
Frontiers in Aging Neuroscience 01 frontiersin.org

The relationship between protein 
modified folding molecular 
network and Alzheimer’s disease 
pathogenesis based on 
BAG2-HSC70-STUB1-MAPT 
expression patterns analysis
Xiaolong Yang 1†, Wenbo Guo 2†, Lin Yang 2, Xuehui Li 2, 
Zhengkun Zhang 1, Xinping Pang 3, Ji Liu 1* and Chaoyang Pang 2*
1 Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and 
Forensic Medicine, Sichuan University, Chengdu, China, 2 College of Computer Science, Sichuan 
Normal University, Chengdu, China, 3 West China School of Basic Medical Sciences and Forensic 
Medicine, Sichuan University, Chengdu, China

Background: Alzheimer’s disease (AD) is the most common cause of dementia 
and cognitive decline, while its pathological mechanism remains unclear. 
Tauopathies is one of the most widely accepted hypotheses. In this study, the 
molecular network was established and the expression pattern of the core gene 
was analyzed, confirming that the dysfunction of protein folding and degradation 
is one of the critical factors for AD.

Methods: This study analyzed 9 normal people and 22 AD patients’ microarray 
data obtained from GSE1297 in Gene Expression Omnibus (GEO) database. The 
matrix decomposition analysis was used to identify the correlation between the 
molecular network and AD. The mathematics of the relationship between the Mini-
Mental State Examination (MMSE) and the expression level of the genes involved 
in the molecular network was found by Neural Network (NN). Furthermore, the 
Support Vector Machine (SVM) model was for classification according to the 
expression value of genes.

Results: The difference of eigenvalues is small in first three stages and increases 
dramatically in the severe stage. For example, the maximum eigenvalue changed 
to 0.79 in the severe group from 0.56 in the normal group. The sign of the elements 
in the eigenvectors of biggest eigenvalue reversed. The linear function of the 
relationship between clinical MMSE and gene expression values was observed. 
Then, the model of Neural Network (NN) is designed to predict the value of MMSE 
based on the linear function, and the predicted accuracy is up to 0.93. For the 
SVM classification, the accuracy of the model is 0.72.

Conclusion: This study shows that the molecular network of protein folding 
and degradation represented by “BAG2-HSC70-STUB1-MAPT” has a strong 
relationship with the occurrence and progression of AD, and this degree of 
correlation of the four genes gradually weakens with the progression of AD. The 
mathematical mapping of the relationship between gene expression and clinical 
MMSE was found, and it can be used in predicting MMSE or classification with 
high accuracy. These genes are expected to be  potential biomarkers for early 
diagnosis and treatment of AD.
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1. Introduction

Alzheimer’s Disease (AD), the most common cause of senile 
dementia, is a progressive neurodegenerative disorder that its 
prevalence is increasing substantially worldwide (Tanzi and Bertram, 
2005; Singh et al., 2022). With around 50 million people suffering 
from this disease, no cure or preventative therapy is available (Pang 
et  al., 2019; Silvestro et  al., 2022). According to the statistics, the 
number of affected people will increase to 65.7 million in 2030 and 
115.4 million in 2050 (Prince et al., 2013).

Tau is a member of microtubule associated protein (MAP) 
family, mainly located in brain axon neuron cells. Its function is to 
stabilize axon microtubules, and phosphorylation can reduce its 
ability to bind microtubules (Laurent and Blum, 2018). Native Tau is 
disordered and needs to be folded into a suitable motif to perform its 
function (Cehlar et  al., 2021). Protein folding is a complicated 
process that involves correctly folding and stabilizing amino acid 
chains into functional proteins (Heneka et  al., 2015). Protein 
misfolding can result from genetic mutations, aging, or 
environmental stressors, and these misfolded proteins can then 
aggregate into oligomers and fibrils (Zhang et  al., 2021). This 
aggregation can lead to the formation of amyloid plaques and other 
protein aggregates (Kadavath et al., 2015; Pinheiro and Faustino, 
2019). The abnormal folding and degradation of Tau protein have 
been linked to several neurodegenerative diseases, and chaperone 
proteins play a crucial role in the proper folding, trafficking, and 
intermediate stabilization of Tau (Wolfe, 2012; Pîrşcoveanu et al., 
2017). In Alzheimer’s disease, misfolded beta-amyloid and Tau 
proteins form oligomers and fibrils that disrupt normal cellular 
function and activate inflammatory responses, ultimately resulting 
in neuronal death and brain damage (Ashrafian et al., 2021; Crestini 
et al., 2022).

