
fnagi-15-1105107 February 1, 2023 Time: 14:27 # 1

TYPE Original Research
PUBLISHED 07 February 2023
DOI 10.3389/fnagi.2023.1105107

OPEN ACCESS

EDITED BY

Fangang Meng,
Capital Medical University, China

REVIEWED BY

Dachuan Zhang,
ETH Zürich, Switzerland
Chang Liu,
National University of Singapore, Singapore
Jia Guo,
University of Tasmania, Australia

*CORRESPONDENCE

Chaoshi Niu
niuchaoshi@ustc.edu.cn

†These authors have contributed equally to this
work

SPECIALTY SECTION

This article was submitted to
Parkinson’s Disease and Aging-related
Movement Disorders,
a section of the journal
Frontiers in Aging Neuroscience

RECEIVED 22 November 2022
ACCEPTED 20 January 2023
PUBLISHED 07 February 2023

CITATION

Chang B, Xiong C, Ni C, Chen P, Jiang M, Mei J
and Niu C (2023) Prediction of STN-DBS
for Parkinson’s disease by uric acid-related
brain function connectivity: A machine
learning study based on resting state function
MRI.
Front. Aging Neurosci. 15:1105107.
doi: 10.3389/fnagi.2023.1105107

COPYRIGHT

© 2023 Chang, Xiong, Ni, Chen, Jiang, Mei and
Niu. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Prediction of STN-DBS for
Parkinson’s disease by uric
acid-related brain function
connectivity: A machine learning
study based on resting state
function MRI
Bowen Chang1,2†, Chi Xiong1,2†, Chen Ni1,2, Peng Chen1,2,
Manli Jiang1,2, Jiaming Mei1,2 and Chaoshi Niu1,2*
1Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine,
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Introduction: Parkinson’s disease (PD) is a neurodegenerative disorder characterized

by dyskinesia and is closely related to oxidative stress. Uric acid (UA) is a natural

antioxidant found in the body. Previous studies have shown that UA has played an

important role in the development and development of PD and is an important

biomarker. Subthalamic nucleus deep brain stimulation (STN-DBS) is a common

treatment for PD.

Methods: Based on resting state function MRI (rs-fMRI), the relationship between

UA-related brain function connectivity (FC) and STN-DBS outcomes in PD patients

was studied. We use UA and DC values from different brain regions to build the FC

characteristics and then use the SVR model to predict the outcome of the operation.

Results: The results show that PD patients with UA-related FCs are closely related to

STN-DBS efficacy and can be used to predict prognosis. A machine learning model

based on UA-related FC was successfully developed for PD patients.

Discussion: The two biomarkers, UA and rs-fMRI, were combined to predict the

prognosis of STN-DBS in treating PD. Neurosurgeons are provided with effective

tools to screen the best candidate and predict the prognosis of the patient.

KEYWORDS

Parkinson’s disease, deep brain stimulation, functional connectivity, uric acid, machine
learning

1. Introduction

Parkinson’s disease (PD) generally develops between 55 and 65 years of age, affecting 1–2% of
people over 60 years of age, or about 0.3% of the total population (Ascherio and Schwarzschild,
2016; Cerri et al., 2019). (UA) is the final product of purine metabolism and is considered an
antioxidant in the body. Previous studies have shown that UA inhibits free radical-induced lipid
peroxidation and DNA damage, thus acting to protect nerve cells (Narendra et al., 2018; Ya et al.,
2018; Mahoney-Sánchez et al., 2021).
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Changes in UA levels are associated with several disease states.
Abnormally high levels of UA are associated with gout, high blood
pressure, cardiovascular disease (Kleber et al., 2015; Gherghina et al.,
2022; Méndez-Salazar and Martínez-Nava, 2022). In contrast, lower
levels of UA have been confirmed with PD, Alzheimer’s disease
(AD), multiple sclerosis (MS) and development of Meg syndrome are
associated with (Koch and De Keyser, 2006; Du et al., 2016; Chang
and Chen, 2020; Ellmore et al., 2020; van Wamelen et al., 2020; Guan
et al., 2021; Seifar et al., 2022). In addition, UA affects the brain
structure of PD patients. An MRI using a stationary state function
in PD patients (rs-fMRI) found UA levels and broad white matter
The integrity of (WM) has a significant correlation (Lee et al., 2020).
At the same time, some researchers have shown cortical functional
connectivity between UA and PD patients (FC) is closely correlated
with high levels of FC in patients with high PD UA and negative
correlation with motor symptoms (Lee et al., 2018). These results
show that UA is an important biomarker for patients with PD and
can be analyzed in combination with rs-fMRI.

