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Introduction: Identification of Alzheimer’s Disease (AD)-related transcriptomic

signatures fromblood is important for early diagnosis of the disease. Deep learning

techniques are potent classifiers for AD diagnosis, but most have been unable to

identify biomarkers because of their lack of interpretability.

Methods: To address these challenges, we propose a pathway information-based

neural network (PINNet) to predict AD patients and analyze blood and brain

transcriptomic signatures using an interpretable deep learning model. PINNet is a

deep neural network (DNN) model with pathway prior knowledge from either the

Gene Ontology or Kyoto Encyclopedia of Genes and Genomes databases. Then,

a backpropagation-based model interpretation method was applied to reveal

essential pathways and genes for predicting AD.

Results: The performance of PINNet was compared with a DNN model without a

pathway. Performances of PINNet outperformed or were similar to those of DNN

without a pathway using blood and brain gene expressions, respectively. Moreover,

PINNet considers more AD-related genes as essential features than DNN without

a pathway in the learning process. Pathway analysis of protein-protein interaction

modules of highly contributed genes showed that AD-related genes in blood were

enrichedwith cellmigration, PI3K-Akt, MAPK signaling, and apoptosis in blood. The

pathways enriched in the brain module included cell migration, PI3K-Akt, MAPK

signaling, apoptosis, protein ubiquitination, and t-cell activation.

Discussion: By integrating prior knowledge about pathways, PINNet can reveal

essential pathways related to AD. The source codes are available at https://github.

com/DMCB-GIST/PINNet.

KEYWORDS

Alzheimer’s disease, machine learning, transcriptomics, biomarkers, bioinformatics,

protein-protein interaction network, interpretable machine learning

1. Introduction

Alzheimer’s disease (AD) is the most prevalent type of dementia and is distinguished

by amyloid beta (Aβ) plaques and neurofibrillary tangles in the brain. Aβ and tau are

clinical hallmarks of AD, in which abnormal accumulation precedes neurodegeneration

and cognitive impairment in both sporadic and familial AD (Bateman et al., 2012).

Although much progress has been made in understanding AD pathology, currently

available treatments modify only symptoms, such as cognitive and behavioral dysfunction

(Yiannopoulou and Papageorgiou, 2020). Thus, in the pre-dementia phase, prior to

the appearance of clinical symptoms, the early detection of AD using biomarkers or

neuroimaging data is essential for treatments to slow progression of AD (Huynh and

Mohan, 2017; Lim et al., 2022). Recently, AD has been increasingly recognized as a systemic
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disease, supported by numerous studies that have uncovered a

peripheral mechanism for AD progression (Zhang et al., 2013;

Morris et al., 2014). Brain-derived Aβ can be cleared in the

periphery by monocytes, which is boosted by the immune system

(Cheng et al., 2020). Multiple peripheral inflammatory markers

were elevated in AD patients (Lai et al., 2017), and it was showed

that inflammation also plays an essential role in AD development.

Furthermore, Urayama et al. (2022) reported a significant reduction

of Aβ plaque development by 40–80% and improvement in

memory performance through exchanging the whole blood in AD

mice with normal blood. However, the exact mechanism of how

blood exchanges reduce amyloid pathology remains unclear.

Several studies based on gene expression data have been

conducted to find biomarkers for AD. Puthiyedth et al. (2016)

analyzed microarray gene expression data of 161 post-mortem

brain samples across six brain regions and identified new AD

candidate genes and 23 non-coding features. Xu et al. (2018)

analyzed gene expressions from brain tissues by constructing a

transcriptomic network and demonstrated that activation of 17

hub genes, including YAP1, at the early stage could promote AD.

Although gene expression data of brain tissues obtained from

post-mortem autopsy revealed important molecular mechanisms

regarding AD, their clinical application is limited due to their

invasiveness. Instead, studies based on blood gene expression data

have been conducted for early diagnosis of Alzheimer’s disease.

Li et al. (2017) detected leukocyte-specific expression changes in

peripheral whole blood gene expression data. They found that

differentially expressed genes were associated with Wnt signaling

pathways and mitochondrial dysfunction, suggesting a significant

overlap in brain area expression profiles. However, few studies

have compared the transcriptomic signatures of AD between blood

samples and brain samples.