The histopathological features of AD are neurofibrillary tangle 
(NFT), loss of neurons and cognitive function (Grøntvedt et al., 2018; 
Laurent and Blum, 2018; Lynch, 2020). Tau hyperphosphorylation 
leading to NFT was found in Alzheimer’s disease (Dregni et al., 2022). 
The formation of NFT is thought to be driven by protein misfolding 
and aggregation, which can disrupt normal cellular processes and lead 
to neuronal dysfunction and death. Specific branch research directions 
include hyperphosphorylation Tau (Silvestro et al., 2022), phosphoryd 
plasma Tau (Pilotto et al., 2022), abnormal aggregation of Tau (Gao 
et al., 2018), regulation of iron accumulation Tau (Rao and Adlard, 
2018) and truncation Tau (Quintanilla et  al., 2020). The exact 
mechanism of Tau leading to NFT is still controversial, but researchers 
cannot deny that the degradation and folding of Tau is the key point 
of this hypothesis (Laurent and Blum, 2018; Cehlar et  al., 2021; 
Sallaberry et al., 2021). However, the relationship between protein-
modified folding molecular networks and AD pathogenesis is complex 
and multifaceted (Rutledge et al., 2022). It involves various cellular 
and molecular mechanisms, including protein misfolding, 
aggregation, and clearance pathways, as well as neuroinflammation 
and oxidative stress (Crestini et al., 2022).

In 2019, the study conducted by Zhu investigated the differential 
expression of genes in GSE1297 and found that 16 genes were 
up-regulated and 14 genes were down-regulated significantly, as 
analyzed using t-test with a significance level of p < 0.05 (Guiqiong 
et al., 2019). Among these differentially expressed genes, functional 
enrichment analysis revealed that BAG2, a gene directly involved in 
the phosphorylation of Tau protein, was selected as a starting point 
for further exploration of the exact mechanism behind the occurrence 
and progression of AD. BAG2, as a nucleotide exchange factor (NEF) 
and co-chaperone protein of HSC70, regulates the folding efficiency 
of Tau protein (MAPT) (Arndt et al., 2005). HSC70 is involved in the 
recognition and binding of misfolded proteins, and BAG2 enhances 
this process by promoting the transfer of misfolded proteins from 
HSC70 to other chaperone proteins (Stricher et  al., 2013). BAG2 
interacts with HSC70’s nucleotide binding domain (NBD) as an NEF 
to accelerate the frequency of conformational change by stimulating 
HSC70’s ATPase activity (Xu et al., 2008). STUB1, also known as 
CHIP, is an E3 ubiquitin ligase that recognizes and ubiquitinates 
misfolded proteins, targeting them for degradation by the proteasome 
(Ferreira et  al., 2013). In the process of lysosome degradation 
mediated by STUB1, the abnormal Tau protein combined with HSC70 
is ubiquitinated to a target protein containing multiple ubiquitin 
chains, which can be recognized by the proteasome and be refolded 
to the normal structure (Petrucelli, 2004). Moreover, BAG2 can 
interact with E2 enzymes, inhibiting STUB1 activity and affecting the 
STUB1-mediated proteasomal degradation pathway (Schönbühler 
et al., 2016).

This study focuses on the relationship among BAG2, HSC70, 
STUB1, and MAPT, and discusses their roles in the pathogenesis of 
AD. Information was extracted from microarray and analyzed to 
further elaborate the folding and degradation pathways of Tau in 
AD. Changes of four gene expression patterns in patients in different 
stages were analyzed to find out the deep mechanism of the occurrence 
and development of AD. The findings of this study provide a better 
understanding of the molecular mechanisms underlying the 
development and progression of AD and may offer new targets for 
therapeutic interventions.

