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Aging is a non-modifiable risk factor for stroke and the global burden of

stroke is continuing to increase due to the aging society. Muscle dysfunction,

common sequela of stroke, has long been of research interests. Therefore, how to

accurately assess muscle function is particularly important. Electrical impedance

myography (EIM) has proven to be feasible to assess muscle impairment in

patients with stroke in terms of micro structures, such as muscle membrane

integrity, extracellular and intracellular fluids. However, EIM alone is not sufficient

to assess muscle function comprehensively given the complex contributors to

paretic muscle after an insult. This article discusses the potential to combine EIM

and other common quantitative methods as ways to improve the assessment

of muscle function in stroke survivors. Clinically, these combined assessments

provide not only a distinct advantage for greater accuracy of muscle assessment

through cross-validation, but also the physiological explanation on muscle

dysfunction at the micro level. Different combinations of assessments are

discussed with insights for different purposes. The assessments of morphological,

mechanical and contractile properties combined with EIM are focused since

changes in muscle structures, tone and strength directly reflect the muscle

function of stroke survivors. With advances in computational technology, finite

element model and machine learning model that incorporate multi-modal

evaluation parameters to enable the establishment of predictive or diagnostic

model will be the next step forward to assess muscle function for individual

with stroke.
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Introduction

Population aging is an urgent global issue, accompanied with a substantial burden
for age-related diseases. It was reported that about 1,000 among every hundred thousand
people aged 70 years or older suffer stroke in the world (Feigin et al., 2021). As one of
the leading causes of death and disability in the elderly, stroke has long been of interest,
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particularly in motor function recovery (Lo, 2014; Feigin et al.,
2022). Approximately 80% of stroke survivors suffer from motor
dysfunction, including hemiparesis, incoordination, and spasticity,
which severely hinder their daily life (Lora-Millan et al., 2022). How
to improve motor control and movement quality are challenging
clinicians and researchers (Patten et al., 2004). The smooth
control of movement relies not only on the integrity of neural
pathways, but also on the function of the musculoskeletal system.
Therefore, assessing muscle function is essential to understand
factors underlying motor dysfunction after stroke. Typically,
muscle function is affected by its structural changes (Power et al.,
2013). For stroke survivors, disrupted synaptic inputs to the motor
neurons commonly resulted in muscle fiber loss, intramuscular fat
infiltration and connective tissue growth (Scherbakov et al., 2013;
Li et al., 2016d). All of these changes could influence the intrinsic
muscle properties (Li et al., 2017c). In turn, the evaluation of muscle
properties may reflect the muscle function and improve current
knowledge on the mechanisms of muscle dysfunction in stroke
survivors.

Electrical impedance myography (EIM), a non-invasive
evaluation instrument, aims at quantifying the intrinsic passive
electrical properties of muscle (Rutkove, 2009). Alterations in the
voltage caused by changes of diseased muscle conductivity and
permittivity are the basis of EIM (Foster and Schwan, 1989). It has
been studied that EIM parameters, resistance, reactance and phase
angle, are able to reflect specific physiological information on the
composition and micro structures of muscle tissue respectively,
e.g., myofiber membrane, extracellular and intracellular fluids
(Castizo-Olier et al., 2018; Fu and Freeborn, 2020). In clinical
setting, electrical impedance variables have been verified as reliable
biomarkers for neuromuscular diseases, such as amyotrophic
lateral sclerosis and muscular dystrophy (Rutkove and Sanchez,
2019). Clark et al. (2021) reviewed the feasibility of EIM in
age-related diseases and affirmed its potential clinical value in the
assessment of muscle health concerning aging. In elderly with
stroke, we reported significant changes in the passive electrical
behavior of muscle (Li et al., 2017c). Similar results were also
observed in patients with spinal cord injury (Li et al., 2017a,b).
How to interpret the changes recorded by EIM has always been the
focus of clinical application. With the help of animal experiments,
electrical impedance data have been proved to be involved with
the structural degeneration of muscle, especially in the number of
muscle fibers, state of the cell membranes and the proportion of fat
and connective tissue infiltration (Pandeya et al., 2021b,a). From
a functional perspective, Li et al. (2016a) observed a significant
relationship between EIM parameters and force production
in mice. It follows that EIM has the potential to establish the
relationship between muscle function and microstructural
properties, providing physiological evidence for muscle evaluation.
Furthermore, our team also demonstrated excellent sensitivity
of EIM technique in the measurement of alterations on muscle
composition in stroke patients (Li et al., 2017d). Coupled with
excellent robustness and convenience, EIM holds a high potential
for clinical assessment of muscle function (Martinez-Gonzalez
et al., 2020; Rutkove et al., 2021). However, there have been various
contributors to muscle dysfunction in persons after stroke and the
passive electrical property measured by EIM may not fully reflect
the paretic muscle changes.

