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Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases 
characterized by cognitive deficits and dementia. AD entails predominant 
pathological characteristics including amyloid beta (Aβ) plaque formation, 
neurofibrillary entanglements, and brain atrophy, which gradually result in 
cognitive dysfunctions. Studies showed that these pathological changes are 
found in a myriad of brain structures, including the claustrum (CLA), a nucleus 
that penetrates deeply into the brain and is extensively interconnected to various 
brain structures. The CLA modulates many aspects of cognitive functions, with 
attention, executive function, visuospatial ability, language, and memory in 
particular. It is also implicated in multiple neuropsychiatric disorders, of which 
one worthy of particular attention is AD-related cognitive impairments. To inspire 
novel AD treatment strategies, this review has summarized the CLA functionality 
in discriminative cognitive dysfunctions in AD. And then propose an array of 
potential mechanisms that might contribute to the cognitive impairments caused 
by an abnormal CLA physiology. We  advocate that the CLA might be  a new 
promising therapeutic target in combination with existing anti-AD drugs and brain 
stimulation approaches for future AD treatment.
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Introduction

Alzheimer’s disease (AD) is a type of ubiquitous neurodegenerative disease characterized 
by cognitive dysfunction. This kind of neurodegenerative disease deprives individuals of the 
ability to concentrate and poses challenges to executive functions and can gradually progress to 
misplacing, narrative incompletion, and further result in delayed recollection as well as false 
memories in the later stage of AD (El Haj et al., 2020; Knopman et al., 2021). Previous studies 
identified a myriad of brain areas that are involved in AD development, such as the prefrontal 
cortex (PFC), entorhinal cortex (EC), and hippocampus. While recently, a nucleus located in 
the forebrain named claustrum (CLA), has gained increasing popularity due to its functions in 
attention, executive function and memory (Smith et al., 2020; Nikolenko et al., 2021; Whalley, 
2022), which are perceived as an integral part of AD cognitive impairment.

The CLA is a thin sheet of grey matter deeply penetrating into the forebrain and 
sandwiching between insula and putamen. It is widely interconnected to brain structures, 
e.g., PFC, anterior cingulate cortex (ACC), EC, hippocampus, amygdala, and insula. The 
CLA assembles substantial cognitive-relevant cells such as Von Economo neurons (VEN) 
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and position-responsive cells apart from multitudinous claustral 
neurons (see Figure 1; Smythies et al., 2014; Jankowski and O'Mara, 
2015; Smith et al., 2020). Consequently, the CLA and its related 
circuitries get involved in several cognitive functions, including 
attention, executive function (White et  al., 2018), visuospatial 
ability (Gould et al., 2006), language (Van Rinsveld et al., 2017), 
and memory (Seo et  al., 2016), and these cognitive functions 
achieved by varies brain networks in AD tend to denigrate over the 
course of the disease.

Prominent pathological alterations are observed in the CLA with 
its related circuits in AD patients. Both the plaques and the 
neurofibrillary tangles accumulate in the CLA (Braak and Braak, 1991; 
Thal et al., 2002). More clearly, the senile plaques exist in the third 
phase of Aβ deposition in the CLA (Thal et al., 2002), while the mild 
neurofibrillary tangles occur in the CLA at stage IV, with increasing 
severity in stage V and VI (Braak and Braak, 1991). AD patients 
accompanied with delusional symptoms possess a significant grey 
matter volume reduction in the left CLA (Bruen et al., 2008). Neuronal 
loss and synaptic pathology happening in the CLA are hallmarks of 
AD pathology, particularly in the anterior portion (Baloyannis et al., 
2013). At the circuit level, the paramygdala part of the CLA connected 
to the entorhinal cortex suffers the primary deterioration in AD brains 
(Morys et al., 1996).

This review illustrates the functions of CLA in various cognitive 
impairments of AD, respectively. And it further elucidates the 
underlying mechanisms by combining CLA itself with its relevant 
circuitries in modulating pathological changes of AD in five cognitive 
perspectives: attention, executive function, visuospatial ability, 
language, and memory, to demonstrate the feasibility of targeting CLA 
for future treatment of AD cognitive dysfunction.

