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Alzheimer’s disease (AD) is a common neurodegenerative disease. Type 2 diabetes

mellitus (T2DM) appears to increase and contributing to the risk of AD. Therefore,

there is increasing concern about clinical antidiabetic medication used in AD. Most

of them show some potential in basic research, but not in clinical research. So we

reviewed the opportunities and challenges faced by some antidiabetic medication

used in AD from basic to clinical research. Based on existing research progress, this

is still the hope of some patients with special types of AD caused by rising blood

glucose or/and insulin resistance.
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Introduction

At present, Alzheimer’s disease (AD) lacks effective treatment methods and drugs. It is
only delayed by some drugs that act on neurotransmitters (Marucci et al., 2021). In recent
years, some progress has been made in anti-AD drugs, such as the Aducanumab approved by
United States Federal Drug Administration (FDA), GV-971 approved by the National Medical
Products Administration (NMPA), and Lecanemab, an initial decision on the drug’s approval by
the FDA is expected by 2023, but they are all controversial (Karlawish and Grill, 2021; Xiao et al.,
2021; The Lancet, 2022). The failure of a large number of drug studies on AD is largely related
to the unknown pathogenesis of AD. Therefore, similar to the research of anti-tumor drugs, it
is very promising to conduct more accurate subtype classifications for AD patients, and then
conduct treatment drug research.

Epidemiological investigations of Type 2 diabetes mellitus (T2DM) and AD indicated that
T2DM appears to increase and contributing to the risk of AD. Learning cognitive dysfunction,
neuronal loss, etc., appear in T2DM patients (Noreen et al., 2018; Li et al., 2021). Further studies
show they share lots of common link, including similar pathological features, etiology, targets,
and involving same signaling pathways (Doherty et al., 2013; Chung et al., 2018; Zhang et al.,
2018; Takeuchi et al., 2019; Gharibyan et al., 2020; Sun et al., 2020; Dekeryte et al., 2021; Liu
et al., 2021; Yen et al., 2021). Thus, some researchers propose a theory that AD is Type 3 diabetes
mellitus (T3DM) (Steen et al., 2005). Then, a growing number of studies have been carried out
and showed that drugs for the treatment of T2DM also have certain improvement effect on AD
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(Akimoto et al., 2020). Most of them show some potential in basic
research, but not in clinical research (Table 1). So we reviewed the
opportunities and challenges faced by some antidiabetic medication
used in AD from basic to clinical research. Based on existing research
progress, this is still the hope of some patients with special types of
AD caused by rising blood glucose or/and insulin resistance.

Metformin

Metformin (MET) is a common oral anti-diabetic drug, which
can lower blood glucose in many ways. Among these mechanisms
regulated by MET to lower blood glucose, the regulatory mechanism
centered on AMP-activated protein kinase (AMPK) plays an
important role not only in diabetes mellitus (DM) but also in AD
(Markowicz-Piasecka et al., 2017; Ma et al., 2022). In streptozotocin
(STZ)-induced Swiss Webster mice, MET improves spatial memory
in diabetic mice, which can be associated with reducing p-Tau and β-
amyloid (Aβ) plaque load and inhibition of neuronal death (Oliveira
et al., 2021). And in APP/PS1 mice, MET increases the level of
p-AMPK and insulin degrading enzyme (IDE) protein in mice, and
significantly reduces the Aβ level in the brain. Although it does not
affect the enzyme activity of Aβ-related secretion enzymes (Lu et al.,
2020). Additionally, in the APP/PS1 mouse injected Tau, MET can
promote the phagocytosis of pathological Aβ and Tau proteins by
enhancing microglial autophagy capability (Chen et al., 2021). But
this performance shows a certain gender difference. In AβPP mice
aged 12–14 months, MET activates AMPK to show a protective effect
in female mice, but it shows a damage effect in male mice (DiTacchio
et al., 2015). The results of these pre-clinical studies show that MET
has a certain potential treatment effect on AD.

