intestinal flora. These mechanisms are complex and

involve pleiotropic synergistic interactions (Figure 1).

Although there are some positive pieces of evidence, there are

still many opportunities and challenges, and there are still many

issues worthy of discussion. (1) Most of the studies in AD are

preclinical studies and lack clinical research data. (2) Evidence from

many studies is largely derived from non-target effects such as anti-

inflammatory and antioxidant effects. (3) Unavoidable side effects,

such as severe hypoglycemia, are even more harmful than AD. (4)

The purpose of research and development of such drugs is direct

anti-AD drugs and/or adjuvant drugs. (5) Many studies are carried

out in the form of pretreatment, and it may be more reasonable

to define it as prophylaxis. (6) Some studies only consider the

experimental effect, ignoring the feasibility in humans after dose

conversion (Figure 2).

Despite these problems, we must continue our research. We

believe that the clinical research of such drugs should be aimed

Frontiers in AgingNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1130253
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Huang et al. 10.3389/fnagi.2023.1130253

FIGURE 1

A simplified schematic diagram representing natural bioactive compounds in AD. From the perspective of T3DM. Grape—RES, blueberry—PCs, Coptis

chinensis—BBR, and Dendrobium nobile Lindl.—DNLA.

FIGURE 2

A simplified schematic diagram representing natural bioactive compounds in AD. Although there are some positive pieces of evidence, there are still

many opportunities and challenges, and there are still many issues worthy of discussion.

at some patients with AD, especially for some patients with AD

with hyperglycemia as the early manifestation or with diabetes.

In addition, in order to avoid excessive influence of non-target

effects, it should be similar to the research and development

process from guanidine hemisulfate to metformin. The structural

modification of natural bioactive compounds could also avoid the

occurrence of some side effects. Although bioactive compounds

are a long way from being used in clinical drugs, they are
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still promising as functional food ingredients or adjuvant drugs

for AD.
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