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Background: Several prediction models for cognitive frailty (CF) in older adults

have been developed. However, the existing models have varied in predictors and

performances, and the methodological quality still needs to be determined.

Objectives: We aimed to summarize and critically appraise the reported

multivariable prediction models in older adults with CF.

Methods: PubMed, Embase, Cochrane Library, Web of Science, Scopus,

PsycINFO, CINAHL, China National Knowledge Infrastructure, and Wanfang

Databases were searched from the inception to March 1, 2022. Included models

were descriptively summarized and critically appraised by the Prediction Model

Risk of Bias Assessment Tool (PROBAST).

Results: A total of 1,535 articles were screened, of which seven were included

in the review, describing the development of eight models. Most models were

developed in China (n = 4, 50.0%). The most common predictors were age (n = 8,

100%) and depression (n = 4, 50.0%). Seven models reported discrimination by

the C-index or area under the receiver operating curve (AUC) ranging from 0.71

to 0.97, and four models reported the calibration using the Hosmer–Lemeshow

test and calibration plot. All models were rated as high risk of bias. Two models

were validated externally.

Conclusion: There are a few prediction models for CF. As a result of

methodological shortcomings, incomplete presentation, and lack of external

validation, the models’ usefulness still needs to be determined. In the future,

models with better prediction performance and methodological quality should

be developed and validated externally.

Systematic review registration: www.crd.york.ac.uk/prospero, identifier

CRD42022323591.

KEYWORDS
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Abbreviations: AUC, area under the receiver operating curve; CF, cognitive frailty; CHARMS, Critical
Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies; EPV, event per
variable; IAGG, International Association of Gerontology and Geriatrics; IANA, International Academy of
Nutrition and Aging; PRISMA, Preferred Reporting of Items in Systematic Reviews and Meta-Analyses;
PROBAST, Prediction Model Risk of Bias Assessment Tool; ROB, risk of bias.
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Introduction

According to the World Health Organization, by 2030, older
adults will increase to 1.4 billion (World Health Organization
[WHO], 2021). Aging contributes to many chronic conditions, such
as frailty and cognitive impairment (Robertson et al., 2013). In
2013, the International Consensus Group from the International
Academy of Nutrition and Aging (IANA) and the International
Association of Gerontology and Geriatrics (IAGG) reached a
consensus on the concept of cognitive frailty (CF). CF is the
presence of physical frailty and cognitive impairment (clinical
dementia score of 0.5) with the absence of dementia (Kelaiditi et al.,
2013). Due to the difference in assessment tools and criteria, the
prevalence of CF ranged from 1.2 to 22.0% in community-dwelling
older adults (Arai et al., 2018). One study focused on community-
dwelling older adults indicated that the pooled prevalence of CF
was 9.0% (Qiu et al., 2022). CF may contribute to a range of
adverse outcomes (Feng et al., 2017; Zhang et al., 2021), for
instance, dementia, disability, low quality of life, depression, and
mortality.

CF includes two subtypes: reversible and potentially reversible
CF, depending on the degree of cognitive impairment. The
cognitive impairment of potentially reversible CF is mild cognitive
impairment, while reversible CF is usually subjective cognitive
decline. Studies have shown that if an early intervention was
implemented, the CF could be reversed (Ruan et al., 2015; Merchant
et al., 2021). However, there are no unified diagnostic tools for CF.
Most previous studies have been conducted by trained clinicians
and used comprehensive but time-consuming tools to assess
cognitive function (Sugimoto et al., 2018). It is recommended to
develop prediction models to identify high-risk individuals (Chen
et al., 2022).

There are some prediction models on CF. Yang and Zhang
(2021) developed a prediction model for CF in community-
dwelling older adults with chronic diseases. Predictors included
age, living alone, physical exercise, nutrition, and depression. The
C-index of the model was as high as 0.97. However, this model
did not validate externally. Tseng et al. (2019) also developed
a prediction model for CF among community-dwelling older
adults. Predictors included age, gender, waist circumference, calf
circumference, memory deficits, and diabetes mellitus. However,
the definition of CF varied in the development and validation
datasets, which could cause the risk of bias (ROB). The existing
models varied in predictors and prediction performances, and
the methodological quality of these models still needs to be
determined.

Therefore, this systematic review aims to summarize the
prediction models for CF, assess their methodological quality, and
provide some insight for future research.