Given that the factors leading to muscle dysfunction are
uncertain and the sensitivity of techniques varies at different
pathological features of muscle, there is a need for combined
assessments of muscle function in clinical settings. Apart from
muscle properties itself, its dysfunction tends to initially derive
from the denervation of muscle after stroke (Scherbakov et al.,
2013) and follows that nerve-related factors are indispensable for
muscle function evaluation. Thus, EIM alone is not sufficient
for assessment of muscle function comprehensively. Additionally,
the clinical value of EIM remains controversial (Rutkove et al.,
2021; Sanchez et al., 2021). Sanchez et al. (2021) pointed out
that EIM measurements is likely to be influenced by the accuracy
of measurement localization and the specificity of the target
tissue (i.e., subcutaneous fat tissues and skin tissues affect the
measurements). Although previous work has drawn links between
EIM values and electrophysiological, histological, imaging and
functional outcomes (Rutkove et al., 2014a; Hamel et al., 2020), the
interpretation of EIM values is suggested to be limited and EIM
cannot substitute for other assessments in many cases. It is noted
that EIM is only capable of assessing superficial muscles but not
the deep muscle layer, owing to the limited penetrative ability of
electrical current (Hu et al., 2021c). Therefore, the EIM findings
need to be interpreted with caution in clinical decision-making.

Over the past decades, quantitative assessment of muscle
function gained popularity due to their precision and objectivity.
These assessment methods evaluate various aspects influencing
muscle function, including morphological, mechanical and
contractile properties. Here, we discuss the potential utility for
combined assessments of EIM with other quantitative techniques
and provide the insights and challenges for evaluating muscle
function in patients with stroke (Figure 1). The main findings are
displayed in the Table 1.

Combination of EIM and
morphological assessment

The loss of muscle function is typically accompanied with
changes of muscle morphology after stroke (Metoki et al.,
2003). Common morphological features found in patients with
stroke include a reduction of muscle cross-sectional area,
mass, volume, pennation angle and fascicle length. Sions et al.
(2012) proposed that the decrease in the muscle cross-sectional
area would eventually lead to the loss of muscle strength.
Moreover, intramuscular fat is also found associated with greater
muscle torque (Goodpaster et al., 2001). It is possible that
muscle morphological changes reflect its dysfunction indirectly.
Assessments of muscle morphology adopted in clinical practice
involve magnetic resonance imaging (MRI), computed tomography
(CT), dual-energy x-ray absorptiometry (DXA) and ultrasound
imaging. Although these tools could provide reliable and accurate
information on the morphology (Heymsfield et al., 2014; Clark
et al., 2018), their clinical utility is limited by complex operation
procedure, data analysis and expenses (Bazzocchi et al., 2016;
Tavoian et al., 2019; Clark et al., 2021). Further, these are
also challenges to incorporate with other kinetic instruments
such as torque dynamometers simultaneously. Morphological
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FIGURE 1

Conceptual illustration of combining EIM with other technologies for muscle function evaluation.

measurement alone does not give the overall muscle status
qualification.

Faced with above limitations, increasing number of researchers
turned their sights on EIM to search for alternative verifiable
biomarkers of muscle status. There is evidence that the application
of EIM can estimate well for the muscle cross-sectional area
(Pandeya et al., 2021a), myofiber size (Arnold et al., 2017) and
arrangement of myofibers (Garmirian et al., 2009). In subacute
stroke survivors, we have demonstrated significant associations of
electrical impedance data with ultrasonography parameters (Hu
et al., 2019). Muscle fascicle length, thickness and pennation
angle recorded by ultrasound have been recognized to effectively
illustrate the muscle status in poststroke impairments (Li et al.,
2007). According to previous reports, the EIM and ultrasound
could be applied jointly to depict muscle architecture (Rutkove
et al., 2010; Rutkove and Darras, 2013; Johnson et al., 2018;
Hu et al., 2019; Longo et al., 2021). With the development
of quantitative ultrasound, its relationship with EIM is playing
an increasing important role in improving disease diagnosis
(Rutkove et al., 2014b; Shklyar et al., 2015; Hobson-Webb et al.,
2018, 2021; Roy et al., 2019). Shklyar et al. (2015) reported
that composite data from EIM and quantitative ultrasound can
better predict the muscle function compared with individual
measurement data. Furthermore, several studies have established
the relationship between EIM variables and structural features of