2. Materials and methods

2.1. Study description

In brief, all feature gene data are derived from analyses of 
Affymetrix Microarray data on 9 healthy subjects and 22 Alzheimer’s 
patients with hippocampal autopsies. The data were generated by the 
University of Kentucky College of Medicine and revealed on the NCBI 
data set as GSE1297. GPL96 (HG-U133A) Affymetrix Human genome 
U133a Single array was used to extract the expression information of 
the GSE1297 data set. All of the subjects have been divided into four 
groups based on MMSE (Mini-mental State Examination) criteria 
which are “Control,” “Incipient AD,” “Moderate,” and “Severe.”
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2.2. Data preprocessing

In this paper, this study used matrix G G G Gcon inc sev, , ,mod  to 
represent the data depending on the AD severity of samples:
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where m = 22283  is the number of genes; n = 9  is the number of 
subjects in the control group;
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where m = 22283  is the number of genes; n = 7  is the number of 
subjects in the incipient group;
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where m = 22283  is the number of genes; n = 8  is the number of 
subjects in the moderate group;
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where m = 22283  is the number of genes; n = 7  is the number of 
subjects in the severe group;

gij  represents the microarray expression value of the m -th gene 
in the n -th sample. Generally speaking, each row of matrix G  can 
be seen as one gene and each column of matrix G  can be seen as one 
sample. The number of genes is much larger than that of the samples. 
Since microarray data were obtained in different experimental 
environments (Gilad and Borevitz, 2006), thus, log-transformation 
was used in matrix G  to eliminate the magnitude difference of data 
and enable different samples to be compared. The details of matrix 
Xcon  construction are as follows:
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where m = 22283  is the number of genes; n = 9  is the number of 
subjects in the control group; each row m = …1 22283, , represents the 
gene expression value; column n = …1 9, ,  represents an individual, 

and the vector xij  is the expression value after the log-transformation 
of original microarray data. The purpose of log transformation is to 
ensure that the distribution of the expression data is consistent with a 
normal distribution. It is crucial for statistical analysis since most of 
them require a normally distributed sample (Curran-Everett, 2018). 
Then, Xcon  denotes the matrix of nine control samples, Xinc  denotes 
the matrix of seven incipient patients, Xmod  denotes the matrix of 
eight moderate patients and Xsev  denotes the matrix of seven 
severe patients.

2.3. Correlation coefficient matrix 
decomposition analysis

In this section, we extract the expression values of s  genes from 
Xcon , Xinc , Xmod  and Xsev  and process the inner product between 

them, represented as matrices R R R Rcon inc sev, mod, ,  consisting of 
vector 
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establishing Rcon :

 
a x xi i in= …( )1, ,

 
 a a x x x x x xi j i j i j in jn• = + +…+1 1 2 2

 

R
a

a

a

a

a a a a

con

s s

T
s

=
































=
• •

�

�

�

�

� � � �

� �
�

� �
1 1 1 1 1

��
�� � � �a a a as s s• •















1

#

  

 

 
2( )

Here, this study focuses on the genes with protein folding and 
degradation functions. Therefore, s  is a part of X icon ,  and j  
represent the i -th and j -th gene in the geneset s . n  is the number 
of samples in the control group which is 9. Rcon is the matrix with 
rows corresponding to gene expression values, representing the dot 
product between s  genes.

In this situation, Rcon  is a symmetric and positive semi-definite 
matrix. Thus, matrix Rcon  should contain correlation information 
between s  genes in normal subjects. This kind of information should 
vary significantly in matrix Rsev , reflected by the eigenvalue change. 
In this analogy, we can construct R R Rinc sev, ,mod  while n  is 7, 8, 7, 
respectively.

Moreover, valuable information such as the correlation between 
genes and disease is hidden in matrix R . However, it is challenging 
to find it since one matrix may include tens of thousands of elements. 
The matrix can process eigenvalue decomposition using formula (3) 
to extract valuable information:
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Where Q  is the eigenvector matrix and λ  is the matrix consisting 
of eigenvalues of semi-definite matrix Rcon ,  the i-th of matrix Q is 
the eigenvector of the λi . λ λ λ= …{ }1, , s  and  − =1 T . Moreover, 
It is essential for the matrix Q  is invertible, it guarantees eigenvalue 
decomposition does not affect gene correlations. By convention, λ  
should be in order λ λ λ1 2≥ ≥…≥ s and transforms into percentage 

used formula λ
λ

λ
i i

k
s

k
=

=∑ 1
. So, the value of λi  should be between 

0 and 1, the sum of them equals 1, the first of λ  should be greater 
than all λ .