Methods

This systematic review was designed according to the Preferred
Reporting of Items in Systematic Reviews and Meta-Analyzes
(PRISMA) guidance (Page et al., 2021). A protocol for this study
had been registered in the PROSPERO (CRD42022323591).

Eligibility criteria

Inclusion criteria: (1) Studies’ participants were older adults
(60 years older and over); (2) studies reported developing or
validating at least one multivariable model for predicting reversible
or potentially reversible CF or both; (3) studies had the outcome
of interest as CF; (4) studies published in English or Chinese; and
(5) Studies were conducted in institutionalized, hospitalized, or
community-dwelling settings.

Exclusion criteria: (1) studies were reviews or case reports;
(2) studies provided insufficient data for pooling despite several
attempts to contact authors; and (3) studies were univariate
prediction models.

Literature search

Through preliminary literature search and expert consultation,
we systematically searched PubMed, Embase, Cochrane Library,
Web of Science, Scopus, PsycINFO, CINAHL, China National
Knowledge Infrastructure (CNKI), and Wanfang Databases from
the inception to March 1, 2022. The following MeSH terms
and free words were used: “aging,” “older adults,” “cognitive
frailty,” “cognitive impairments,” “frailty,” “clinical decision rules,”
“prediction model,” “risk model,” and so on. The detailed search
strategy and results are provided in the Supplementary appendix.
Additionally, we manually searched citations for potential studies.

Literature selection

Two reviewers (JH and XZ) independently assessed the titles
and abstracts of studies for inclusion. Both authors compared
selected studies for inclusion. Discrepancies were resolved through
discussion. If there are still discrepancies, a third senior researcher
(MH) will join in to discuss and make a consensus. After
this initial screening, the full-text articles were retrieved for all
records. Full-text articles were also screened independently by two
reviewers (JH and XZ).

Data extraction

One reviewer (JH) independently extracted the data, while
another (XZ) checked the extracted data. The two reviewers
resolved discrepancies through discussion. If there are still
discrepancies, a third senior researcher (MH) will join in to discuss
and make a consensus.

Data were extracted using a form based on the Checklist for
Critical Appraisal and Data Extraction for Systematic Reviews
of Prediction Modelling Studies (CHARMS) (Moons et al.,
2014). Extracted information on each study included: (1) basic
information (e.g., first author, year of publication); (2) outcome
measurement methods; (3) source of data; (4) participants (age,
gender, country); (5) outcomes to be predicted; (6) predictors; (7)
event per variable (EPV); (8) missing data and handling methods;
(9) modeling methods; (10) model performances (discrimination,
calibration, and classification); (11) model evaluation, and (12)
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FIGURE 1

PRISMA 2020 flow diagram for literature screening and selection.

model presentation. An EPV was calculated as overfitting for model
development. Studies for model development with EPVs less than
10, while for model validation with participants less than 100, are
likely to be overfitting (Wolff et al., 2019).

Model performances were assessed by discrimination,
calibration, and classification. Discrimination, measured by the
C-index and area under the receiver operating characteristic curve
(AUC), is the extent to distinguish those at higher or lower risk
of having an event. Calibration refers to the degree of agreement
between predicted and observed risks, measured by calibration
plot, calibration slope, and Hosmer–Lemeshow test (Alba et al.,
2017). The AUC or C-index of 0.7–0.8 is acceptable, 0.8–0.9 is
excellent, and more than 0.9 is outstanding (Mandrekar, 2010).

Model validation includes internal and external validation.
Internal validation aims to test the reproducibility of the model
based on the development cohort data. While external validation
is to evaluate the model prediction performance in the new data,
focusing on model transportability and generalizability (Royston
and Altman, 2013).

When a study included multiple models for the same
population and outcome, the model with the best performance was
extracted for data extraction. When a study developed multiple
models, separate data extraction was performed for each model.