Many deep learning methods have been applied to biomedical

domains and showed improved performances for various problems

such as predictions of properties of DNA sequences, protein

structure prediction, and disease classification (Luo et al., 2019;

Mostavi et al., 2020; Senior et al., 2020). In these methods,

weights in neural networks are optimized for a given objective

function, but they do not necessarily reveal a group of neurons

and input features related to a given biomedical problem. Recently,

several studies have started searching for a model to obtain

outcomes with explainable mechanisms (Kuenzi et al., 2020; Lee

et al., 2020). Mao et al. (2019) proposed an algorithm that

optimizes gene expression data decomposition by incorporating

biological knowledge through the addition of constraints to

standard singular value decomposition methods. Furthermore,

(Xing et al., 2021) presented a graph-based model that extracts

hierarchical gene-module features from co-expression graphs using

weighted correlation network analysis. Both approaches aim to

improve the interpretability of models by introducing biological

knowledge to capture relevant biological processes. Nonetheless,

although performance comparisons have been conducted for

models incorporating biological prior knowledge, a comprehensive

evaluation focusing on interpretability, particularly identifying

specific genes crucial to the model’s predictions, remains limited

in the previous studies. Without clear interpretability, it becomes

challenging to translate the findings of the models into meaningful

biological or clinical insights.

This study proposes a pathway information-based deep neural

network (PINNet) to predict AD using a gene expression dataset

from the brain and blood. The motivation for the PINNet

is incorporating the explicit gene relationships via pathway

information, as well as capturing implicit gene relationships

through the fully connected layer in the model’s structure. To

determine the model’s interpretability across various pathway

contexts, we considered two sources of pathway information:

Gene Ontology (GO), a literature-curated reference database

with a hierarchical structure, or the Kyoto Encyclopedia of

Genes and Genomes (KEGG), an alternative pathway ontology

containing dynamics and interaction between the genes. The GO

ontology design is interrelated through a hierarchical parent-

child relationship, enabling us to examine functional clusters

at different scales. KEGG represents networks of interacting

molecules responsible for specific biological functions. In PINNet,

pathway information was included in the structure of the model,

thereby enhancing interpretation. The model was interpreted

using Deep SHAP (Lundberg and Lee, 2017), which allows us

to identify important predictor genes in the model. Thus, we

evaluated the performance of PINNet models in blood and brain

gene expression samples for two pathway databases. When we

examined gene signatures of blood and brain that played essential

roles in each predictive model, contributing genes in PINNet were

highly prominent in known sets of AD-related genes. The main

contribution of this study is the effective integration of biological

prior knowledge into a deep learning model, thereby improving

both predictive performance and interpretability. Notably, by

integrating pathway information from either GO or KEGG, we

substantially enhance our model’s understanding of AD-related

genes and pathways.

2. Materials and methods

2.1. Preprocessing of data

Gene expression datasets from the prefrontal cortex brain

and blood were obtained from GSE33000 (Narayanan et al.,

2014) and Alzheimer’s Disease Neuroimaging Initiative (ADNI)

(adni.loni.usc.edu) (Petersen et al., 2010), respectively. Brain and

blood gene expression data were generated using the Rosetta/Merck

Human 44k 1.1 microarray (Narayanan et al., 2014) and the

Affymetrix Human Genome U 219 array (Petersen et al., 2010),

respectively. We used 113 AD and 244 control (CN) samples for

the blood dataset. To maintain consistency between the blood and

brain datasets, mild cognitive impairment (MCI) samples were

excluded from the analysis, as the brain dataset does not contain

MCI samples. For the brain dataset, we used 310 AD and 157 CN

samples after excluding Huntington’s disease samples. The blood

and brain datasets consist of 49,386 and 39,328 probes, respectively.

The mean imputation was performed on the remaining missing

data values in each dataset. We removed the 30% of probes with

a low interquartile range (IQR) across samples. To compare gene

expression across different platforms, we mapped probe IDs to

Entrez IDs using the biomaRt package (Durinck et al., 2009). The

probe with the maximum IQR value was selected for multiple

probes annotated with the same gene. By using a MinMaxScaler,
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values in each dataset are preprocessed to fit within the range of

0 and 1. As a result, 13,666 and 12,319 genes remained in the

brain and blood datasets, respectively. A total of 8,922 genes were

common between the brain and blood datasets, and they were used

in this study.