Deep brain stimulation (DBS) is becoming one of the most
effective treatments for patients with advanced PD, and many
previous studies have shown that DBS can significantly improve
motor symptoms in patients with PD (Chang et al., 2022; Mei et al.,
2022). Interestingly, in PD patients with bilateral subthalamic nucleus
(STN) DBS, we observed a positive correlation between UA and
postoperative motor symptom improvement. So we guess whether
UA can be analyzed in conjunction with rs-fMRI, two biomarkers, to
predict the outcome of STN-DBS treatment of PD. The mechanism
by which STN-DBS improves motor symptoms in patients is unclear.
Some researchers compared the rs-fMRI before and after STN-DBS
and found that STN-DBS altered graph theoretical indicators, FC
and WM integrity, resulting in significant improvement of motor
and mental symptoms in PD patients (Prent et al., 2019; Huang
et al., 2022). This suggests that the prognosis of DBS in PD may
depend on connectivity between brain regions. Several researchers
previously examined structural and functional brain connections
associated with PD prognosis after STN-DBS and tested their ability
to predict the efficacy of independent cohorts (Horn et al., 2017).
Artificial intelligence and machine learning have become increasingly
important in healthcare decision-making and prediction in recent
years (Naik et al., 2022a,b). Based on the above, we aimed to explore
whether FCs associated with UA in PD patients are associated with
prognosis in PD treated with STN-DBS, and whether these FCs could
be used to predict the improvement of motor symptoms in PD
patients treated with STN-DBS. It is hoped that integrated analysis of
UA and rs-fMRI can be combined with machine learning to predict
the prognosis of STN-DBS treatment in PD patients, so as to provide
help for neurosurgeons to predict patients’ conditions and screen
patients.

2. Participants and methods

2.1. Participants

Medical records and questionnaire results were retrospectively
collected from patients with PD who underwent STN-DBS at the
First Hospital of the University of Science and Technology of
China from September 2019 to April 2020. The study protocol
was approved by the Ethics Committee of our hospital (2022-RE-
154). The included patients had intermediate-to-advanced PD, and

the exclusion criteria were moderate/severe cognitive impairment,
persistent severe psychiatric disorder, severe atrophy or diffuse
ischemic lesions on MRI, and systemic diseases that prevented
surgery. Moreover, the medical records of age- and sex-matched
healthy participants who underwent annual physical check-ups at the
same hospital were collected as healthy controls (HC).

2.2. Acquisition clinical assessment

Demographic and clinical variables, including age, sex, duration
of illness, and levodopa equivalent dose, were collected from patients’
medical records and questionnaires. Symptom severity was assessed
using the Unified Parkinson’s Disease Rating Scale (UPDRS-III).
The patients’ motor symptoms were reassessed 2 years after surgery
using the UPDRS-III scale during the stimulation and medication
on period, and the patients’ UPDRS-III score improvement rate
was subsequently calculated. The Hamilton Anxiety (HAMA) and
Hamilton Depression (HAMD) scales were used to assess the
psychological status of patients. The Montreal Cognitive Assessment
(MoCA) and the Mini-Mental State Examination (MMSE) scales
were used to assess cognitive status. UA values obtained 5 days before
STN-DBS were included in the analysis. Each specimen was assayed
by the Department of Clinical Laboratory in 2 h post-collection. To be
specific, UA was examined according to liver tests. The above clinical
variables were determined by the standard automatic counters.

2.3. MRI data and preprocessing

For PD patients and HC, a 3.0 T MR scanner (Discovery
MR750; General Electric Healthcare, Chicago, IL, USA) with an
eight-channel phased-array head coil was used. Prior to scanning,
the researchers placed earplugs in the subjects’ ears to isolate
noise. The participants were then instructed to immobilize their
heads with sponge pads to reduce unconscious activity. During
the scans, the subjects were allowed to close their eyes, but
remained awake to avoid specific, intense ideation activities. We
explicitly instructed the participants not to fall asleep during the
entire scan. We further confirmed that the participants were awake
throughout the scan after completion. Functional and structural MRI
data were acquired with a 3T GE (Achieva TX) MRI scanner in
the OFF medication state before DBS surgery, following an 12-h
period of medication withdrawal. Structural images were acquired
using a sagittal magnetization prepared rapid gradient echo three-
dimensional T1-weighted sequence [repetition time (TR) = 8.5 ms,
echo time (TE) = 3.2 ms, inversion time (TI) = 450 ms, and flip
angle (FA) = 12◦]. Functional MRI images were obtained using
the following SE-EPI sequence: repetition time [TR] = 2,000 ms,
repetition time [TR] = 30 ms, slice thickness/gap = 3.6/0 mm, axial
slices = 38 layers, flip angle [FA] = 90◦, FOV = 256 × 256 mm, matrix
size = 64 × 64, and scanning time = 484 s.