The eigenvectors and eigenvalues of the inner product matrix can 
reveal important information about the underlying structure of the 
gene expression data. In this case, the eigenvectors represent the 
directions of maximum variation in the data, while the corresponding 
eigenvalues represent the magnitude of that variation. The eigenvalues 
represent the matrix’s intrinsic characteristics and directly indicate the 
correlation between genes. For example, if we treat the matrix as a 
motion, then the eigenvalue is the velocity of the motion, the 
eigenvector is the direction of the motion.

2.4. WGCNA analysis

To reveal the MAPT folding network correlated with AD, analysis 
of gene co-expression was performed via this weighted gene 
co-expression network analysis (WGCNA). It is an algorithm for 
mining module information from microarray data. This method 
defines the module as a group of genes with similar expression 
profiles. To identify modules, WGCNA constructs a gene 
co-expression network where nodes represent genes and edges 
represent the strength of the correlation between genes. The network 
is then clustered into modules based on the topological overlap 
measure, which captures both the strength and the distribution of the 
connections between genes. If some genes always have similar 
expression changes in a physiological process, it is reasonable to 
believe that these genes are functionally related and can be defined as 
a module (Langfelder and Horvath, 2008).

First, this study used all logarithmic transformation data to test its 
availability, and used “WGCNA” R package to construct a gene 
co-expression network. Subsequently, all genes need to be calculated 
with Spearman Correlation Coefficient for any two of them. The 
formula for the Correlation Coefficient is as follows:

 
s corr x xij i j= ( ) ,

β
#  4( )

In this formula, corr x xi j
 ,( )  is the Spearman correlatoin 

coefficient between gene i and j, i and j represent two different genes, 
xi  and 

x j  are their expression value. β  is the soft power of the 
correlation coefficient, and the strength of correlation can be changed 
by adjusting it. After that, this study constructed a co-expression 
module by clustering genes based on the sij  using the average linkage 
hierarchical clustering method and merge cut height supposed to 
be set for merging branches below this cut height. The genes in the 
same module should have a high sij  value, and different modules 
should have no significant relationship.

2.5. Identifying different expressive genes

Genes need to be identified as differentially expressed up-regulated 
or down-regulated genes by independent t-testing with a confidence 
interval of 0.05. The differentially expressed genes were clustered by 
biological function. For an exciting cluster, this study used Python and 
formula 3 with eigenvalue decomposition to a matrix consisting of 
R R Rcon inc, , mod , Rsev  respectively. For the 4 group patients, the 
changing rate of eigenvalues for different matrices indicates how the 
relationship between them change with the degree of the disease. If 
the eigenvalues are approximately 0, it indicates that there is at least 
one gene regulated by other genes in AD patients.

2.6. Neural network predict MMSE

Mini-Mental State Examination (MMSE) is a brief screening test 
that is quantitatively used to assess people’s cognitive capabilities 
conducted by experienced physicians, in which subjective and 
empirical issues exist, so it is valuable to use artificial intelligence to 
objectively evaluate mental state (Paul et al., 2022). Neural Network 
(NN) is a popular method to regression any function based on the 
sum of unlimited different Sigmoid function (Kriegeskorte and Golan, 
2019). In this article, this study constructed a neural network to 
predict MMSE from BAG2, HSC70, STUB1, and MAPT expression 
values. It includes one input layer consisting of 4 nodes, one hidden 
layer consisting of 32 nodes, and one output layer consisting of 1 node. 
In particular, neurons or nodes represent different parameters, and 
layers represent a column of parameters (SiTaula et al., 2021).
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In formula 5 ~ 7, y  is the value of MMSE, is the output of NN; x
is a 4 dimensions input vector and supports being normalized; b is 
the bias value of the output layer and 