Pathway information was compiled from the GO biological

process (BP) (Ashburner et al., 2000) and KEGG (Kanehisa and

Goto, 2000) databases obtained from the Molecular Signature

Database (MSigDB) (Subramanian et al., 2005). A total of 168

KEGG pathways and 4,026 GO BP were selected. They include ten

or more genes among the 8,922 genes used in this study. Using each

of the two databases, a pathway information matrix M ∈ R
m×n is

constructed, which is a sparse matrix representing the relationship

between pathways and genes (Equation 1), where m is the number

of pathways and n is the number of genes.

Mij =

{

0 jgene /∈ ipathway

1 jgene ∈ ipathway
(1)

2.2. PINNet: a deep neural network with
pathway prior knowledge for AD
classification

To aid in identifying transcriptional features regulating AD,

we developed a deep neural network-based classification model

named PINNet, which predicts AD based on pathway information.

Figure 1 shows the structure of the PINNet. Contrary to previous

deep learning approaches, PINNet does not rely on operating as

a black box but instead focuses on prior biological knowledge

from the GO or KEGG databases. PINNet consists of four layers:

an input layer, a pathway layer, a fully connected hidden layer,

and a softmax output layer, and the model is built to predict AD

(see Figure 1 and Methods). Blood or brain transcription datasets

are fed into the input layer of the model, and the output layer

indicates a sample status (AD or CN). We formulated the structure

of the model from genes to biological functional groups, enabling

biological interpretation. The use of multiple levels of ontology

(ranging from 10 to 1,156 genes per pathway) acknowledges the

diverse complexity of biological processes. During training, the

expression data of each gene are induced to patterns of pathway-

level of activities, enabling in silico investigation of the biological

processes underlying transcriptome-disease association. Genes are

partially propagated through the same biological process that

contains them, giving rise to functional changes at the pathway

level, consequently predicting sample status. Using this design, the

PINNet embedded in GO includes 4,026 biological process terms,

and the corresponding model for KEGG includes 168 pathways.

To incorporate the effect of the pathways, we partially masked the

weights of the pathway layer using a binary matrix that represents

relationships between pathways and genes. As these neurons’

connection is designed to represent biological processes, pathway

nodes only receive inputs from the genes included in the pathway.

On average, one GO BP is connected to 84 input gene nodes and 42

input gene nodes for KEGG. We normalized pathway nodes with

the size of pathways to ensure that the number of genes included in

the pathway does not affect the importance of the pathway node. In

addition, since the pathway node is very sparsely connected, there

is a difference in the range of values of the pathway node and the

fully connected node. Therefore, layer normalization was applied

to the mini-batch when pathway nodes and fully connected nodes

were concatenated. Afterward, they pass through one hidden layer

and softmax to predict AD.

2.3. Structure and training of PINNet

PINNet is a four-layer deep neural network with biological

pathway information as prior knowledge for AD classification. The

PINNet comprises four layers: an input layer, a pathway layer,

a hidden layer, and an output layer, as shown in Figure 1. Gene

expression values of a sample g ∈ R
n are allocated to input nodes.

Thus, the number of input nodes (n) is the same as the number of

genes (n = 8, 922) in the dataset. The pathway layer consists of fully

connected nodes f and pathway nodes p. Pathway nodes p represent

relations between genes and pathways, and fully connected nodes f

represent features for all genes regardless that they are included in

the pathway. The number of nodes in p ∈ R
m was the same as the

number of pathways used. For instance, m is 7,470 when using the

GO database and 186 when using the KEGG database. In order to

represent the relationship between the gene and the pathway, we

obtain pathway nodes p as

p = tanh(((Wp ◦M)× g) ◦ u), (2)

where Wp is weight matrices. The Wp ∈ R
m×n is masked by

the pathway information matrix M ∈ R
m×n with element-wise

multiplication.Masking weights (Wp◦M) produce a sparse network

by weighting between a particular pathway and genes. Genes not

included in the pathway are set to zero. Note that non-zero weights

ofWp are updated by backpropagation. u ∈ R
m is a normalization

vector to prevent the values of pathway nodes are affected by the

number of genes in the pathway and is defined as follows:

ui =
1

√

∑n
j Mij

(3)

For the fully connected nodes f , n input nodes are directly

connected to the f through a linear layer as follows:

f = tanh(Wf g) (4)

where Wf is a weight matrix. p and f are concatenated after

layer normalization ([LayerNorm(p); LayerNorm(f )]), and it passes

through the hidden layer and the output layer. Then, output o ∈ R

is obtained. Tanh is used for the nonlinear transforming function,

and batch normalization is utilized to decrease the effect of internal

covariate shift induced by various weight scales. Dropout (α =

0.3) prevents overfitting of the model. We performed the training

process by minimizing a cross entropy loss.