Attention

Attention is the first affected non-memory domain in 
AD. Clinically, at the early stage where there is no or little memory 
deficit, AD patients are frequently muddled and unable to concentrate 
on tasks that are effortless to accomplish previously (Schumacher 
et  al., 2019). And they had difficulty in processing attentional 
information with higher reaction speed and error rate when switching 
tasks (Hennawy et al., 2019). In mild cognitive impairment (MCI), a 
neurodegenerative disease indicated an incremental risk for evolving 
to AD, the functional connectivity of the CLA has increased within 
the salience network (SN), a brain network highly involved in 
mediating the attention function of AD (Schultz et al., 2017).

The CLA enables to mediate attention at both cellular and 
circuit levels. The activities of abundant VEN in CLA promote the 
interaction between the default mode network (DMN) and the 
task-related network in attention (Smythies et al., 2014). The CLA 
has the resilience to distraction when chronic and acute 
inactivation on claustral Egr2-expressing neurons (CLAEgr2+) in 
two-alternative forced-choice behavioral tasks by presenting 
irrelevant auditory distractor simultaneously to mice, which is 
attributed to the activation of CLAEgr2+ neurons modulated cortical 
sensory processing and suppression on tone representation of the 
auditory cortex (Atlan et al., 2018). Genetically-assisted silencing 
of CLA neurons delayed the acquisition of conditioned responses, 
suggesting that the CLA is essential in acquiring classical 
conditioning tasks, mainly in attentional processes concerning 
conditioned/unconditioned stimulus association (Reus-García 
et al., 2021). Across the claustral pathways, neurons projecting to 
ACC are more densely and evenly distributed than those to the 

FIGURE 1

The cognitive neuronal types of the CLA and its interconnection with other brain areas. PFC, prefrontal cortex; ACC, anterior cingulate cortex; S1, 
primary somatosensory cortex; PC, parietal cortex; AC, auditory cortex; TC, temporal cortex; RSC, retrosplenial cortex; VC, visual cortex; EC, entorhinal 
cortex; OC, occipital cortex.

https://doi.org/10.3389/fnagi.2023.1109256
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnagi.2023.1109256

Frontiers in Aging Neuroscience 03 frontiersin.org

primary somatosensory cortex (S1), implicating that the CLA may 
preferentially coordinate attention-relevant functions regulated by 
ACC (White et al., 2017). An attentional strategy demonstrates that 
PFC-CLA is mainly achieved through feedforward inhibition 
imposed by CLA on cortical patterns. These evidences support this 
hypothesis that the CLA integrates limbic information from the 
medial PFC, thalamus and amygdala to direct attention relevant 
sensory events in modality-related areas of motor and sensory 
cortex (Smith et al., 2019). Although there is a range of evidence 
supporting the role of CLA in mediating attention at cellular and 
circuit levels, the neurobiological basis of the attentional deficits in 
AD remains unclear, yet it is reasonable to assume that the lesions 
of the CLA occurring at the early stages of AD possibly affect 
attentional regulation.

Executive function

Executive function is the ability to control or direct behavior 
from the top to down, like decisions making and motive initiation 
(Schumacher et  al., 2019; Gaubert et  al., 2022). Executive 
dysfunction occurs in early stages of AD (Tort-Merino et al., 2022), 
and it highly corresponds to the decreasing volumes of central 
executive network including lateral parietal cortex, dorsolateral 
frontal cortex and partial premotor area which have dense 
connections with CLA (Smythies et al., 2014; Miro-Padilla et al., 
2020; Fang et al., 2021). It is demonstrated that a negative correlation 
between the Reading the Mind in the Eyes Test concerning executive 
function and the functional connectivity of the SN in the CLA in 
the early stage of AD (Valera-Bermejo et  al., 2021). In human 
imaging, the left CLA was activated in the executive tests covering 
Stroop, N-back, and Go/No Go (Minzenberg et al., 2009). Likewise, 
the CLA is engaged in the underlying processes of executive 
function, i.e., the activation occurs during both the switching and 
updating tasks (McKenna et al., 2017).