Although in many preclinical studies, MET shows an exciting
role, the results in clinical studies are indeed unsatisfactory. First of
all, there are still certain controversy in whether MET reduces the
risk of AD. Studies have shown that MET can be a reduced AD risk
in the general population (Zheng et al., 2022). But analyzing among
Asians, MET has the risk of increasing the prevalence of AD (Ha et al.,
2021; Luo et al., 2022). We believe that this is not consistent with the
selection and analysis goals of data. To a large extent, the risk of AD
population based on DM-based diseases can be considered as useful.
We speculate that this is related to some AD patients without blood
glucose changes. The AMPK activator represented by MET may be
defined as a significant role in AD patients with T3DM. And some
clinical studies have also verified our speculation. The use of MET
does not increase the risk of AD. And long-term and large doses of
MET are related to the risk of lowering AD with elderly DM (Sluggett
et al., 2020). Therefore, we believe that we should have targeted design
clinical trials to screen patients with abnormal blood glucose or have
DM themselves, or early intervention for patients with DM merged
mild cognitive impairment. And when considering the selection of
drugs, the stage, type, and gender of the disease itself should be
comprehensively considered.

GLP-1 agonists

Glucagon-like peptide-1 (GLP-1) is one of the important
targets for the treatment of diabetes. As an intestinal peptide,
GLP-1 has glucose concentration dependent hypoglycemic effect

via the potentiation of glucose-induced insulin secretion and the
suppression of glucagon secretion (Keshava et al., 2017; Deacon,
2020). Moreover, numerous studies have demonstrated GLP-1 has
potential neuroprotective and neurotrophic effects (Liu et al., 2021),
so that GLP-1 based therapies may have favorable effects on AD. Such
as liraglutide (LRGT), dulaglutide, lixisenatide, exenatide, and NLY01
have a significantly association with lowering risk of AD (Akimoto
et al., 2020). The anti-AD effect of GLP-1 receptor (GLP-1R) agonist
(GLP-1RA) has attracted the attention of researcher.

Liraglutide improves memory impairment in various AD models,
decreasing AD-related insulin receptor (INSR), synaptic and Tau
pathology in specific brain regions (Batista et al., 2018; Duarte
et al., 2020). These effects involve multiple pathways. In Aβ,
specifically, LRGT attenuates brain estradiol and GLP-1 and activates
protein kinase A (PKA) levels, oxidative/nitrosative stress and
inflammation in 11-month-old AD female mice, reduces their
cortical Aβ1−42 levels (Duarte et al., 2020). LRGT can both reduce
the overproduction of Aβ and increase its removal. One side,
amyloid precursor protein (APP) is metabolized to Aβ by β-
secretases and γ-secretases. LRGT decreases the formation of Aβ

via inhibiting the activity of β-secretases and γ-secretases (Qi
et al., 2016; Zhang et al., 2019; Jantrapirom et al., 2020). The
other, binding to GLP-1R, LRGT activates the phosphoinositide-3
kinase/mitogen-activated protein kinase (PI3K/MAPK) dependent
pathways, consequently following trafficking and clearing Aβ by
increasing the presence of Aβ transporters in cerebrospinal fluid
(Wiciński et al., 2019). In Tau, LRGT also reduces p-Tau, Aβ,
via the protein kinase B/glycogen synthase kinase-3β (Akt/GSK-
3β) pathways, reversing the p-INSR whose major downstream
signaling molecules include insulin substrate 1, Akt and GSK-
3β (Chen et al., 2017). At the same time, LRGT can reduce
hyperphosphorylation of Tau, neurofilaments (NFs) and neuronal
degeneration through restoring protein phosphatase-2A (PP2A)
activity and altering in c-Jun N-terminal protein kainse (JNK) and
extracellular regulated protein kinases (ERK) signaling apparently
(Zhang et al., 2019; Jantrapirom et al., 2020). Additionally, LRGT
ameliorates mitochondrial dysfunction and prevents neuronal loss
with activation of the cAMP/PKA pathway in the brain of 5 × FAD
mice. Activating the cAMP/PKA pathway, GLP-1 increases the
p-DRP-1-s637 and mitigates mitochondrial fragmentation in Aβ-
treated astrocytes. Then it further improves the Aβ-induced energy
failure, mitochondrial reactive oxygen species (ROS) overproduction,
mitochondrial membrane potential (MMP) collapse, and cell toxicity
in astrocytes (Xie et al., 2021). In addition, Dulaglutide decreases the
hyperphosphorylation of Tau and NFs proteins through improving
the PI3K/Akt/GSK-3β signaling pathway (Zhou et al., 2019).
Lixisenatide also plays an important role in memory formation,
synaptic plasticity and cell proliferation of rats. It can reduce amyloid
plaques, NFTs and neuroinflammation in the hippocampi of 12-
month-old 3 × Tg female mice, which may be related to activating
PKA-cAMP response element binding (CREB) signaling pathway and
inhibiting p38-MAPK (Cai et al., 2018).