muscles, as measured by MRI, CT, and DXA. Those studies also
further supported the potential value of EIM in muscle structure
assessment (Anderson et al., 2014; McLester et al., 2018; van Rassel
et al., 2019; Czeck et al., 2020; Hamel et al., 2020; Albano et al.,
2022b,a). While aforementioned correlation was validated, not all
findings are fully consistent, since different techniques are sensitive
to different pathological features of muscle (Roy et al., 2019). There
is a need for combined assessment to assist in clinical muscle
evaluation or diagnosis. The correspondence of variables between
EIM and other quantitative techniques provide a foundation for
cross-validation in muscle assessment and facilitates the accurate
evaluation of muscle function.

In addition to accuracy, combined assessments could improve
the understanding of mechanisms of muscle dysfunction.
Parameters from EIM, including resistance, reactance and
phase angle, are reported to be closely associated with muscle’s
components, extra- and intra-cellular fluids, tissue interfaces and
the integrity of cell membrane (Esper et al., 2006). EIM data could
be an important compliment to the morphological assessment.
It is these relationships that help clinicians to understand the
physiological significance behind morphological variables, further
driving the development of precision therapy.

The combination with other assessment methods would
advance the application of EIM. As the electrical impedance data
is susceptible to subcutaneous fat tissue, our team investigate the
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effect of subcutaneous fat on EIM with ultrasound assistance and
found appropriate electrode configuration to reduce the impact
(Li et al., 2016b). Sung et al. (2013) found that the reactance,
one of the EIM parameters, was least affected by subcutaneous
fat when the EIM was applied with the aid of ultrasound.
Conventional muscle morphological assessment may guide the
application of EIM to improve accuracy and stability. If clinicians
performed conventional assessments (e.g., ultrasound) and identify
the amount of subcutaneous fat thickness in advance, they would
select the appropriate electrode configuration to improve the
accuracy and stability of measurement.

Combination of EIM and mechanical
property assessment

Dystonia is a common muscle dysfunction for stroke patients,
characterized by reduced or increased muscle tension (Tsai et al.,
2020). These deficits could be attributed to inherent properties of
contractile elements, viscoelastic properties of musculotendinous
units and abnormalities of reflex excitability (Chuang et al., 2012).
Thus, the assessment of both neural and mechanical properties
is critical to provide a full picture of muscle function. Muscle
strength and joint range of motion are often adopted as indirect
measurements of muscle mechanical properties (Brandenburg
et al., 2014). However, these indirect methods can only evaluate
mechanical properties across the joint instead of individual
muscles, potentially limiting precision assessment.

Myotonometry was proposed as a way to quantify individual
muscle mechanical properties including stiffness, elasticity, and
muscle tone (Chuang et al., 2013). The principle behind
myotonometry is to apply brief impulses over the muscles to induce
oscillations, which are recorded to calculate the parameters of
tone, creep, stiffness and decrement (Lo et al., 2017). There have
been several studies which reported the reliability and sensitivity
of myotonometric measurement in stroke rehabilitation (Chuang
et al., 2012; Li et al., 2017e). Previous work highlighted the
potential benefit of applying myotonometry to quantify muscle
mechanical properties. However, there is uncertainty regarding
the interpretation of myotonometric data since there is little
information regarding the normative values that could be used
for reference. There are also uncertainties in the physiological
contributing factors to alteration of muscle mechanical properties
(Lo and Li, 2020). Thus, myotonometry is not recommended to be
applied alone. Establishing the relationship between physiological
structures and muscle mechanical properties remains necessary
for researchers or clinicians to optimize therapeutic regimens.
Unfortunately, it is not realistic to widely use muscle biopsy
for assessing muscle structures in the clinic. According to our
previous studies, reactance recorded by EIM was significantly
associated with the creep and relaxation time from myotonometer
in patients who suffered cervical spinal cord injury (Hu et al.,
2021b). The former was reported to be related to myocyte atrophy
(Li et al., 2012), which is also likely to lead to the reduction
of muscle contractile ability. This change often reflects as higher
relaxation time and creep in myotonometry. Similar relationships
can also be observed in patients with stroke, where muscle viscosity
was significantly associated with phase angle (Leng et al., 2021).

These findings offer us an opportunity to interpret the mechanical
property alterations from a physiological structural point. Whether
or not the combined assessments may improve assessment of
muscle function warrant further investigation.