The training dataset was oversampled using SMOTE (Chawla

et al., 2002) to avoid data imbalance. SMOTE oversampling creates

synthetic instances and generates a new instance in line, a segment

of the randomly selected k-nearest neighborhood of the minority

class. To train PINNet, we initialized all weights with the Xavier
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initialization. We optimized the loss using the ADAM optimizer,

the ReduceLROnPlateau scheduler, and a stochastic gradient

descent algorithm, with a mini-batch size of 64. Note that the

same settings are applied to both PINNet and the neural network

model used for the comparison. The model was implemented

using Python (version 3.7.4, https://www.python.org/) and Pytorch

(version 1.8.1, https://www.pytorch.org/) on GeForce TITAN X

GPUs.

2.4. Interpretation of PINNet and
calculation of importance scores

We interpreted the model to identify highly contributing genes

and pathways using the SHAP (SHapley Additive exPlanations)

values. The SHAP values for each model were computed using

the DeepExplainer SHAP package in Python, which is based on

Deep SHAP (Lundberg and Lee, 2017). DeepExplainer calculates

the feature importance of a given input to predict the deep neural

network. The SHAP value is close to 0 if the feature does not

affect the model’s expectation. Deep SHAP explains the difference

between output y and reference output ȳ by the summation of

the difference between inputs x and reference inputs x̄. Reference

output ȳ are determined by executing forward passes in the network

under reference inputs x̄. Let △xi be the difference between input

xi and reference input x̄i and C
(l)
△xi

be the attribution of node i in

the lth layer. Then, the difference between output y and ȳ can be

explained by the summation of attribution scores of xi in the input

layer l:

∑

i

C
(l)
△xi

= y− ȳ (5)

Reference inputs and outputs can be chosen for a given problem,

and we set the reference to a training set with a balanced

label distribution, where the reference output is the average of

the outputs of the training set. The attribution score calculated

from Deep SHAP can be adapted to an approximation of SHAP

values. To obtain the contribution of the genes in the input

layer, xi in Equation (5) is gene expression values in a test set.

Furthermore, to compute the contribution of pathway nodes in

the pathway layer, the values of pathway nodes p in Equation

(3) are used as xi in Equation (5). For each pathway and brain

and blood datasets, ten models are constructed by 10-fold cross-

validation. Absolute mean SHAP values are normalized as z-

scores, and the z-scores are averaged for the ten models. We

defined it as an importance score. Importance scores are used to

evaluate the contribution of the genes and pathways. The steps for

evaluating and analyzing highly contributed genes are depicted in

Figure 1.

3. Results

3.1. Performance in AD prediction

We applied PINNet to brain gene expression data (Narayanan

et al., 2014) and blood gene expression data from ADNI

(Petersen et al., 2010) and constructed four models using two

pathway datasets: blood with GO [blood (GO)], blood with KEGG

[blood (KEGG)], brain with GO [brain (GO)], and brain with

KEGG [brain (KEGG)]. While constructing a sparse pathway

network, we normalized the pathway nodes with the size of

pathways. To identify an appropriate normalization method, we

tried three types of a normalization vector u: (1) u = 1 (without

normalization), (2) u = 1/n, and (3) u = 1/
√
n, where n is the

number of genes in each pathway, and compared the importance

score of pathway nodes (Details about an importance score are

described in Methods). Without normalization, pathways with a

larger number of genes had higher importance scores in all four

models. The absolute values of the Pearson correlation coefficient

between the numbers of genes in pathways and importance scores

were strongly correlated in the blood (GO) (|R| = 0.43) and

blood (KEGG) (|R| = 0.30). However, when normalizing with√
n, |R| < 0.1 was obtained in four models. This implies that

the number of genes in the pathway has almost no effect on

the importance scores of the pathways through normalization

(Supplementary Figure S1). Based on this result, the value of the

pathway node was normalized with
√
n. We trained PINNet to

predict the disease status of samples (see Methods) and tested its

performance by 10-fold-cross-validation. In the cross-validation,

each fold preserved the ratio of sample classes, and the ratios of

AD to CN were 0.46 and 1.97 in blood and brain, respectively.