Data pre-processing was conducted with Resting-State fMRI Data
Analysis Toolkit plus V1.25 (RESTplus V1.25),1 which is based on
Statistical Parametric Mapping (SPM).2 Data from 242 volumes were
separately acquired as functional scans of the subjects and healthy
controls. The first 10 volumes of each functional scan were excluded

1 http://restfmri.net/forum/index.php

2 https://www.fil.ion.ucl.ac.uk/spm/
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to correct for subject habituation to the scanning environment and
for magnetization stability. Slice-timing correlation was performed
to help compensate for differences in acquiring data across all
slices with the FOV at any given time point; realignment for head-
motion correction was also considered; one healthy control whose
head motion exceeded 3.0 mm or involved rotation exceeding 3.0◦

during the fMRI scanning was excluded. Individual 3D T1-weighted
anatomical images were co-registered to the functional images and
spatially normalized to the Montreal Neurological Institute template.
Each voxel was resampled to 3 mm× 3 mm× 3 mm. Subsequently,
the resampled images were smoothed using a 6 mm full-width half-
maximum (FWHM) isotropic Gaussian kernel. Subsequently, a linear
trend and bandpass filter (0.01∼0.08 Hz) were used to remove
the effect of high-frequency noise. Finally, Friston-24 head motion
parameters, cerebrospinal fluid signal, white matter, and the Friston-
24 head motion parameters model were considered as nuisance
covariates and were regressed from fMRI signals. The resulting data
were analyzed further. Subsequently, two voxel-wise whole-brain
analytic methods were applied.

2.4. DC calculation

To identify functional hubs, The voxel-wise correlation matrix
was performed by Pearson’s correlation for whole brain time series.
Then we set the correlation coefficients with r ≥ 0.25. The threshold
was used to eliminate counting voxels that had low temporal
correlation. We took each voxel as a node, and the correlation
value between any pair of voxels as the internodal edge weight. The
weighted DC of each voxel was further divided by the global mean
DC of every individual for group comparison.

2.5. Spatial correlation analysis of
correlations with UA

In this study, the mALFF and mReHo values of each region
of interest (ROI) in the AAL3-170 atlas were separately extracted
as candidate features. The AAL3-170 atlas (accessed June 4, 2022)3

is an improved version of the AAL2 atlas that divides the entire
brain into 166 ROI (Supplementary Table 1). In addition, two small
regions of the AAL3 atlas (nos. 133–134) were not defined because
the original voxel size of 1 mm× 1 mm× 1 mm was resampled
to 3 mm× 3 mm× 3 mm; thus, the number of remaining regions
in the AAL3-170 atlas was 164. Serum UA values of PD patients
were correlated with the mALFF and mReHo values of each of the
164 brain regions. False discovery rate (FDR) correction was not
performed for the 164 correlated values, with the threshold set to 0.05.

2.6. Functional connectivity analysis

Using the AAL3 template, the DC values and UA significantly
correlated with the ROIs were filtered. Following correlation analysis,
15 significantly correlated ROIs remained between DC values and
UA. The average resting state blood oxygenation level-dependent

3 https://www.oxcns.org/aal3.html

(BOLD) time series for each ROI was extracted. The BOLD time
series for each ROI was then correlated with the BOLD time series
of every other ROI (Pearson’s correlation) for each participant.
A 15 × 15 correlation matrix was obtained for each subject. Fisher’s
Z transformation was applied to the FC maps for subsequent
statistical analysis.

2.7. Statistical analyses

Correlations between the UPDRS-III score improvement
rate and UA values were analyzed using Pearson’s correlation
coefficient test. A two-sample t-test was performed in the PD
and HC groups to detect zFC differences with FDR correction
(p < 0.05), with ∗ representing significantly abnormal zFC values
between the two groups.