According to a series of studies, together CLA with its pathways 
is substantiated to affect executive function. A higher error rate of 
behavioral flexibility shows in rats during the reversal of the 
excitotoxic anterior CLA group in a water-maze experiment compared 
to the control (Grasby and Talk, 2013). The cognitive control of action 
is further uncovered from CLA by manipulating CLA projection 
neurons during 5-choice serial reaction time task employing 
optogenetic modulation on claustral Gnb4-cre mice (White et al., 
2020). Besides, the claustral circuits mediate executive performance. 
The claustral spiny glutamatergic neurons and inhibitory interneurons 
are monosynaptically innervated by the ACC, the former of which has 
magnified ACC inputs in a way that is suppressed by claustral 
inhibitory microcircuits, which demonstrates ACC-CLA as a 
modulator in top-down action control (White et  al., 2018). 
Chemogenetically activating or inhibiting the CLA-PFC, respectively, 
would intensify or attenuate the impulsive-like behaviors in 5-choice 
serial reaction time task (Liu et  al., 2019), whereas chemogenetic 
inhibition on the bilateral claustrocortical neurons projecting to S1 
decreases the inappropriate lick response (Chevée et al., 2022). Given 
that CLA suffers a certain executive dysfunction with neuroimaging 
analysis in the early stage of AD, future attempts might be made to 
alleviate executive function symptoms in AD by activating CLA and 
its related cortical circuits.

Visuospatial ability

Patients with AD initially have clinical challenges with visuospatial 
difficulties, such as spatial disorientation, being trapped in familiar 
surroundings (Quental et al., 2009). Additionally, AD patients get 
stuck in face discrimination and struggling to process complicated 
visual scenes (Quental et  al., 2009; Knopman et  al., 2021). In an 
imaging study, the grey matter density fluctuation in the left CLA of 
AD patients corresponds to scores changes in the visuo-constructional 
apraxia test (Venneri et al., 2008). The AD patients further suffered 
claustral inactivity during the visuospatial paired information 
encoding and retrieval (Gould et al., 2006).

Evidence has identified several possible mechanisms of the CLA 
in mediating visuospatial disorders in AD. Initially, abundant place-
responsive cells with hippocampal and EC characteristics have been 
observed in the anterior CLA in mice. They display rapid spatial 
activity when exposed to the environment (Jankowski and O'Mara, 
2015). Nevertheless, the lewy body pathology in CLA leads to 
decreasing neuronal activity and even atrophy in this area, thereby 
disrupting its spatial response function which has been detected in 
AD patients with alpha-synuclein immunohistochemistry (Hashimoto 
and Masliah, 1999). In addition, the impaired integration function of 
CLA circuits induces visuospatial dysfunction in global aspects. 
Compared with auditory, somatosensory, or motor areas, the lewy 
body pathology in the CLA is more closely associated with visual 
areas, and the damage of the visuo-claustral pathway that connects 
with insula and EC would result in visual misidentification (Yamamoto 
et al., 2007). Meanwhile, the CLA has extensive connections with both 
the hippocampus and EC (Smythies et al., 2014; Smith et al., 2020), 
and the claustral glutamatergic neurons projecting to limbic cortex 
were activated during sleep, which powerfully reinforces the function 
of the CLA in space and navigation (Luppi et al., 2017). Furthermore, 
it interconnects with the occipital, temporo-parietal, and frontal 
cortices, a brain network involved in spatial and visual constructive 
abilities, which can be associated with early mechanisms of cognitive 
deterioration in the progression to AD (Smythies et al., 2014; Plaza-
Rosales et al., 2023). The anatomical changes in the CLA give rise to 
compromised visuospatial functionality of AD. All this points to CLA 
as a crucial spot in coordination concerning visuospatial dysfunction 
owing to its place-responsive cells and interconnections with 
numerous brain structures in AD patients.