A part of the training set was used as a validation set so that

the ratio of training, validation, and test set was 8:1:1. During

the training of PINNet, a validation set was used for early

stopping and selection of the number of fully connected nodes

and learning rates with grid search (Supplementary Table S1).

We selected the hyperparameters that yielded the best AUC on

the validation set in each fold. Early stopping was applied if

the validation AUC did not increase by more than ten epochs

during the training. The number of fully connected nodes in the

pathway layer is a hyperparameter with a set of candidate values

of 32, 64, and 128, smaller than the number of pathways. The

number of nodes in the second hidden layer was fixed as 64.

Candidate values for the learning rate are 0.0001, 0.0005, and

0.001. All compared methods were trained and tested on the same

data splits.

With the brain gene expressions from the prefrontal cortex

area (Narayanan et al., 2014), the area under the curve (AUC)

values between true positives and false-positive rates were 0.9744

and 0.9763 with GO and KEGG pathways, respectively (Table 1).

The previous study using the same dataset showed the accuracy of

around 86.30–91.22% (Cheng et al., 2021) using several machine

learning models, reporting that brain gene expressions are valuable

to classifying AD patients. This was also confirmed in our study.

With the blood gene expressions from ADNI, we obtained AUC

values of 0.6355 and 0.6420 with GO and KEGG pathways,

respectively (Table 1). Predictions using the blood gene expressions

showed relatively lower classification performance than brain

expression data. This range of performance was also reported in

the previous study (Lee and Lee, 2020).

We compared PINNet with deep neural network (DNN),

support vector machines (SVM), and random forest (RF) methods.

The DNN model architecture is identical to PINNet with the
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FIGURE 1

An overview of the model structure and workflow. (A) The model consists of an input layer, a pathway layer, a hidden layer, and a softmax layer. The

mRNA expression dataset and pathway information were assigned to the input nodes and binary mask matrix, respectively. (B) The pathway layer

connects the relationship between pathways and genes. (C) The interpretability of PINNet was evaluated by comparing importance scores with

known AD-related genes. In addition, we identified subnetworks of highly contributed genes and examined related biological processes through a

functional enrichment test.

TABLE 1 Comparison of performance (AUC) of di�erent methods.

SVM RF DNN PINNet

GO KEGG

Blood 0.6174± 0.1116 0.5731± 0.1099 0.6144± 0.0789 0.6355± 0.1095 0.6420± 0.0811

Brain 0.9850± 0.0232 0.9554± 0.0332 0.9744± 0.0401 0.9744± 0.0329 0.9763± 0.0288

Performance comparison for different machine learning and deep learning models. The DNN is a control model for each pathway dataset, consisting of a fully connected layer. SVM, support

vector machine; RF, random forest; DNN, deep neural network; GO, gene ontology; AUC, area under the receiver operating characteristic curve.

same number of the first hidden layer, except that it does not

apply a pathway binary mask. The DNN model consists of two

fully connected layers without a pathway binary mask, and the

number of nodes and learning rate of the first hidden layer were

selected using grid search in the validation set. Since the range

of nodes in the first hidden layer of PINNet was 200 (168 + 32)

to 4,154 (4,026 + 128), the candidate nodes in the first hidden

layer include 128, 512, 1,024, and 4,096, and the learning rate
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TABLE 2 Comparison of performance (F1-score) of di�erent methods.

SVM RF DNN PINNet

GO KEGG

Blood 0.5609± 0.0559 0.5465± 0.0409 0.5563± 0.0635 0.5907± 0.0762 0.5542± 0.0547

Brain 0.9695± 0.0282 0.9411± 0.0250 0.9657± 0.0327 0.9607± 0.0330 0.9639± 0.0321

Performance comparison for different machine learning and deep learning models. The DNN is a control model for each pathway dataset, consisting of a fully connected layer. SVM, support

vector machine; RF, random forest; DNN, deep neural network; GO, gene ontology; AUC, area under the receiver operating characteristic curve.

used the same set of candidate values as PINNet. Similarly, for

SVM and RF, the combination of hyperparameters and kernel

type with the highest AUC for the validation set was chosen

within each fold. Sets of hyperparameter values searched in the

validation and subsequently selected best hyperparameter values

are provided in Supplementary Table S2. As shown in Table 1, our

PINNet outperformed the SVM and RF models, achieving better

classification performance on blood datasets. In the brain dataset,

the SVM model showed the highest performances, although all

models showed high prediction performances. Despite the extra

parameters in DNN, which is a fully connected model, the

performance of the DNN was lower than PINNet, especially

for blood. Additionally, Table 2 shows F1 scores of PINNet and

comparing models.