Risk of bias and application assessment

Two reviews (JH and XZ) independently assessed the ROB and
application of included studies using the Prediction Model Risk
of Bias Assessment Tool (PROBAST) (Moons et al., 2019; Wolff
et al., 2019). Discrepancies were resolved through discussion. If
there are still discrepancies, a third senior researcher (MH) will
join in to discuss and make a consensus. PROBAST consists of
4 domains and 20 signaling questions for ROB assessment. Each
signaling question is answered with YES (Y), PROBABLY YES (PY),
NO INFORMATION (NI), PROBABLY NO (PN), or NO (N). In a

domain, this area can be rated as a low risk only when the answers
to all questions are Y or PY. A domain containing at least one
question rated as N or PN will be considered high risk. Otherwise,
it will be deemed to be at unclear risk. The overall ROB is graded as
low risk when all domains are regarded as low risk, and the overall
ROB is considered high risk when at least one of the domains is
deemed high risk. Otherwise, it will be deemed to be at unclear
risk. The application assessment is similar to the ROB assessment
but includes only three domains.

Statistical analysis

Due to the differences in the definition criteria of CF, types of
predictors, modeling methods, and characteristics of participants,
we just calculated and reported descriptive statistics to summarize
the characteristics of the models without any quantitative synthesis.

Results

Study selection

This review searched 1535 records, and only seven studies
(Tseng et al., 2019; Navarro-Pardo et al., 2020; Rivan et al., 2020;
Sargent et al., 2020; Wen et al., 2021; Yang and Zhang, 2021; Chen
et al., 2022) were eligible (Figure 1), including eight prediction
models. Among these models, seven were diagnostic, and only one
was prognostic.

Study designs and study populations

Included study characteristics are summarized in Tables 1, 2.
Most of the models were developed using data from cross-sectional
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TABLE 1 Characteristics of included studies.

References Type
of
model
(D/V)

Study
design

Participants Candidate predictors EPV Outcome Outcome
measurement

Outcome
incidence
or
prevalence

Methods to
handle
missing
value

Model
development;
model
presentation

No. of events/
Participants

Age Male/
Female

Country

Chen et al., 2022 D, V Cross-
sectional
study

138/368 60∼91 237/289 China Age, gender, education, marital status,
physical exercise, time for consistent
exercise, intellectual activity, social
activity, self-assessment of sleep
quality, nocturnal sleep duration (h),
chronic pain; history of falls, daytime
mental state, the number of chronic
diseases, number of medications
taken, self-rated health, fasting
blood-glucose, traditional Chinese
medicine body composition,
nutritional status, IADL, and family
functions.

6.57 Both
reversible and
potentially
reversible CF

Frailty phenotype,
MoCA, and CDR

Prevalence:
37.5%

No missing data Logistic regression
and Nomogram

Navarro-Pardo
et al., 2020

D Cross-
sectional
study

62/285 60∼89 132/153 Spain Age, gender, formal education,
profession, social support status, and
psychological wellbeing.

8.86 Potentially
reversible CF

MoCA and modified
version of frailty
phenotype

Prevalence:
24.03%

No missing data Logistic regression
and NR

Rivan et al., 2020 D Prospective
cohort study

100/282 67.00
(4.98)

126/156 Malaysia Socio-demographic and health
information, nutritional status, body
composition, blood pressure,
cognitive function, physical function,
dietary intake, psychosocial factors,
and biochemical indices.

4.17 Potentially
reversible CF

Fried criteria,
Petersen and Lee
criteria

Incidence: 35.5% No handling
missing data

Logistic regression
and NR

Sargent et al.,
2020

D Cross-
sectional
study

257/1155 Control
group:
73
(0.22)
and CF:
82
(0.41)

500/655 Italy 132 SNPs and 155 protein biomarker
variables, age, sex, level of education,
anticholinergic burden, depressive
symptoms, baseline diagnosis of
dementia, and vascular dementia.

0.87 Potentially
reversible CF

Fried criteria and
MMSE

Prevalence:
22.3%

No handling
missing data

Machine learning
(xgboost) and NR

Sargent et al.,
2020

D Cross-
sectional
study

412/1145 Control
group:
61
(0.50)
and CF:
76
(0.67)

522/522 Italy 132 SNPs and 155 protein biomarker
variables, age, sex, level of education,
anticholinergic burden, depressive
symptoms, baseline diagnosis of
dementia, and vascular dementia.