k  is the 32 dimensions bias 
vector of the hidden layer; W  is a 32 × 4 parameter matrix of the 
output layer and c  is 32 dimensions parameter vector of the hidden 
layer; a  represents the 32 hidden nodes of the model. Formula 7 
represents the transformation from the input layer to the hidden layer, 
a Sigmoid function represented by formula 6. In this NN, the 
parameters should be adjusted by optimization techniques Stochastic 
Gradient Descent (SGD) base Mean Square Error (MSE). These 
techniques are efficient and have low computational complexity in 
NN, which have found wide application in Machining Learning (Lei 
et al., 2020).
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2.7. Support vectors machines classification

Support vector machines (SVM) can provide more efficacious 
classification performances than other machine learning techniques 
in biology gene data. The fundamental theory is mapping origin data 
into a higher dimension and classifying it by a plane called Hyperplane. 
For example, if data have n  dimensions and are unable to be classified 
by a hyperplane, then this data should be  mapped into n + 1 
dimensions using Radial Basis Function (RBF). RBF can approximate 
multivariable functions by linear combinations of terms based on a 
single univariate function. It usually acts as a mapping function in 
SVM (Buhmann, 2010). The detail of the SVM model can be defined 
as follows:
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where xi  is the i -th gene expression value in matrix X , s  is the 
number of genes used in the SVM model, j  is the number of samples; 
Y  is the input of the model, mapped by xi  into j +( )1  dimensions 
using RBF function. Formula 9 is the detail of the RBF function, 



l  is 
the j  dimensions vector and there are j +( )1  vectors l  in the model, 


lj  is the j -th vector of 


l . σ 2  is the hyper-parameter of the model, 
usually chosen as 0.5.
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Where W  is the weight matrix, Y  is the input feature matrix and 
B  is the bias matrix. In this article, this study trained the SVM model 
to find a W  and B  to maximize the margin 1 2/W . To evaluate 
SVM performance, this study used Sensitivity and Specificity to 
establish Receiver Operating Characteristics (ROC). The details are 
as follows:
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In formulas 11 and 12, y  is the value of sensitivity, z  is the value 
of specificity, p  means True Positive which is correctly classified as 
positive samples; n  means False Negative represents the number of 
samples incorrectly classified as positive; t  means True Negative 
corresponding to the number of negative samples correctly classified; 
f  means False Positive, is the number of negative samples 

incorrectly classified.

3. Results

3.1. Matrix decomposition

The eigenvectors and eigenvalues of the inner product matrix can 
provide crucial information about the underlying structure of gene 
expression data. In this section, we employed matrix decomposition 
analysis to gain deeper insights into the molecular mechanisms 
underlying disease progression. Specifically, as shown in 
Supplementary Tables S1–S4, we extracted the expression values of 
four genes (BAG2, HSC70, STUB1, and MAPT) and computed the 
inner product matrix using Formula 2. We then analyzed the resulting 
inner product matrix using matrix decomposition to evaluate the 
four groups.

Our findings of eigenvalues, depicted in Figure 1, suggest that the 
difference between eigenvalues changed less in the first three phases 
of the disease, whereas the divergence of distribution became more 
skewed toward the extremes in the severe stage. This suggests that the 
overall correlation among these four genes decreases as the condition 
worsens, resulting in reduced efficiency of MAPT folding and 
degradation. The maximum eigenvalues increased from approximately 

FIGURE 1

Eigenvalues of the expression matrix. Eigenvalues were computed 
on the basis of the inner product matrix consisting of BAG2, STUB1, 
HSC70, MAPT (Tau). The x-axis represents the level of the group and 
the y-axis represents the eigenvalues that have been percentage 
transformed, thus the sum of eigenvalues equals 1. The cyan bar is 
the maximum eigenvalue and the light yellow bar is the minimum 
eigenvalue. The biggest eigenvalues in the control group are 0.56 
and in the severe group are 0.79, which indicates that the correlation 
among genes is significantly modified during the development of 
disease.
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0.56 to around 0.8, indicating that at least one of the four genes plays 
a major and triggering role in the folding and degradation function 
when the disease becomes more severe. Moreover, while eigenvalues 
represent the magnitude of that variation, the eigenvectors reveal the 
direction of the variation.