2.8. Feature extraction and SVR model
training

In the paper, we use SVR to investigate whether inter-group
differences in functional connection values can predict the rate
of improvement after STN-DBS. Radial Basis Kernel is used in
SVR model to find a non-linear regression line and analysis steps.
Are done using the LIBSVM software package.4 The functional
connectivity values of PD group come from differences between
groups as features (These ROIs for functional connectivity were
selected from significant correlation between DC and UA). The
patient’s improvement after STN-DBS as label. Each feature is
normalized to between −1 and 1, so do as label. We applied a
leave-one-out cross-validation (LOOCV) to train SVR model, and a
“grid search” method was used to access parameter optimization. The
adaptability of the model was assessed by the Pearson’s correlation
coefficient(r) and mean squared error (MSE) between the original
and the predicted rate of improvement.

The optimal parameter settings of SVR:
Kernel name: RBF.
Parameter optimization algorithm: Gird search algorithm.
Cross-validation type: Leave one out.
K fold number: 32.
C: 8388608.
g: 2.7387e–07.
p: 0.4.

3. Results

3.1. Participants’ characteristics

Table 1 presents the characteristics of the study participants.
Thirty-eight patients were consecutively enrolled, none of whom
were lost to follow-up, comprising 17 (44.74%) men and 21 (55.26%)
women aged 41–73. The mean improvement rate according to
the UPDRS-III score 2 years postoperatively in the medicine-on-
period was 66%. The mean preoperative UA level of the patients

4 https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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TABLE 1 Characteristics of the patients with Parkinson’s disease (PD) and healthy controls (HC).

Variables PD HCs P-value

No 38 32

Age (years, mean ± SD) 58.87 ± 7.61 63.09 ± 1.38 0.225

Gender 0.860

Male 17 (44.74%) 15 (46.87%)

Female 21 (55.26%) 17 (53.13%)

Uric acid (µmol/L) 288.45 ± 87.05 327.36 ± 10.57 0.036

LED 642.11 ± 399.51

Duration (years) 8.84 ± 3.83

Age of onset (years) 50.03 ± 7.30

cUPDRS III med off 57.29 ± 12.16

UPDRS III med on 29.05 ± 10.43

UPDRS III med off Postop 50.79 ± 18.13

UPDRS III med on Postop 19.34 ± 11.36

UPDRS III med on Postop improvement rate 0.66 ± 0.21

H–Y

2.5 3 (7.89%)

3 18 (47.37%)

4 13 (34.21%)

5 4 (10.53%)

FIGURE 1

Correlation of UPDRS-III score improvement rate with uric acid (UA) values in the enrolled patients.

was 288.45 ± 87.05 µmol/L 5 days prior to STN-DBS. Thirty-two
healthy participants were included in the analysis. The median age
of the healthy participants was 63 years (range: 44–75 years), and

the majority were also female (53.12%). The mean preoperative
UA level of the healthy participants was 327.36 ± 10.57 µmol/L.
UA values were positively correlated with the improvement rate
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TABLE 2 Region of interests (ROIs) where DC values correlate with uric
acid (UA) values.

Index ROIs r P-value

3 Frontal_Sup_2_L 0.444* 0.011

4 Frontal_Sup_2_R 0.425* 0.015

5 Frontal_Mid_2_L 0.398* 0.024

20 Frontal_Sup_Medial_R 0.394* 0.026

83 Heschl_L −0.350* 0.049

101 Cerebellum_4_5_L −0.364* 0.041

109 Cerebellum_9_L −0.359* 0.044

110 Cerebellum_9_R −0.431* 0.014

111 Cerebellum_10_L −0.365* 0.040

112 Cerebellum_10_R −0.415* 0.018

119 Vermis_9 −0.423* 0.016

120 Vermis_10 −0.368* 0.038

123 Thal_LP_L −0.369* 0.038

135 Thal_MDm_L −0.405* 0.021

136 Thal_MDm_R −0.380* 0.032

*P < 0.05.

of the UPDRS-III score two years after surgery (Figure 1,
Supplementary Tables 2, 3).

3.2. Brain connectivity estimation

Six PD subjects were excluded because the structural image
data dimensions were not consistent with those of the other
subjects. In addition, one of the HC subjects was excluded because

of head movement of more than 3.0 mm or 3◦. A total of
32 subjects with PD and 31 HCs were included in the final
fMRI data analysis.