3.2. Known AD-related genes are important
features of PINNet

A major objective of the analysis of gene expressions for the

disease is to associate changes in the transcript with changes in

phenotype. To reveal such associations, we interpreted PINNet

models for AD prediction. We identified which genes played an

important role in prediction in the models learned from 10-

fold-cross validation in Table 1. To determine the contribution

of each gene in AD prediction, the feature importance of nodes

in the input layer was measured by the SHAP value using the

Deep SHAPmethod, a backpropagation-based deep neural network

interpretation algorithm (see the Methods section). For each

pathway (GO and KEGG) and each gene expression dataset (brain

and blood), we calculated SHAP values from the trained PINNet

models for each gene. We calculated the importance score as the

average of the normalized SHAP values of the ten models. As a

result, we obtained the importance scores of genes for each model

of blood (GO), brain (GO), blood (KEGG), and brain (KEGG).

We analyzed the importance scores of genes using two lists

of known AD-related genes: AlzGene (Bertram et al., 2007) and

DigSee (Kim et al., 2017). The AlzGene contains 681 genes

curated by systematic meta-analyses, and 361 genes were shared

with the 8,922 genes used in the study. DigSee contains 1,635

AD-related genes extracted from PubMed abstracts using text-

mining techniques, and 961 were common with genes used in

this study. We defined genes included in AlzGene or DigSee as

AD-related genes and the remaining as non-AD-related genes. We

used the Wilcoxon test to compare the importance score between

AD-related and non-AD-related genes in PINNet and DNN. As

shown in Figure 2, AD-related genes screened from DigSee and

AlzGene showed significantly higher contributions than non-AD-

related genes in PINNet models for all datasets (p-value ≤ 0.001).

However, in the case of DNN models, the difference in importance

score between AD-related genes and non-AD-related genes is only

partially significant for brain data, and there is no difference in

blood. In addition, we observed that the importance scores of

known AD genes from PINNet were significantly higher than those

from the DNN model for both KEGG and GO sources. These

results shows the robustness of our approach. Unlike standard

DNNs, PINNet captures important biological features based on

prior biological knowledge. It represents that PINNet’s biological

prior knowledge leads to learning disease-related genes as essential

features.

3.3. Finding sub-networks of highly
contributed genes

Using a protein interaction network obtained from the STRING

database, we examined genes with high importance scores. We

selected 1% genes with the highest importance scores from the four

models. We integrated genes selected in PINNet (GO) and PINNet

(KEGG) models for the blood and brain, separately, and obtained

170 and 167 genes in blood and the brain, respectively. The

highly contributed genes were mapped onto the STRING database

(version 11.0) (Szklarczyk et al., 2019), where interactions larger

than a confidence score of 0.7 were used. Cytoscape (Shannon

et al., 2003) was used to configure the PPI network. As shown in

Figure 3, 152 and 138 genes in the blood and brain were mapped in

the largest network, respectively (Supplementary Table S3).We also

used ClusterOne (Nepusz et al., 2012) to screen PPI subnetwork

modules. ClusterOne identifies overlapping functional modules

by detecting dense regions in the protein interactome network.

The parameters were set to p-values < 0.05, the minimum size

= 5, and an edge weight as a confidence score in the STRING

database. If genes of two subnetworks were overlapped by more

than 70%, we merged them into a large module. Then, modules

were selected if more than one biological term was enriched with

GOBP and KEGG using DAVID (Sherman et al., 2009) (Bonferroni

corrected p-values < 0.05). Figure 3 shows blue, green, red, orange,

and purple modules in the blood and blue and green modules

in the brain. In the blood, the blue module was significantly

enriched in 218 terms related to proliferation and several signaling

pathways, including Ras, FOXO, and PI3K-Akt signaling pathways.

The green module was enriched with antigen processing and

presentation terms, especially the MHC class II protein. In the red

module, the serine family, comprising cysteine, glycine, and serine

Frontiers in AgingNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1126156
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Kim and Lee 10.3389/fnagi.2023.1126156

FIGURE 2

Importance score of known Alzheimer’s disease (AD) genes in PINNet and DNN. We compared the SHAP (SHapley Additive exPlanations) values

of known AD-related genes, including (A) Alzgene and (B) Digsee, in PINNet and DNN. The y-axes in each graph show the importance score.