Spastic hypertonia stems from the neural and non-neural
factors is frequently observed in stroke survivors (Luo et al.,
2020). Conventionally, the neural components are defined as
the intrinsic excitability of motoneurons themselves, while non-
neural components can be represented as the resistance caused by
inertia, elasticity, and viscosity of the moved body part (Lindberg
et al., 2011). Distinguishing neural and non-neural components is
critically important for developing targeted intervention regimens.
Spastic muscle mainly caused by neural contribution is suited to
treatment against nerve-pathway (e.g., nerve block) (Bovend’Eerdt
et al., 2008). While varieties of approaches proposed to distinguish
the neural factors (Lee, 2002; Kamper et al., 2003; Musampa et al.,
2007; Alibiglou et al., 2008), it is hard for these methods to
truly distinguish neural components and their clinical utilities are
limited by operational complexity (Wood et al., 2005). Lindberg
et al. (2011) built a biomechanical model, Neuroflexor model, to
quantify the neural and non-neural contributions by measuring the
resisting force during passive extension at slow and fast speeds. Our
previous studies reported the higher neural, elastic and viscosity
components of the Neuroflexor method on the affected side
compared to non-affected side in stroke patients (Leng et al., 2021).
Combined with EIM, we found EIM parameters of reactance was
inversely proportional to neural component, while phase angle was
proportional to viscosity component in spastic muscle, potentially
supporting the feasibility of combined assessment based on EIM
and Neuroflexor in stroke patients. This relationship also provides
the basis to explore the effect of nervous factors on peripheral
muscular structures.

Combination of EIM and contractile
property assessment

Motor function deficits, those caused by muscle weakness,
can only be observed during voluntary muscle contraction. Thus,
understanding of muscle contractile property (i.e., shortening
velocity and maximal force) is of great interest (Gao et al., 2005).
Active movement tests, such as the handgrip test, are easily
performed but their results are susceptible to be affected by the
integrity of the nervous system and subjective factors (Carson,
2018). That is, these tests fail to accurately distinguish the true
cause of muscle dysfunction (nerve or muscle related). Prior studies
have found that muscle weakness was associated with the loss of
muscle fiber and increase in intramuscular adipose tissue, caused
by muscle denervation, disuse, and atrophy (Scherbakov et al.,
2015; Berenpas et al., 2017). Numerous researches have reported
the association of muscle strength with various macrostructures
clinically (Petterson et al., 2008; Kellis et al., 2021). However,
these studies cannot explore muscle dysfunction at a micro level.
Building on strength testing, the addition of EIM, which reflects
indirectly the properties of cell membranes and the content of
extracellular and intracellular water (Faes et al., 1999; Shiffman and
Rutkove, 2013), probably provide advantages for the exploration
of mechanism behind muscle dysfunction. Several studies have
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TABLE 1 The main findings of each section.

Combining EIM with Assessment Study Main findings

Morphological Property
Assessment

Ultrasound
Rutkove et al., 2010; Rutkove and Darras,
2013; Johnson et al., 2018; Hu et al., 2019;
Longo et al., 2021

• Clinical measurements from EIM and ultrasound were
verified mutually.
• Both methods could be applied applied to depict muscle
architecture and improve disease diagnosis accuracy.

Sung et al., 2013; Li et al., 2016b
• The application of ultrasound could guide the utilization of
EIM for improved accuracy and stability.
• The application of ultrasound could evaluate the influence of
subcutaneous fat layer thickness on EIM measurements.

Rutkove et al., 2014b; Shklyar et al., 2015;
Hobson-Webb et al., 2018, 2021; Roy et al.,
2019

• Significant associations were observed between measurements
obtained from EIM and those obtained from quantitative
ultrasound.
• Combining the data from these two techniques has been
shown to yield more accurate muscle function measurements.

MRI
Hamel et al., 2020; Albano et al., 2022a,b • Establishing the correlation of the EIM with structural MRI

features.
• Comparing EIM and MRI measurements in assessing muscle
composition.

CT Anderson et al., 2014
• Paraspinal electrical impedance myography phase was
positively correlated with paraspinal attenuation based on CT,
which established the relationship between EIM and CT.

DXA
McLester et al., 2018; van Rassel et al., 2019;
Czeck et al., 2020

• EIM has been proved to be a relatively reliable method to
estimate body fat percent compared to DXA.

Mechanical Property Assessment NeuroFlexor Leng et al., 2021
• Neural component was found significantly associated with
reactance recorded by EIM.
• Viscosity component was significantly associated with phase
angle.