The UA values of PD subjects were correlated with the DC
values in 164 brain regions. The 164 correlated values were FDR
corrected, DC values were correlated with UA values in 15 brain
regions in the Table 2. The 15 brain regions in which the DC
values were significantly correlated with UA values were used as
ROIs (Figure 2). The zFC matrices were subsequently calculated
for each participant by calculating the functional connectivity values
of the ROI. A two-sample t-test was then performed using the
zFC in the PD and HC groups, and the t-test results were FDR
corrected to p < 0.05 to obtain the t-value matrix of functional
connectivity between the two groups, as shown in Figure 3.
4 ROI-pair FC from the lower triangular part of the matrix
were retained (redundant elements and diagonal elements were
excluded) in a 15 × 15 matrix, namely, the ROIs with a significant
correlation between DC and UA (Figure 3 and Table 3). Intergroup
differences in FC between the PD and HC groups are shown in
Figure 4.

3.3. Prediction and validation of SVR

The functional connectivity values of PD groups come from
differences between groups as features (These ROIs for functional
connectivity were selected from significant correlation between DC
and UA), the Pearson’s correlation coefficient was calculated between
the actual improvement rate and the predicted improvement rate
(r = 0.487, p < 0.005, MSE = 0.173) (Figure 5). This shows that
using the SVR model, serum UA-related differential brain function
connectivity in patients with PD can predict the improvement rate of
motor symptoms following STN-DBS.

FIGURE 2

Functional region of interests (ROIs) used in the study.

Frontiers in Aging Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1105107
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1105107 February 1, 2023 Time: 14:27 # 6

Chang et al. 10.3389/fnagi.2023.1105107

FIGURE 3

T-value matrix of functional connectivity between the Parkinson’s disease (PD) and healthy controls (HC) groups. 4 ROI-pair significant FCs (marked as ∗)
from the lower triangular part of the matrix were retained (redundant elements and diagonal elements were excluded) in a 15 × 15 matrix, namely, the
ROIs with significant correlation between DC and uric acid (UA).

4. Discussion

STN-DBS is an accepted treatment for a variety of motor
disorders, especially PD. STN-DBS has shown long-term efficacy
and has been used in patients with advanced PD for many years
(Ashkan et al., 2017). Although the effectiveness of STN-DBS in
treating PD is satisfactory, its mechanism needs to be further
clarified. Previous studies have found that the prognosis of STN-
DBS is associated with brain connectivity. A previous study based
on preoperative diffuse tensor imaging (DTI) in patients with PD
found that the regions of the brain most associated with the efficacy
of STN-DBS include the thalamus, nigra, brainstem and superior
frontal gyrus (Vanegas-Arroyave et al., 2016). In addition, functional
connectivity can be assessed by the blood oxygen level dependent
sequence (BOLD) of rs-fMRI. Many rs-fMRI-based studies have
shown that STN-DBS regulates all major components of the motor
cortex-striatum-thalamus-cortex loop, including the cortex-striatum,
thalamus-cortex, and direct and indirect basal ganglion pathways
(Kahan et al., 2014). Also DBS is an expensive and complex treatment.
Prior to STN-DBS, doctors conduct a detailed assessment of PD
patients to select the most appropriate patient to ensure the best
response to DBS. Therefore, some studies attempt to predict results
on the basis of brain connections. Some studies have found that
ultradirectional, direct and basal intake of STN can predict the
clinical status and therapeutic response of DBS (Horn et al., 2017).
However, DTI or fMRI images are not always available for various
reasons; Therefore, some researchers try to predict the prognosis on
the basis of the common connection group. Interestingly, studies
have shown that structural and functional connectivity is a predictor
of clinical improvement and estimated responses in individual

patients, with significant errors (Schlesinger and Schlesinger, 2008).
Therefore, predicting the prognosis of STN-DBS based on machine
learning synthesis of blood biomarkers and rs-fMRI may be a new
direction.

Uric acid has been shown to play an important role as a
natural antioxidant in the development and progression of PD.
However, the effect of UA on the efficacy of STN-DBS in treatment
of PD remains unknown. Interestingly, we observed a positive
correlation between UA levels and the rate of improvement
in motor symptoms in patients with PD following STN-DBS.
Previous studies have similarly demonstrated that low levels of
serum UA are involved in the pathogenesis and progression of
PD, although its sensitivity as a single biomarker for PD is low
(Li et al., 2017; Koros et al., 2021). Similarly, previous studies
based on rs-fMRI showed a close relationship between UA and
WM and FC integrity in patients with PD. Based on this, we
organically combine UA, a biomarker for PD patients, with rs-fMRI
and predict the prognosis of STN-DBS by machine learning. DC
describes the strength of the brain network connection between
an individual protein and all voxels of the whole brain, indicating

TABLE 3 Compared with healthy controls (HC) group, there were
significant differences in DC-ROI-pair function connectivity (FC).