Language

Language dysfunction appears in early AD, showing preliminary 
difficulty in semantic abilities (Venneri et al., 2008). Mild AD patients 
are diagnosed to be subject to language obstacles in verbal fluency, 
auditory perception, reading comprehension, and narrative 
performance (Tsantali et al., 2013). In a study of nicotinic acetylcholine 
receptor binding in the preclinical patient group, verbal memory 
learning in MCI patients was found to be associated with discrete 
uptake reduction in CLA, which provides evidence that the left CLA 
might modulate cognitive performance in diagnosed or prodromal 
AD (Terrière et al., 2010). The semantic abilities deteriorate in the 
early stage of AD, whereas the volumetric changes in bilateral CLA of 
AD patients were found prominently associated with confrontational 
naming tasks and categorization fluency (Venneri et al., 2008).
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A series of neuroimaging investigations prove that CLA occupies an 
essential linguistic role. Combined with fMRI on the brains of proficient 
bilingual subjects doing simple and complex addition mental arithmetic 
tasks, the CLA has different levels of evocation in people with different 
language dominance (Van Rinsveld et al., 2017). The MRI scans of all 
aphasia patients emerge ischemic lesions in the left hemisphere, and the 
largest areas of overlapping foci are localized in the CLA and other brain 
structures (Marangolo et al., 2014). By conducting meta-analysis, the right 
CLA, bilateral inferior frontal cortex and superior temporal gyrus 
performed a clear consistent neural motivation pattern in written 
language and speech processing in the child group (Zhu et al., 2014), 
while it also engaged in two of thirteen major clusters of insula 
connections of language function (Ardila et al., 2014). The medial CLA 
provides a robust contralateral connection between the right subcortex 
and left PFC, resulting in patients with right subcortical lesions 
performing worse than the left in cognitive linguistic functions (Girija 
et al., 2018). Altogether, the language function is obviously modulated by 
CLA itself and its circuit connections. Thus, an intervention targeting 
CLA could potentially salvage linguistic dysfunction in AD patients.

Memory

The most severely damaged cognitive deficit in AD patients is 
mnemonic dysfunction, where they have difficulty not only in the 
encoding and storage stages but also in the retrieval stage (El Haj et al., 
2020). They easily forget familiar faces or things since their brains fail 
to integrate these memories (Roy et al., 2016). Notable evidence 
manifests amnesia AD patients have defective functions in episodic 
memory (Schwindt and Black, 2009), working memory (Stopford 
et al., 2012), and contextual memory (El Haj et al., 2020). During 
memory encoding and retrieval paradigms, the CLA exhibits higher 
activity in healthy controls than in AD patients (Schwindt and Black, 
2009). Resting-state fMRI notes that AD patients have weakened 
functional connectivity between the right CLA and the amygdala, 
which elucidates the relevancy to memory deficits (Wang et al., 2016).

The CLA has a substantial effect on memory. The neurons of anterior 
CLA modulate theta rhythm critical to episodic memory impairment in 
early AD, which requires the synchronized activity of CLA and relevant 
cortical regions (Jankowski and O'Mara, 2015). The CLA participated in 
acquiring stable long-term memory for the value of objects in a high-
capacity fMRI study (Ghazizadeh et al., 2018). A hypothesis proposes that 
pathological loss of the VEN in the CLA attenuates task-related brain 
network functions in the CLA, especially memory functions in AD 
(Smythies et al., 2014). The posterior CLA projects onto the retrosplenial 
cortex (RSC), a well-established cortex in mnemonic processing regarding 
auditory cues, illuminating that the CLA-RSC has a significant influence 
on the function of remote memory retrieval in rodents (Todd et al., 2016). 
The CLA-medial EC is activated by new contexts and enables to modulate 
the function of the medial EC (Kitanishi and Matsuo, 2017), which may 
in turn influence contextual memory in AD patients. The CLA is further 
capable of processing working memory by means of its ipsilateral and 
contralateral connections with PFC, premotor, and motor areas (Smythies 
et al., 2014; Smith et al., 2020). And this is consistent with the postulation 
of Gattass et al., that the CLA is the gateway for perceptual information 
into the memory system, due to its extensive interconnectivity with 
almost the entire neocortex and its projections to the hippocampus, 
amygdala and basal ganglia (Gattass et al., 2014). The CLA deficits in AD 
patients are likely to be interposed in the development of several forms of 

memory impairments, supposing that intervention in the claustral 
neurons and CLA memory-related circuits probably adjust memory 
dysfunction in AD patients.

Future direction

The evidence mentioned above provides an exhaustive account of 
the relationship between CLA and AD pathology in terms of cognitive 
functions, including attention, executive function, visuospatial skills, 
language, and memory (see Figure 2). It has analyzed and summarized 
the underlying mechanisms by which the CLA and claustral circuits 
might mediate AD pathological changes in terms of these cognitive 
functions. Although the CLA has the capability of multimodal 
information integration and is involved in regulating high-order 
cognition, more basic researches are required to clarify the relationship 
between the CLA and AD via advanced structural and functional 
research techniques.