Generally speaking, these protection effects to a large extent rely
on multiple pathways with regulatory regulation of insulin signal
pathways as the core, thereby removing neurotoxic substances (Aβ

and/or Tau). At the same time, it is difficult to define whether
the control of inflammation and the protection of mitochondria
is the cause or result. In addition, it is worth noting that a large
number of preclinical studies on it come from China. And limited
clinical research, it is difficult to prove the complex connection
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TABLE 1 Clinical antidiabetic medication used in AD.

Medication Pre/clinical Main results References

MET Preclinical Improves spatial memory in diabetic mice, promotes the phagocytosis of pathological
Aβ and Tau proteins by enhancing microglial autophagy capability, impaired glucose
metabolism and mitochondrial dysfunction

Chiang et al., 2016; Chen et al., 2021; Oliveira et al.,
2021

Clinical Reduces AD risk in the general population, beneficial effects on cognitive performance,
long-term and high-dose metformin use is associated with a lower risk of incident AD in
older people with diabetes

Sluggett et al., 2020; Pomilio et al., 2022; Zheng
et al., 2022

Clinical The available evidence does not support the idea that MET reduces risk of AD, and it
may increase the risk in Asians

Ha et al., 2021; Luo et al., 2022

GLP-1RA Preclinical Reduce the overproduction of Aβ and increase its removal, reduce
hyperphosphorylation of Tau, neurofilaments, ameliorate mitochondrial dysfunction
and prevents neuronal loss

Qi et al., 2016; Chen et al., 2017; Cai et al., 2018; An
et al., 2019; Wiciński et al., 2019; Zhang et al., 2019;
Zhou et al., 2019; Duarte et al., 2020; Jantrapirom
et al., 2020; Xie et al., 2021

Clinical Administration of GLP-1 agonists may reduce the risk of AD in patients with T2DM Akimoto et al., 2020

PPAR-γ agonists Preclinical Ameliorates Aβ deposition, controlling Aβ-induced dysfunctions of neuronal activity in
the DG underlying memory loss in early AD

Jahrling et al., 2014; Toba et al., 2016; Badhwar
et al., 2017; Hsu et al., 2017; Yang et al., 2017

Clinical PGZ (15–30 mg) has been demonstrated the greatest efficacy compared to placebo,
subjects receiving RSG exhibits better delayed recall

Watson et al., 2005; Cao et al., 2018

Clinical Daily 0.8 mg oral PGZ does not significantly delay the onset of mild cognitive
impairment due to AD, no evidence of clinically significant efficacy in cognition was
detected for 2 or 8 mg RSG extended-release as adjunctive therapy

Harrington et al., 2011; Burns et al., 2021

DPP4i Preclinical DPP-4i drugs mainly improve inflammation and oxidative stress through the
GLP-1/GLP-1R signaling pathway, affecting the production and clearance of toxic
proteins

Kosaraju et al., 2013a, 2017; Chen et al., 2019;
Siddiqui et al., 2021

Clinical DPP-4i is associated with low amyloid burden and favorable long-term cognitive
outcome in diabetic patients with ADCI, sitagliptin’s improvement of AD patient MMSE
scores, vildagliptin to treatment improves the cognitive function of the older patients
with T2DM