The eigenvectors corresponding to the eigenvalues in the control 
group are presented in Table 1, while Table 2 shows the eigenvectors 
of the severe group. The first column of the eigenvectors matrix 
corresponds to the largest eigenvalue, which is the most important 
element. These results suggest that the underlying gene expression 
patterns have changed between the two groups. For example, the 
eigenvector of the biggest eigenvalue in the control group is [0.16, 
−0.57, 0.51, 0.62], which contributes 56% of the information in the 
matrix. However, in the severe group, not only did the eigenvalue 
change significantly, but also the sign of the elements in the eigenvector 
reversed. This change in sign for all elements indicates a shift in the 
direction of maximum variation in the gene expression data.

Furthermore, the eigenvector with the largest eigenvalue 
represents the direction of maximum variability in the data. In the 
control group, the genes BAG2, STUB1, HSC70, and MAPT had 
positive contributions to this direction of maximum variation, while 
in the severe group, the same genes had negative contributions. This 
suggests that the coordination of gene expression patterns has shifted 
from a positive to a negative correlation between these genes in the 
severe group compared to the control group. Notably, BAG2 may act 
as a triggering protein since its expression consistently and 
significantly declines while the other proteins remain unchanged, as 
demonstrated in Figure 2. Overall, the value of eigenvalues and the 
signs of eigenvectors suggest that the coordination within the 
molecular network consisting of BAG2, HSC70, STUB1, and MAPT 
changed significantly.

3.2. WGCNA network construction and 
identification of genes

We performed a Weighted Gene Co-expression Network Analysis 
(WGCNA) to investigate the expression patterns and coordination of 
BAG2, STUB1, HSC70, and MAPT in Alzheimer’s disease (AD) 
patients. WGCNA is a method that identifies co-expressed genes 
across different samples or conditions and groups them into modules. 
Our analysis involved extracting clinical attributes such as Group-
NFT-BRAAK-AGE-MMSE-SEX-PMI directly from the original data, 
excluding any irrelevant data, and transforming the sample groups 
into numerical values (control group = 1, severe group = 4). We also 
log-transformed the gene expression data and established a scale-free 
co-expression network. To ensure module independence, we applied 
a soft threshold β of 8 and set the merge cut height to 0.25 (Figure 3A). 
We used formula 4 to perform hierarchical clustering of genes and 
obtain a hierarchical clustering tree. Using the dynamic tree cutting 
method, we defined the minimum number of genes per module as 30 
and selected intermediate level classification to identify key clusters. 
Next, we classified the genes that were not assigned to any cluster into 
different clusters based on relevance, resulting in a total of 41 modules 
(Figure 3B). The genes that could not be classified into any modules 
were grouped together into the Grey module.

Figure  3C represents the relationships between modules and 
traits. We removed the grey module from the analysis, leaving 40 

modules identified by WGCNA. Using the ‘color’ attribute of the 
WGCNA network in R, we determined the module membership of 
specific genes. Our analysis showed that BAG2, STUB1, and MAPT 
belonged to module blue, while HSC70 belonged to module yellow, 
indicating that these four genes have similar expression patterns and 
are functionally related. The results shown in Figure 3C also indicate 
that module blue, which consists of three out of the four genes, 
exhibited the highest correlation with disease severity (control vs. 
severe) among all the identified modules with a value of p of 0.01, 
suggesting a significant association between the co-expression pattern 
of genes in module blue and the disease condition. The finding of 
WGCNA indicates that BAG2, STUB1, HSC70, and MAPT have 
similar expression patterns and play important roles in the 
pathogenesis of the disease.

TABLE 1 The eigenvector of inner product in control group.

λ1 λ2 λ3 λ4

0.1603998 −0.86496189 0.43869841 0.18345718

−0.57748234 0.26959268 0.49608849 0.58968648

0.50539008 0.39466183 0.71249652 −0.28490634

0.62077928 0.15297958 −0.23192376 0.73310415

TABLE 2 The eigenvector of inner product in severe group.