1.40 Potentially
reversible CF

Fried criteria,
TMT-A, and TMT-B

Prevalence:
36.0%

No handling
missing data

Machine learning
(xgboost) and NR

(Continued)

Fro
n

tie
rs

in
A

g
in

g
N

e
u

ro
scie

n
ce

0
4

fro
n

tie
rsin

.o
rg

https://doi.org/10.3389/fnagi.2023.1119194
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1119194
A

pril5,2023
Tim

e:16:48
#

5

H
u

an
g

e
t

al.
10

.3
3

8
9

/fn
ag

i.2
0

2
3

.1119
19

4

TABLE 1 (Continued)

References Type
of
model
(D/V)

Study
design

Participants Candidate predictors EPV Outcome Outcome
measurement

Outcome
incidence
or
prevalence

Methods to
handle
missing
value

Model
development;
model
presentation

No. of events/
Participants

Age Male/
Female

Country

Tseng et al., 2019 D, V Cross-
sectional
study

155/724 73.1
(5.4)

385/339 China Age, sex, body mass index, waist
circumference, calf circumference,
visual acuity, education, tobacco
smoker, take alcohol, diabetes
mellitus, hypertension, dyslipidemia,
and coronary artery disease.

14.09 Potentially
reversible CF

6-metre walk speed,
handgrip strength,
and multiple
neuropsychological
assessments

Prevalence:
21.4%

No missing data Binary logistic
regression and Risk
score

Wen et al., 2021 D Cross-
sectional
study

101/848 60∼88 541/307 China Subjective symptoms, exhaustion,
weight loss, memory complaints,
depression, functional assessment,
gait speed (m/s),and gait speed (m/s)

11.22 Potentially
reversible CF

Fried phenotype,
MoCA, and CDR

Prevalence:
11.9%

No handling
missing data

Logistic regression
and Nomogram

Yang and Zhang,
2021

D Cross-
sectional
study

226/674 60∼89 287/387 China Age, education, the number of
chronic diseases, living alone, sleep
quality, physical exercise, intellectual
activity, nutrition, and depression.

25.11 Potentially
reversible CF

Fried phenotype,
MoCA, and CDR

Prevalence:
33.5%

No handling
missing data

Logistic regression
and Nomogram

D, development; V, validation; EPV, event per variable; CF, cognitive frailty; IADL, instrumental activities of daily living scale; MoCA, montreal cognitive assessment; CDR, clinical dementia rating; TUG, timed-Up-and-Go; GDS, geriatric depression scale; NR, not
reported; SNPs, single nucleotide polymorphisms; MMSE, mini-mental state examination; TMT, trail making tests.
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TABLE 2 Validation methods and predictive performance of included studies.

References Validation method Predictive performance

Internal
validation

External
validation

Discrimination: C index
or AUC (95% CI)

Calibration Classification

Sensitivity Specificity Accuracy

Chen et al., 2022 Bootstrap Temporal
validation

Internal 0.910 (0.863∼0.936) and
external 0.850 (0.785∼0.915)

Calibration plot (showed
satisfactory fitness) and
Brier score 0.117

79.7% 89.1% 85.6%

Navarro-Pardo et al., 2020 NR NR NR P = 0.36 NR NR 76.6%

Rivan et al., 2020 NR NR 0.826 (NR) NR 81.1% 76.1% NR

Sargent et al., 2020 Random split
and bootstrap

NR 0.88 (0.83∼0.90) NR NR NR NR

Sargent et al., 2020 Random split
and bootstrap

NR 0.86 (0.80∼0.90) NR NR NR NR

Tseng et al., 2019 Bootstrap Geographic
validation

Internal 0.71 (NR) and external
0.69 (NR)

P = 0.48 70% 60% NR

Wen et al., 2021 Bootstrap NR 0.835 (0.771∼0.899) P = 0.103 NR NR NR

Yang and Zhang, 2021 Bootstrap NR 0.970 (0.995∼0.986) P = 0.985 NR NR NR

AUC, area under the receiver operating curve; CI, confidence interval; NR, not reported; P, the p-value of the Hosmer–Lemeshow test.

TABLE 3 ROB and application assessment of cognitive frailty prediction models.