*Denotes a p-value ≤ 0.05 of the Wilcoxon test between non-AD related genes and AD-related genes; **indicates a p-value ≤ 0.01 of significance;

***represents a p-value ≤ 0.001.

metabolism-related terms, was enriched. The orange module was

related to several metabolic processes, including glycolysis, ethanol

catabolic process, and aldehyde catabolic process. The purple

module was enriched with several carbon metabolism pathways. In

the brain, the blue module was similar to the blue module in blood.

It was enriched with 350 terms related to proliferation and several

signaling pathways, including TNF, FOXO, and PI3K-Akt signaling

pathways. The greenmodule contained 29 enriched terms related to

the oxaloacetate metabolic process (Details about enrichment tests

are in Supplementary Table S3).

3.4. Comparisons of contributions of genes
on blood and brain dataset

We also identified highly contributed genes that show

differences between blood and brain in AD prediction. First, we

compared models based on the same pathway database (GO,

KEGG) in different tissues with a two-sided Wilcoxon test (see

Supplementary Table S4; Supplementary Figures S2, S3). From the

results of 10-fold cross-validation, absolute SHAP values with z-

score normalization were used for the test, and the p-values were

corrected by Benjamini–Hochberg method (BH). We obtained 24

and 291 significantly different genes between blood and brain

models (blood (GO) vs. brain (GO) and blood (KEGG) vs.

brain (KEGG), respectively) with the adjusted p-values (BH) <

0.05. Next, we checked highly contributed genes (top 1%) that

showed a clear distinction between the tissues. As a result, in

the brain, CLU, PTPN11, ITPKB, PRKACB, IGF1, and MTHFD2

were more important compared to blood. CLU is related to

several pathological states of AD, including a mediator of Aβ

toxicity (Foster et al., 2019). PTPN11 (also known as SHP2)

interacts with tau in Alzheimer’s disease brain (Kim et al., 2019).

Overexpression of ITPKB induces the increase of Aβ40 and tau

hyperphosphorylation in a mouse model of familial Alzheimer’s

disease (Stygelbout et al., 2014). PRKACB is involved in the

elevation of Aβ and tau hyperphosphorylation levels (Wang et al.,

2019). Reduced IGF-1 signaling in the AD mouse model is

attributed to a decline in neuronal loss and behavioral impairment

(Cohen et al., 2009). MTHFD2 is differentially expressed in AD

posterior cingulate astrocytes (Sekar et al., 2015). In the case of

blood, although two genes were significantly important compared

to brain, there is no known evidence to explain the relevance of

these genes and AD in blood.

3.5. Prediction performance of genes with
high importance scores

We further investigated whether genes selected using the

importance scores in PINNet can be relevant features for predicting

AD. First, we divided all samples into ten sets; eight sets were used

for training, a set for selecting genes (named a feature selection

set), and a remaining set for testing (see Supplementary Figure S4).

Second, after training PINNet using the training set, we selected

892 (10%) genes with the highest importance scores in the feature

selection set. Third, a multilayer perceptron (MLP) model was

trained with the 892 selected feature genes, and then the remaining

test set was used to evaluate the AD prediction performance. We

repeated this process ten times. The MLP model consists of four

layers, and the numbers of nodes in each layer are {n, n/2, n/4,

2}, where n is the number of input genes. We compared the

performance of 10% of selected genes using PINNet with the same

number of randomly selected genes and all genes for predicting AD

samples. Genes selected using PINNet outperformed the random

gene set in blood models (Table 3), suggesting that only 10% of

the genes selected from PINNet can represent the whole blood

transcriptome dataset.
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FIGURE 3

Mapping highly contributing genes to the PPI network. Colored nodes are sub-networks clustered using the ClusterOne algorithm. Gene nodes can

be mapped to more than one sub-networks. (A) The blood sub-network. (B) The brain sub-network.
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TABLE 3 Performance comparisons (AUC) using all genes, random genes and selected genes from PINNet.

All (8,922) Random (892) Selected features (892)

PINNet (GO) PINNet (KEGG)

Blood 0.6092± 0.0762 0.5745± 0.0875 0.5938± 0.0776 0.6031± 0.0598

Brain 0.9764± 0.0258 0.9750± 0.0440 0.9720± 0.0343 0.9743± 0.0314

AUC, area under the curve; DNN, deep neural network.