Isik et al., 2017; Ates Bulut et al., 2020; Jeong et al.,
2021

SGLT2i Preclinical EMP ameliorate the cognitive deficits in APP/PS1xdb/db mice, GBC improves memory
impairment with increasing insulin and reducing glucose and hippocampal
inflammation in rats with T2DM

Lin et al., 2014; Esmaeili et al., 2020; Hierro-
Bujalance et al., 2020

Clinical Long-term use of SGLT2i can improve cognitive function, especially for elderly diabetics Wium-Andersen et al., 2019; Mui et al., 2021; Low
et al., 2022; Mone et al., 2022

between correlation and clinical effectiveness. It is necessary to design
more randomized controlled trial such as ELAD Study (Femminella
et al., 2019). The clinical trials of it are worthy of attention. We
look forward to these random dual-blind experiments that can have
good results.

PPAR-γ agonists

The peroxisome proliferator-activated receptor γ (PPAR-γ) is
a prototypical ligand-activated nuclear receptor that coordinates
lipid, glucose and energy metabolism. The PPAR-γ agonists have
emerged as potent insulin sensitizers used in the treatment of T2DM.
Pioglitazone (PGZ) is a member of the thiazolidinedione (TZD)
family. In a pre-clinical study, it improves cognitive deficits in AD
animal models by reducing Aβ levels. And it normalizes the p35
protein and p-CRMP2 levels in the cerebellum, ameliorates impaired
motor coordination ability and long-term depression (LTD) in
APP/PS1 mice at the pre-Aβ accumulation stage (Toba et al., 2016). It
also enhances peripheral and brain insulin sensitivity in diet-induced
insulin resistance model rats, ameliorates Aβ1−42 deposition in the
hippocampus by increasing IDE and PPARγ expression. Notably,
activating the PI3K/Akt/GSK-3β pathway is also demonstrated to
serve a role in PGZ-induced Aβ1−42 degradation, which is abrogated

by the PPARγ antagonist GW9662 (Yang et al., 2017). Furthermore,
PGZ treatment could inhibit Cdk5 activity by decreasing p35 protein
level. More importantly, PGZ corrects long-term potentiation (LTP)
deficit caused by Aβ exposure in cultured slices and rescues impaired
LTP and spatial memory (Badhwar et al., 2017). Although clinical
studies have shown that PGZ has the potential of AD for treatment,
the results of clinical trials are indeed unsatisfactory. Daily 0.8 mg
oral PGZ did not significantly delay the onset of mild cognitive
impairment due to AD (Burns et al., 2021). Interestingly, PGZ 15–
30 mg demonstrates the greatest efficacy compared to placebo in
network meta-analysis (Cao et al., 2018).

The rosiglitazone (RSG) improves hippocampus-dependent
cognitive deficits in some AD patients and ameliorates deficits in
the Tg2576 mouse for AD amyloidosis (Jahrling et al., 2014). Then
the research further verified RSG treatment rescues cognitive deficits
and reduces aberrant activity of granule neurons in the dentate gyrus
(DG) (Hsu et al., 2017). Clinical trials of RSG have shown some
contradictions. Early studies showed some anti-AD potential of RSG
(Watson et al., 2005), while subsequent clinical trials fail to achieve
the desired results (Harrington et al., 2011). Therefore, in clinical
trials on RSG, screening for multiple subgroups in the AD patient
population and enrolling patients using predictive biomarkers has
received attention (O’Bryant et al., 2021). We speculate that with the
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further development of AD typing and biomarkers, such studies may
bring new hope.

DPP-4 inhibitors

Different from GLP-1 agonists, dipeptidyl peptidase 4 inhibitors
(DPP4i) do not possess inherent glucose-lowering activity. It inhibits
the activity of the enzyme DPP4, then it decreases blood glucose level
through GLP1 to treat T2DM (Stoian et al., 2020). DPP-4i contains
saxagliptin, vildagliptin, linagliptin, sitagliptin. They have beneficial
effects on amyloid aggregation and longitudinal cognitive outcome
in diabetic AD-related cognitive impairment (ADCI) (Jeong et al.,
2021). However, the mechanism by which they work seems different.