FC t-value P-value

Frontal_Sup_2_L–Heschl_L −3.402 0.001

Frontal_Sup_2_R–Heschl_L −3.745 <0.001

Frontal_Sup_Medial_R–Heschl_L −3.704 <0.001

Cerebellum_9_L–Cerebellum_10_L −3.473 <0.001
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FIGURE 4

Intergroup differences in functional connectivity between Parkinson’s disease (PD) and healthy controls (HC) groups the zFC pattern of 4 function
connectivitys (FCs) between PD and HC, these FCs were significantly correlation in DC and uric acid (UA).

FIGURE 5

SVR-based prediction of uric acid (UA)-related function connectivity
(FC) on the rate of improvement of motor symptoms in patients with
Parkinson’s disease (PD) following STN-DBS. The predicted value of
SVR was correlated with the original value; the feature of SVR was that
the zFC of PD was different between PD and HC, and the ROIs were
significantly correlated with DC and UA.

the importance of this voxel as a network node. We selected DC
and serum UA values as characteristics of ROI in PD patients to
build FC, using the SVR model for machine learning. Through these
explorations, we found that the FCs of Frontal_Sup_2_L–Heschl_L,
Frontal_Sup_2_R–Heschl_L, Frontal_Sup_Medial_R–Heschl_L,
Cerebellum_9_L–Cerebellum_10_L can predict the prognosis of
STN-DBS.

Our research has several novel aspects. First, we identified a
set of possible imaging biomarkers prior to STN-DBS treatment to

predict the clinical response 1 year after treatment. Therefore, the
establishment of pre-operative predictor of therapeutic response has
important clinical value, which helps neurosurgeons to predict the
efficacy and screen patients before DBS. Secondly, ROI method is
widely used in previous research. This approach focuses on selected
brain regions, but may omit other brain regions that are critical to the
underlying pathophysiology of PD (Gong et al., 2014). In contrast,
the DC analysis was used in our study, which used the strength
of brain network connections between individual and all voxels of
the whole brain. Third, we combine rs-fMRI with UA, a PD blood
biomarker, to improve the predictive performance of neuroimaging.
Fourth, most previous studies that attempted to determine predictors
of therapeutic responses used univariate statistics, which applied to
group level predictions (Koros et al., 2021); Instead, SVR analysis,
the pattern classification technique used in our study, is a promising
individual level prediction tool (Redlich et al., 2016).

In this study, global signal regression and scrubbing were
not used to process the data. Previous research has shown that
global signal regression can cause reductions in sensitivity and
can introduce false deactivations in studies of task activation
since the assumption of orthogonality can be violated when the
experimentally induced activations contaminate the global signal
(Murphy et al., 2009). In additional, discarding problematic volumes
(scan “scrubbing”), or alternatively including spike regressors to act
as catch-alls for non-linear and non-quadratic spin history effects
at problematic time points provides further defense from motion-
induced artifacts. However, results have been mixed as to whether any
of these participant-level motion correction approaches completely
remove inter-individual differences in motion-related MR signal
changes (Muschelli et al., 2014).

The present study has several limitations. First, our current study
is retrospective and lacks reproducibility analysis (testing the same
individual under the same conditions at two different time points).
Therefore, it may be a potential confounder of unknown significance.
As mentioned above, our study was retrospective; therefore, the
required sample size and statistical efficacy were not estimated at
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this time, and predictive analyses were performed after collection of
follow-up information. In addition, we did not collect postoperative
fMRI data because of possible artifacts and MRI heating of the
implant. Therefore, for safety reasons, we recommend performing
long-term follow-up prior to postoperative data collection.

5. Conclusion

The results of the present rs-fMRI-based analysis showed that
UA-related FCs in patients with PD are closely related to the
prognosis of STN-DBS, and can predict the prognosis of STN-DBS
by machine learning. Effective tools are provided for neurosurgeons
to screen the best patient candidates and to predict patient outcomes.
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