4. Discussion

In this study, we developed PINNet, a model with higher

interpretability than a black box neural network with pathway

information as prior knowledge. When designing a model,

relationships between pathways and genes were represented as

weights between the input layer and the pathway layer.

We compared the performance of our proposed model

with those of previous studies using blood and brain datasets.

In the case of the brain dataset, prior studies employing the

Weighted Gene Co-expression Network Analysis method for

biomarker selection achieved an AUC ranging from 0.959 to

0.972 (Deng et al., 2021). Our model exhibits performance similar

to that of the selected biomarker without an additional feature

selection process. In the case of the blood dataset, Khanal et al.

(2021) reported a 0.65 AUC in 5-fold cross-validation for the

same dataset, which incorporated education and age features.

PINNet’s performance is comparable, even without the feature

selection step and the inclusion of education and age features.

Furthermore, PINNet provides more extensive insights into feature

contributions compared to alternative methods. Our results show

that, when contrasted with a deep neural network without pathway

information, PINNet proves adept at learning informative groups

of features, as depicted in Figure 2.

We further examined the importance score of pathway nodes

in the pathway layer using the same ten models that analyzed

the importance scores of input genes (Supplementary Table S5).

The maximum values of importance scores for input gene nodes

and pathway nodes were 11.904 and 1.512, respectively, and the

variances were 0.697 and 0.321, respectively. Since the importance

scores were defined as the average of z-scores of absolute mean

SHAP values, this result means that there were relatively few

pathway nodes having high importance scores across all tenmodels.

Furthermore, there was no significant difference in importance

scores of pathway nodes between blood and brain models. When

the Wilcoxon test was performed, adjusted p-values (BH) were

>0.05 for all pathways (Supplementary Table S5).

Although the average importance scores of pathway nodes

were relatively smaller than compared to those of gene nodes,

pathways with high importance scores were related to AD. The

characteristics of the highly ranked pathways in the blood were

related to the glycosylphosphatidylinositol (GPI) anchor-related

pathway and immune response. The GPI anchor metabolic process

was the highest-ranked GO BP, and similar KEGG pathways, such

as glycerophospholipid metabolism and GPI-anchor biosynthesis,

were also highly ranked among pathway nodes of blood (KEGG).

In addition, several immune-related terms have been ranked top

in blood. In recent studies, inflammation has been identified as

an important contributor to AD pathology. Peripheral immune

cells, such as T cells, are activated and infiltrate the inflamed

brain area through the damaged blood-brain barrier (BBB) and

accumulate in the AD brain (Togo et al., 2002; Town et al.,

2005). Moreover, disrupted BBB may allow complement proteins

to reach the brain from the plasma, and cell damage and death can

lead to complement activation of neurons and oligodendrocytes,

which activate complement and lead to dysregulation (Morgan,

2018).

In the prediction of the brain dataset, the GO BP term with

the highest importance score is the regulation of filopodium

assembly. Filopodia is the protrusion at the end of the neuron

and is related to neural plasticity (Ozcan, 2017). AD pathology

shows a correlation with filopodia density (Boros et al., 2019).

In KEGG, neurodegenerative diseases such as Parkinson’s disease,

Alzheimer’s disease, and prion disease showed high importance

scores. SNARE interactions in vesicular transport ranked 9th

on pathway nodes of the brain (KEGG), and it is associated

with neurotransmitter release (Han et al., 2017). In particular,

Aβ oligomers interfere with SNARE-medicated vesicle fusion,

which may cause synaptic dysfunctions (Yang et al., 2015).

Similar to blood models having pathways related to immune

response, many immune-related pathways were also important in

the brain models. We suggest that immune-related genes have

the potential to advance the understanding of AD in terms of

systemic disease in future studies. In future, external validation

using additional clinical data could be pursued. As demonstrated

in this study, the application of PINNet can provide valuable

understanding of the underlying molecular mechanisms and

biological processes.

5. Conclusion

We proposed a pathway information-based neural network

model for the AD prediction. PINNet applied pathway-level of

prior biological knowledge in constructing connections between

genes and the AD status. We improved classification accuracies

of AD and CN in blood and brain using PINNet, and the

interpretation of the trained model revealed biological systems

related to AD. Additionally, PINNet would be a promising model

for various disease prediction tasks due to its possibility of model

interpretability.
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