Sitagliptin has been demonstrated to have antioxidative and
antiapoptotic properties by modifying glutamate and glutathione
levels within the region of hippocampus in mice (El-Sahar et al.,
2015). Meanwhile, it increases the synaptic proteins and the
O-Glycosylation (Chen et al., 2019). Moreover, sitagliptin improves
the impaired cognitive by the potential mechanisms that regulating
neuroinflammation, antioxidation, and antiapoptotic, and the level of
GLP-1 and GLP-1R (Wiciński et al., 2018). Finally achieve the goal of
protecting learning and memory. Interestingly, preliminary clinical
results show that sitagliptin’s improvement of AD patient mini-
mental state examination (MMSE) scores is better than MET (Isik
et al., 2017). With a higher selectivity, saxagliptin has the same effect
as sitagliptin that protect learning and memory through GLP-1/GLP-
1R signaling pathway (Kosaraju et al., 2013a; Chen et al., 2019). Like
sitagliptin, linagliptin treatment mitigates the cognitive deficits that
attributed to the improvement of incretin levels and attenuate Aβ,
p-Tau and neuroinflammation in the brain mice of 3 × Tg-AD and
Aβ1−42 induced rat model of AD (Kosaraju et al., 2017; Siddiqui et al.,
2021). Moreover, linagliptin can ameliorate cognitive deficits through
insulin pathway (Siddiqui et al., 2021) and restore the impaired
insulin signaling caused by Aβ in neuronal cells (Kornelius et al.,
2015). Vildagliptin also demonstrates a unique mechanism for Aβ

and Tau clearance and reverses the cognitive deficits and pathology
observed in AD possibly via modulating Klotho protein together with
Akt pathway (Kosaraju et al., 2013b; Yossef et al., 2020). The addition
of vildagliptin to treatment improved the copying subdomain of
cognitive function and metabolic control of the older patients with
T2DM (Ates Bulut et al., 2020).

These results indicate that DPP-4i drugs mainly improve
inflammation and oxidative stress through the GLP-1/GLP-1R
signaling pathway, affecting the production and clearance of toxic
proteins, thereby improving cognitive function. But most of the
studies are basic research, although there are a small number of
clinical studies on sitagliptin and vildagliptin in cognition, but they
are all preliminary and short-term, and the sample size is small. Our
suggestion would be best to carry out the anti-AD research of DPP-4i
after a breakthrough in the anti-AD research of GLP-1/GLP-1R or the
combination of DP-4i and the first approved effective anti-AD drug.

SGLT2 inhibitors

Sodium glucose cotransporter 2 inhibitors (SGLT2i) can reduce
blood glucose by inhibiting its reabsorption in proximal tubules
and by promoting urinary glucose excretion. A growing numbers

evidence indicates that SGLT2i such as empagliflozin (EMP),
canagliflozin, dapagliflozin, ertugliflozin, and sotagliflozin have
neuroprotective potential in a murine mixed model of T2DM and
AD (Lin et al., 2014; Rizvi et al., 2014; Shaikh et al., 2016; Hierro-
Bujalance et al., 2020).