References ROB Application Overall

Participants Predictors Outcomes Analysis Participants Predictors Outcomes ROB Application

Chen et al., 2022 + + + – + + + – +

Navarro-Pardo et al.,
2020

+ + + – + + + – +

Yang and Zhang,
2021

+ + + – + + + – +

Wen et al., 2021 + + + – + + + – +

Sargent et al., 2020 + + + – + – + – –

Sargent et al., 2020 + + + – + – + – –

Rivan et al., 2020 + + – – + + + – +

Tseng et al., 2019 + + + – + + + – +

ROB, risk of bias; “+” low risk; “-” high risk; “?” unclear.

studies (n = 7, 87.5%), and most of the participants were from China
(n = 4, 50.0%) (Tseng et al., 2019; Wen et al., 2021; Yang and Zhang,
2021; Chen et al., 2022), while the others were from Spain (Navarro-
Pardo et al., 2020) (n = 1, 12.5%), Malaysia (Rivan et al., 2020)
(n = 1, 12.5%) and Italy (Sargent et al., 2020) (n = 1, 12.5%).

All models were developed for older adults aged 60–91 years.
Furthermore, there was no specific gender.

Outcome prevalence or incidence

Only one model measured outcomes of potentially reversible
and reversible CF (Chen et al., 2022), and the remainings
measured potentially reversible CF. The prevalence of potentially
reversible and reversible CF was 37.5%, while the prevalence
of potentially reversible CF ranged from 11.91 to 36.0%. One
study suggested that the incidence of CF was 35.5% (Rivan et al.,
2020).

Predictors

All prediction models reported their predictors. The number
of predictors ranged from four to seven. Only two (Sargent et al.,
2020) had more than 50 predictors because of the inclusion of
single nucleotide polymorphisms (SNPs), protein biomarkers, and
other covariates. Most of the models included similar predictors,
for example, age (n = 8, 100%), depression (n = 4, 50.0%), physical
exercise (n = 3, 37.5%), education (n = 4, 50.0%), and chronic
disease (n = 3, 37.5%).

Sample size

All models reported the number of participants included in
the final prediction model. The number of participants for model
development ranged from 282 to 1155, and EPV ranged from 0.87
to 25.11. Among the eight prediction models, one prediction model
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TABLE 4 Predictors, advantages, and disadvantages of included studies.

References Predictors Advantages Disadvantages

Chen et al., 2022 IADL, self-evaluation of health, self-evaluation of
daytime mental state, Number of chronic diseases,
age, nutritional condition, and physical exercise

• Relatively easy to measure
• Contains few predictors
• Performance is excellent
• Higher applicability and accessibility
• Externally validated.

• Subjective report information may be
inconsistent with the real situation
• Sample size of the model is limited

Navarro-Pardo et al., 2020 Age, formal education, profession, and psychological
wellbeing

• Relatively easy to measure
• Contains few predictors

• Limited testing of model performance
• No internal and external validation

Rivan et al., 2020 Age, digit symbol, TUG test, GDS, vitamin D, and
physical frailty

• Contains few predictors
• Performance is excellent

• Need to measure vitamin D
• No external validation

Sargent et al., 2020 SNPs, protein biomarkers, gender, age, education,
baseline diagnosis of dementia, vascular dementia,
depression, and Parkinson’s disease

• Contains few predictors
• Performance is excellent

• Need to measure SNPs and protein
biomarkers
• No external validation

Sargent et al., 2020 SNPs, protein biomarkers, gender, age, education,
baseline diagnosis of dementia, vascular dementia,
depression, and Parkinson’s disease

• Contains few predictors
• Performance is excellent

• Need to measure SNPs and protein
biomarkers
• No external validation

Tseng et al., 2019 Age, gender, waist circumference, calf circumference,
memory deficits, and diabetes mellitus

• Relatively easy to measure
• Contains few predictors
• Easy to implement in community settings
• Externally validated.

• Performance is acceptable

Wen et al., 2021 Age, sleep events per night, history of diabetes, heart
failure, history of hypertension, and physical exercise
per week

• Relatively easy to measure
• Contains few predictors

• No external validation

Yang and Zhang, 2021 Age, living alone, physical exercise, nutrition, and
depression

• Relatively easy to measure
• Contains few predictors
• Performance is excellent
• Easy to implement in community settings

• No external validation
• Definition of CF varied in the
development and validation datasets

IADL, instrumental activities of daily living scale; MoCA, montreal cognitive assessment; CDR, clinical dementia rating; TUG, timed-Up-and-Go; GDS, geriatric depression scale; NR, not
reported; SNPs, single nucleotide polymorphisms.