Myotonometer Hu et al., 2021b
• The creep and relaxation time obtained from myotonometer
was significantly associated with reactance recorded by EIM.

Contractile Property
Assessment

Strength test
Rutkove et al., 2014a; Shellikeri et al., 2015;
Zaidman et al., 2015

• The observed relationship between EIM and strength tests
suggested that EIM had the potential as a meaningful measure
in the diagnosis of neuromuscular diseases.

Li et al., 2016a,c; Coutinho et al., 2020 • The combination of EIM and strength test has the potential to
directly reveal the changes in the force generation properties of
the target muscle.

EMG Li et al., 2013, 2014, 2017f; Arnold et al., 2016,
2017; de Carvalho and Swash, 2016;
Kolb et al., 2016; Zong et al., 2018

• EIM was closely associated with various electrophysiological
measures, especially compound muscle action potential from
EMG.
• EIM is a promising biomarker in assessment of muscle
function in neuromuscular diseases and its relationships with
other electrophysiological measures have been well-established
in various neuromuscular diseases.

Hu et al., 2021a; Ngo et al., 2022 • Applying EIM and EMG simultaneously could provide more
comprehensive information of the inherent properties and
muscle activation alteration.

Computational Model Finite element model
Ahad and Rutkove, 2009; Wang et al., 2011;
Jafarpoor et al., 2011; Pacheck et al., 2016

• Finite element models have been demonstrated as a capable
method to investigate the biophysical mechanisms of EIM in
various diseases.

Jafarpoor et al., 2013; Baidya and Ahad, 2016;
Rutkove et al., 2017; de Cardoner et al., 2021;
Schooling et al., 2020; Luo et al., 2022;
Schrunder et al., 2022

• Finite element analysis provides a basic methodology to
optimize electrode configuration for EIM

Machine learning model Srivastava et al., 2012; Pandeya et al., 2022
• Combining biomarkers from EIM or other assessments could
enhance the diagnostic performance of machine learning
models.

Kapur et al., 2018a,b; Pandeya et al., 2021a,b;
Cheng et al., 2022

• Combining EIM and other biomarkers through machine
learning can improve diagnostic accuracy for estimating muscle
function parameters.
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explored the relationship between the EIM and strength tests
in neuromuscular diseases, which suggested that EIM may serve
as a valuable measure for diagnosing neuromuscular conditions
(Rutkove et al., 2014a; Shellikeri et al., 2015; Zaidman et al., 2015).
Our findings indicated that this combination could also reveal
the changes in properties of target muscle directly during force
generation (Li et al., 2016c). Likewise, the relationship between the
EIM data and force production was verified in animal experiments
(Li et al., 2016a; Coutinho et al., 2020). These insights might
be beneficial when further extended to clinical assessments of
alterations in force production after stroke.

Actually, the generation of force is inseparable from active
muscle contraction, depending on the number and size of active
motor units, as well as the rate and timing of their discharge
(Herzog et al., 2015; Duchateau and Enoka, 2016). In the past
decades, EMG assessment has been recognized as a gold standard
for evaluating the recruitment and activation patterns of muscle
(Schuermans et al., 2014). Compared with strength testing, EMG
records electrophysiological data to explain the potential reasons
for the impairment of muscle contractile function. However,
EMG is limited to the evaluation of active electrophysiological
property without concerning passive property. From a mechanistic
perspective, the relationships between EIM data and EMG
parameters, especially compound muscle action potentials, have
been demonstrated in persons with various neuromuscular disease
over the years (Li et al., 2013, 2014, 2017f; Arnold et al., 2016,
2017; de Carvalho and Swash, 2016; Kolb et al., 2016; Zong et al.,
2018). Our team has demonstrated the potential of the EIM and
EMG to jointly evaluate lower-extremity muscle function and to
assess the impact of rehabilitation training in a clinical setting
(Hu et al., 2021a; Li et al., 2022). Both active and passive muscle
properties were assessed at the same time, which could advance the
understanding of muscle dysfunction. Ngo et al. (2022) proposed
a novel device that can combine EIM and EMG measurements
simultaneously, offering a more robust method for muscle status
assessment even in the presence of artifacts.