Empagliflozin help to limit cortical thinning and reduce
neuronal loss, hemorrhage, microglia burdens and SPs burden,
also improves cerebral microvascular eventually ameliorate the
cognitive deficits in APP/PS1xdb/db mice (Lin et al., 2014; Hierro-
Bujalance et al., 2020). Dapagliflozin and invokana might act as
potent dual inhibitors of SGLT2 and AchE, which contributes to
cognitive improvement, as well as ertugliflozin and sotagliflozin
(Rizvi et al., 2014; Shaikh et al., 2016). Glibenclamide (GBC)
treatment improves memory impairment with increasing insulin
and reducing glucose and hippocampal inflammation in rats with
T2DM and sporadic AD (Esmaeili et al., 2020). And SGLT2i
exert anti-inflammatory and antioxidant effects at the cellular
level mainly via regulation of the molecular target of rapamycin
(mTOR) pathway, which could ameliorate the progression of AD
(Esterline et al., 2020; Katsenos et al., 2022). And in nested case
control study evaluating diagnoses of dementia in patients with
T2DM, SGLT2i use showed a 42% reduction in dementia risk
(Wium-Andersen et al., 2019). Interestingly, in the population-
based cohort study of T2DM patients treated with SGLT2i and
DPP4i, the use of SGLT2i is associated with lower risks of dementia,
compared with DPP4i (Mui et al., 2021). And a prospective study
shows significant beneficial effects of the EMP on cognitive in
frail older adults with diabetes (Mone et al., 2022). In addition,
SGLT2I’s ≥ 3 years use is related to the improvement of cognitive
scores (Low et al., 2022). According to the existing evidence, long-
term use of SGLT2i can improve cognitive function, especially for
elderly diabetics. However, the role of AD patients still needs further
study.

Conclusion

Based on the facts that T2DM and AD share common features,
drugs used to treat T2DM are being investigated for efficacy in AD.
Consequently, studies on drugs used for T2DM in AD found these
treatments may represent a promising approach to fight AD, which
include MET, GLP-1RA, PPAR-γ agonists, DPP-4i and SGLT2i (Cao
et al., 2018). However, there are differences in their effects in basic and
clinical research on anti-AD (Table 1). At the same time, the anti-AD
effect of insulin is also controversial, but there are too many studies
involved, so this review will not discuss it for the time being. We
believe that the difference between the results of clinical antidiabetic
medication in anti-AD treatment clinical trials and basic experiments
is mainly related to the following: (1) We speculate that they are not
effective for all types of AD, but may be a special type: AD patients
who also suffer from diabetes. They may even be useful only for
cognitive dysfunction caused by insulin resistance. (2) These effects
interact with the improvement of insulin resistance, so perhaps early
intervention may have a better effect. (3) Complex and interactive-
oxidation, anti-neuroinflammation, and improve energy metabolism
play an important role in it, so the combination of drugs to treat AD
may have more potential. Such drugs are not a very good solution
under the existing evidence conditions. Looking forward to more
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refined pathological research on AD classification, it may rekindle
hope for the clinical research of such drugs.

But screening subjects based on more subtypes, or recruiting
patients using predictive biomarkers, would severely narrow the
pool of subjects who ultimately meet inclusion criteria and would
substantially increase the cost of clinical trials. Unless a reasonable
combination of predictive biomarkers can be found, or there is a
well-defined classification of AD subtypes. Otherwise, it will still be a
bottomless pit to rush to carry out relevant and more refined clinical
trials, and it is not worth investing too much energy. Moreover,
hypoglycemia, the side effect of such drugs, is still not negligible.
In the elderly, falls caused by hypoglycemia often cause serious
consequences. Therefore, we have to consider the scope of application
of this type of drug and the direction that needs to be considered in
the design of such drugs. It is best to regulate the insulin pathway
and have little effect on blood glucose (or be able to control blood
glucose stably within a reasonable range). Weighing the pros and cons
is an unavoidable multiple-choice question in drug development. In
addition to genes, diabetes is often closely related to eating habits,
and intestinal flora also play a key role in it. Whether these drugs
affect the intestinal flora and thus affect AD is also an aspect worthy
of attention. It is also worth noting that in the absence of strong
evidence-based medical evidence, the use of hypoglycemic drugs for
the prevention and treatment of AD will face many risks.

In the current situation, we should not be pessimistic. While
looking forward to the progress of basic research on AD, we should
more actively conduct group statistics or subtype analysis on existing
failed clinical trials, especially large-sample clinical trials. Not only
may there be unexpected surprises, but it will also play a guiding role
in the development of future clinical trials.
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