Age-related decline in episodic memory performance in otherwise healthy older adults is indisputably evident. Yet, it has been shown that under certain conditions episodic memory performance in healthy older adults’ barely deviates from those seen in young adults. Here we report on the quality of object encoding in an ecologically valid, virtual-reality based memory assessment in a sample of healthy older and younger adults with comparable memory performance.
We analyzed encoding by establishing both a serial and semantic clustering index and an object memory association network.
As expected, semantic clustering was superior in older adults without need for additional allocation of executive resources whereas young adults tended more to rely on serial strategies. The association networks suggested a plethora of obvious but also less obvious memory organization principles, some of which indicated converging approaches between the groups as suggested by a subgraph analysis and some of which indicated diverging approaches as suggested by the respective network interconnectivity. A higher interconnectivity was observed in the older adults’ association networks.
We interpreted this as a consequence of superior semantic memory organization (extent to which effective semantic strategies diverged within the group). In conclusion, these results might indicate a diminished need for compensatory cognitive effort in healthy older adults when encoding and recalling everyday objects under ecologically valid conditions. Due to an enhanced and multimodal encoding model, superior crystallized abilities might be sufficient to counteract an age-related decline in various other and specific cognitive domains. This approach might potentially elucidate age-related changes in memory performance in both healthy and pathological aging.