Combination of EIM and
computational model

Standards for EIM parameters in clinical applications are
still lacking, especially when the comparison of data across
individuals is considered. As this technique is sensitive to muscle
morphological, electrical properties and the electrode configuration
(Schrunder et al., 2022), it is then necessary to identify the
impact of these factors and to explore approaches to minimize
their effects. Computational modeling that incorporates detailed
finite element models has been proven capable in studying the
biophysical mechanisms of EIM and optimize the design of
electrode arrangements (Ahad and Rutkove, 2009; Jafarpoor et al.,
2011, 2013; Wang et al., 2011; Baidya and Ahad, 2016; Pacheck
et al., 2016; Rutkove et al., 2017; Schooling et al., 2020; de Cardoner
et al., 2021; Luo et al., 2022; Schrunder et al., 2022). Wang et al.
(2011) utilized a finite element model to investigate the correlation
between changes in surface impedance and electrical properties
of the muscle, offering valuable insights into the biophysical
mechanisms underlying the EIM. Schrunder et al. (2022) simulated

muscle tissues and impacts from anthropometric variations and
EIM electrode placements. Baidya and Ahad (2016) applied a
finite element model to determine an optimized EIM electrode
configuration which could balance both stability and sensitivity.
However, previous finite element studies seldom focus on the
application of EIM in stroke survivors. This work needs to be
studied based on the actual data from individuals with stroke in
the future.

As the data of muscle assessment becomes increasingly diverse,
how to identify and integrate valuable information are attracting
more and more attention. Multimodal learning has grown rapidly
with the continuous progress of multimodal information input
and algorithm (Baltrusaitis et al., 2019). Drawing on a muscle
perspective, the multi-modality fusion of different assessments
is considered to substantially drive the clinical assessment
advancement with the help of machine learning. Srivastava et al.
(2012) refined biomarkers from EIM and quantitative muscle
ultrasound on the basis of machine learning to successfully classify
the muscle affected by spinal muscular atrophy. Pandeya et al.
(2022) demonstrated that using multifrequency EIM values instead
of single-frequency values can improve classification performance
of machine learning. Similarly, Cheng et al. (2022) reported that
machine learning could estimate the total mass of muscles with
the EIM and anthropometric parameters. The use of machine
learning approaches has allowed for the prediction of myofiber
size, cross-sectional area, and connective tissue deposition using
the EIM measurement (Kapur et al., 2018b,a; Pandeya et al.,
2021b,a; Cheng et al., 2022). Addressing different requirements,
specific quantitative assessment parameters are selected to be
combined with electrical impedance data. Currently, the combined
assessments based on machine learning are rarely employed to
detect muscle changes in stroke patients. Establishing a prediction
or diagnostic model based on machine learning to assess muscle
function for patients with stroke will be the next step forward.

Conclusions and future directions

Overall, the application of combined assessments based on
EIM with quantitative techniques is a promising direction to assess
muscle function in stroke patients. In view of different purposes,
distinct combinations are selected to evaluate specific aspect of
muscle function. Combining different techniques could improve
the accuracy and comprehensiveness of muscle assessment, and
also advance the understanding of physiological mechanism that
underpins muscle dysfunction.

Despite the potential of combined assessments in clinical
application, several challenges remain at both the mechanistic and
clinical levels.

At the mechanistic level, there were lacks of robustness in
identifying the relationship between EIM and standard parameters
of other assessments, thereby hindering the application of EIM
in clinical settings. Establishing this relationship requires a
deeper understanding of the biophysical mechanisms of EIM,
which requires further investigation. Secondly, most studies
cannot provide a causal interpretation, and the sequence of
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alterations in variables remains unclear. To address this issue,
more longitudinal studies with longer period of follow-ups
are required. Thirdly, research efforts in the field of muscle
function assessment have been uneven, with the combination
of EIM and mechanical property assessment receiving less
attention and requiring further exploration (see Table 1).
Furthermore, enabling clinical application also raises unique
challenges. On the one hand, selecting effective combination
of assessments for a specific purpose remains nontrivial for
clinicians and researchers. As sensitivity varies across different
assessments, selecting appropriate combination and extract
essential features from multiple types of data are particularly
crucial. The advancement of various computational techniques
can assist in identifying, extracting, and analyzing multimodal
information of muscle function, leading to the standardization
in the clinical practice. On the other hand, the estimation
accuracy of EIM has been a concern for years. Good accuracy
relies on proper electrode configuration where finite element
modeling could inform clinicians in an appropriate electrode
configuration and placement. However, performing modeling for
each patient based on individual MRI or CT scans is impractical.
Therefore, building prediction models based on multimodal
information is necessary. In summary, both opportunities and
challenges exist in mechanistic studies and clinical applications
for EIM.
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