(Yang and Zhang, 2021) (12.5%) had an EPV of more than 20, two
prediction models (Tseng et al., 2019; Wen et al., 2021) (20.0%)
had an EPV between 10 and 20, and the remaining five prediction
models (Navarro-Pardo et al., 2020; Rivan et al., 2020; Sargent et al.,
2020; Chen et al., 2022) (62.5%) had an EPV less than 10.

Modeling method

Logistic regression (n = 6, 75.0%) was the most common
modeling method (Tseng et al., 2019; Navarro-Pardo et al., 2020;
Rivan et al., 2020; Wen et al., 2021; Yang and Zhang, 2021; Chen
et al., 2022) among the included models, while the other two
prediction models (Sargent et al., 2020) were developed by machine
learning (n = 2, 25.0%).

Model performance

Seven prediction models reported AUC or C-index, ranging
from 0.71 to 0.970. Specifically, two models showed outstanding
(Yang and Zhang, 2021; Chen et al., 2022), three showed excellent,
and one showed acceptable discrimination (Tseng et al., 2019; Rivan
et al., 2020; Sargent et al., 2020). Five prediction models reported
calibration using the Hosmer–Lemeshow test (Tseng et al., 2019;
Navarro-Pardo et al., 2020; Wen et al., 2021; Yang and Zhang, 2021)
(n = 4, 50.0%) and the calibration plot and Brier score (Chen et al.,

2022) (n = 1, 12.5%), while the remaining three prediction models
did not report calibration.

The classification includes sensitivity, specificity, and accuracy.
Three models reported the sensitivity ranging from 70.0 to 81.1%,
and the specificity ranging from 60 to 89.1%. One model only
reported the accuracy of 76.6% (Navarro-Pardo et al., 2020).

Model evaluation

Four prediction models were internally validated using
bootstrapping (Tseng et al., 2019; Wen et al., 2021; Yang and
Zhang, 2021; Chen et al., 2022) (50.0%), and the other two (Sargent
et al., 2020) were validated by the random split method and
bootstrapping. Only two (Navarro-Pardo et al., 2020; Rivan et al.,
2020) prediction models did not report whether internal validation
was performed (25.0%). Notably, only two models were externally
validated (25.0%).

Model presentation

Only four models presented the final models using nomogram
(Wen et al., 2021; Yang and Zhang, 2021; Chen et al., 2022) (n = 3,
37.5%) and risk score (Tseng et al., 2019) (n = 1, 12.5%), while
the remaining four (Navarro-Pardo et al., 2020; Rivan et al., 2020;
Sargent et al., 2020) (50.0%) did not report the presentation.
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Risk of bias and application assessment

All models were evaluated as high ROB. In the outcome
domain, one model (Rivan et al., 2020) was judged as high ROB
because predictors were not excluded from the outcome definition.
In the analysis domain, all models were at high ROB, mainly
due to the small sample size, failure to handle missing data,
selecting predictors by univariable analysis, and inappropriate ways
to categorize continuous predictors.

In terms of application, two models (Sargent et al., 2020) had
a high concern in the predictor domain. They were developed
using SNPs and protein biomarkers to understand the underlying
biological mechanisms for the relationship between physical frailty
and cognitive impairment, so they were probably not suitable for
screening CF in older adults.

Details of the ROB and applicability of all studies were
presented in Table 3 and Supplementary Table 1.

Model comparison

We compared all models to assess their performances and
predictors. More details were shown in Table 4.

Discussion

This systematic review summarized and critically appraised
eight prediction models on CF described in seven studies. Overall,
most of them showed excellent or outstanding discrimination.
However, there was still room for improvement. For example, the
calibration and external validation could be conducted better.

It is worth noting that some models only included a few
easy-to-obtain predictors with excellent performance (Yang and
Zhang, 2021; Chen et al., 2022). Age, education, depression,
and chronic diseases were the robust predictors consistent with
previous findings (Yuan et al., 2022). Physical exercise was also
a robust predictor. Studies have proven that physical exercise
improves older adults’ cognitive function and physical status (Li
et al., 2022). Liu et al. (2018) conducted a randomized controlled
trial and confirmed that physical activity reduced the odds of
worsening CF by 21%. Future studies are suggested to pay attention
to an exercise intervention in older adults to prevent CF.