The CLA has widespread interconnections to various brain structures, 
with a structural basis for the integration of various cognitive functions. 
In detail, the respective interconnections between CLA and ACC, PFC 
are engaged in attention and executive function, while the CLA-PFC 
further regulates language and working memory and the CLA-S1 takes 
part in executive functions. For visuospatial ability, there are significant 
connections between the CLA and the visual cortex, insula, hippocampus, 
EC as well as temporal–parietal lobes. Similarly, the language can 
be modulated by the pathways of CLA and the inferior frontal gyrus, 
insula. It is also noted that multiple memories can be mediated by claustral 
circuits, in which CLA interconnects with a myriad of areas, including 
RSC, EC, premotor, and motor cortex. Although the CLA has the 
capability of multimodal information integration and is involved in 
regulating high-order cognition, the functions of these circuits in 
mediating distinct cognitive aspects in AD remains to be explored.

Some symptoms of the early stage of AD, such as attention deficit, 
executive dysfunction, language misinterpretation, and memory 
impairment, have been found to be associated with early pathological 
changes in CLA (Venneri et al., 2008; Schwindt and Black, 2009; Valera-
Bermejo et al., 2021). Therefore, the therapeutic interventions on the CLA 
and claustral circuits may alleviate the progression of AD at early stage. 
For example, the chronic intracerebroventricular administration of AT IV 
receptors agonists, like norleucine1-Ang IV, remarkably improve the 
acquisition of spatial memory in AD mice (Prakash et al., 2015), while the 
high density of AT IV receptors was found in CLA (Chai et al., 2000). 
Thus, the AT IV receptor agonists in the CLA could serve as a promising 
target for drug intervention to alleviate spatial memory impairment of 
AD. It is also found that the left CLA increases glucose metabolism in AD 
in both one-year and one-month deep brain stimulation (DBS; Laxton 
et al., 2010), which illustrates the significance of CLA for the improvement 
of cognitive symptoms in AD. The CLA, meanwhile, is involved in several 
brain networks that regulate various cognitive functions in AD patients. 
Considering the potential claustral mechanism in AD, it should be a 
promising approach to administer drugs or DBS activation to the CLA 
with its related circuits.

Furthermore, it certainly requires more basic pathological and 
physiological studies to elucidate the function of CLA in mediating 
AD. Although many types of cognitive cells that have been identified 
so far, there might be yet other unknown neurons carrying utterly 
different cognitive functions. Additionally, despite the great number 
of circuitries being discerned, the function of specific circuits remains 
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to be  resolved, especially that are profoundly implicated in AD 
etiology. Besides, animal models that could be  implemented in 
AD-CLA studies are still lacking. Given that the CLA and the claustral 
pathways robustly intermediate multiple cognitive functions, it would 
be a promising direction for future research to simultaneously monitor 
the activity of the CLA with its brain networks in AD.

Conclusion

This review highlights a fundamental but previously overlooked 
brain region, the CLA, and elaborately demonstrates its cognitive 
function on attention, executive function, visuospatial ability, 
language, and memory in AD. The claustral pathological changes are 
often found in structural and functional neuroimaging studies in AD, 
while the underlying mechanisms behind it are rarely analyzed, or 
even interpreted in terms of higher-order cognitive functions. We have 
combined normal physiological functions of the CLA and its 
pathological changes in AD to provide preliminary insights on the 
inferential framework of pathogenic mechanisms and attempted to 
propose certain therapeutic strategies for early-stage AD treatment by 
targeting CLA with its related circuits.
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FIGURE 2

Major cognitive functions and the underlying mechanisms mediated by the CLA with its related circuits in AD. SN, salience network; MCI, mild cognitive 
impairment; DMN, default mode network; CS, conditioned stimulus; US, unconditioned stimulus; CEN, central executive network; ACC, anterior 
cingulate cortex; PFC, prefrontal cortex; S1, primary somatosensory cortex; PC, parietal cortex; EC, entorhinal cortex; RSC, retrosplenial cortex.
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