Modeling methods in these studies included logistic regression
and machine learning. In general, machine learning models have
advantages of flexibility, scalability, and better performance than
logistic regression models (DeGregory et al., 2018; Ngiam and
Khor, 2019), since logistic regression methods need specific data
requirements or assumptions (Wu et al., 2021). However, in this
study, the performance of machine learning models was worse than
logistic regression models. The reason may be that the model’s
predictive performance is influenced not only by the modeling
approach but also by the methodological quality, which may
lead to an inaccurate estimation of the prediction performance
(Moons et al., 2019). However, the sample size needs to be much
bigger while machine learning is performed (Moons et al., 2019).
Therefore, the machine learning approaches are better suited for
large sample sizes with numerous variables.

In this study, we found that most models were calibrated
using the Hosmer–Lemeshow test. However, the p-value obtained
by the test cannot be used to quantify calibration, so this test is
not recommended (Steyerberg and Vergouwe, 2014). There is no
best method to calibrate, and all methods have advantages and
limitations (Huang et al., 2020). A calibration plot is the most
commonly used method for visual displaying.

Models were rarely validated externally. Since only internal
validation will lead to high prediction performance, external
validation is required to quantify the prediction performance in
other study populations for portability and generalization (Moons
et al., 2012). Therefore, the external validation of the CF prediction
model needs to be strengthened in the future.

All models were judged as high ROB, mainly due to the
insufficient sample size, failure to handle missing data, selecting
predictors by univariable analysis, and inappropriate ways to
categorize continuous predictors, which may lead to an inaccurate
estimation of prediction performances of the final model (Moons
et al., 2019). Handling missing data by direct elimination will
reduce the adequate sample size and increase the ROB of the
prediction model. Multiple imputations are considered the best
way to handle missing data because it allows users to explicitly
incorporate the uncertainty about the actual value of imputed
variables (Austin et al., 2021). Predictors selection based on
univariable analysis is to independently analyze whether this factor
has statistical significance on the occurrence of the outcome,
usually measured by p-value. It may miss some essential variables
and increase ROB because there may be some correlation between
predictors and only after adjusting for other predictors to reach
statistical significance (Moons et al., 2019). Although transforming
continuous into categorical variables helps explain the results, it
will lead to the loss of information and reduce the prediction
performance (Collins et al., 2016). An EPV of more than 20 is
less likely to have overfitting for model development, and a higher
EPV is required (often > 200) when using the machine-learning
technique (Moons et al., 2019).

We found some limitations in the geographical location of the
models. Most models were developed among Asians. The study has
suggested that CF in America and Europe are also prevalent, but
rare models have been developed in these regions (Qiu et al., 2022).
Since race disparities in the prevalence of cognitive impairment
or frailty, tailored prediction models or external validation for
American and European older adults are significant (Pandit et al.,
2020; Wright et al., 2021).

Strengths and limitations

In this study, we conducted a systematic literature search,
extracted data in detail, applied PROBAST to evaluate the model,
and provided advice for CF models’ future improvement. However,
this study also has some limitations. Firstly, the results were
not quantitatively synthesized because all models were judged as
high ROB, and the assessment criteria of CF, types of predictors,
modeling methods, and characteristics of participants varied.
Secondly, we only included Chinese and English literature and
did not retrieve the gray literature. These may result in an
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incomplete inclusion of CF prediction models. Lastly, geographical
limitations existed because the included models were mainly
developed based on Asians.

Recommendations and implications

There are several suggestions for future research. Firstly, more
prediction models should be developed based on a large sample
size to make the results more accurate. Secondly, future studies
should strictly follow the Transparent reporting of a multivariable
prediction model for individual prognosis or diagnosis (TRIPOD)
statement to standardize and transparent the studies of prediction
models (Collins et al., 2015). Thirdly, more attention should be
paid to improving the prediction performance and methodological
quality, such as choosing appropriate predictors selection methods
and modeling methods, using the method of multiple imputations
to handle missing data, and validating internally and externally.
Finally, it is necessary to evaluate the heterogeneity of prediction
models for CF in different subpopulations by the individual
participant data (IPD) meta-analysis so that prediction models can
be customized for different subgroups (Damen et al., 2016).

Conclusion

There are a few prediction models for CF. As a result
of methodological shortcomings, incomplete presentation, and
lack of external validation, the models’ usefulness still needs
to be determined. In the future, models with better prediction
performance and methodological quality should be developed and
validated externally.
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