λ1 λ2 λ3 λ4

−0.47158612 0.4301255 0.75178616 0.16557825

0.47986946 −0.34906073 0.61507755 −0.51919314

−0.49541599 0.15885334 −0.2199049 −0.82520934

−0.54944958 −0.81726022 0.09021649 0.14849873

FIGURE 2

The violin plot of expression value. Violin plot of BAG2, STUB1, 
HSC70, and MAPT levels in four groups. The y-axis is the gene value 
after Log transformation. The plot displays the distribution of 
expression values for each group as a density curve, with thicker 
sections indicating a higher density of data points. The median 
expression level is represented by a white circycle, and the 
interquartile range (IQR) is indicated by a box. The width of the 
violins reflects the density of data points at each expression level. 
BAG2 is one of the significantly differential genes evaluated by two-
sample t-test.
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3.3. Neural network predict MMSE

In this study, a three-layer neural network was constructed using 
Python 3.8 with Torch package 2.6 to predict MMSE value of patients 
based on the expression value of BAG2, HSC70, STUB1, and 
MAPT. The architecture of the neural network is presented in 
Figure  4A, and the study divided the GSE1297 datasets into two 
subsets, namely training and testing datasets, to ensure the model’s 
generalization ability to new and unseen data. A separate testing 
dataset was utilized to evaluate the neural network model’s 
performance on data that had not been used during the training phase 
to prevent overfitting, a common issue in machine learning models 
(Wei and Dunbrack, 2013). Supplementary Tables S5, S6 provide the 
details of the data and the outcome of the neural network. To estimate 
the neural network model, Spearman’s correlations analysis with a 
confidence interval set at 95% was utilized. Figure 4B illustrates that 
each point represents a different sample and the line represents the 
neural network model, while the green dash line splits the test and 
training data. Additionally, Figure 4C demonstrates that the predicted 
MMSE has a strong correlation (r = 0.915) with the true MMSE, and 
this kind of relationship is highly credible (p = 0.011).

This model’s importance lies in its ability to accurately predict 
patient MMSE values based on the expression of specific genes, 
namely BAG2, HSC70, STUB1, and MAPT. The model has 
demonstrated a strong correlation between predicted and actual 
MMSE values, indicating its reliability and validity. By using this 

neural network model, it is possible to obtain valuable insights into a 
patient’s mental status without the need for time-consuming tests, 
which can be particularly important in clinical settings. Additionally, 
the model reveals a strong relationship between these genes and AD, 
providing new avenues for further research into the underlying 
mechanisms of the disease.

3.4. Support vectors machines 
classification

In this section, this study obtained 180 samples in the control 
group and 181 samples in the patient’s group from the GSE15222 
project of Alzheimer International Institution as SVM training data 
and 31 samples from GSE1297 as verifying data to make up for the few 
shortcomings of the training samples in NN. The sum and standard 
deviation of expression values of the four genes were used as inputs 
for SVM, which transformed the two-dimensional input vector into a 
three-dimensional space using RBF. As depicted in Figure 5A, the 
majority of samples were classified by a hyperplane, indicating the 
effectiveness of the model in distinguishing between control and 
patient groups.

To further evaluate the performance of the model, a ROC curve 
was plotted based on the sensitivity and 1-specificity values. The 
dashed line in Figure 5B represents the average line, indicating that 
the positive rate exceeds the negative rate if a point falls beyond it. The 

FIGURE 3

WGCNA analysis in Alzheimer disease. BAG2, STUB1, and MAPT belong to module blue, HSC70 belongs to module yellow. (A) The influence of various 
soft threshold powers on module independence and mean connectivity. (B) Dendrogram of all expressed genes clustered based on the soft power 
eight. The color band shows the result obtained from the single-block analysis. (C) The module-trait relationship heatmap of the correlation between 
the seven clinical traits and module eigengenes. Each row corresponds to a module and column to a feature; 20 modules were selected from all 41 
modules for a pithy view.
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FIGURE 5

The hyperplane and ROC cure of SVM. (A) The hyperplane of SVM. This study used the value of sum and standard deviation as X1 and X2 to illustrate 
better that a yellow background characterizes the location and shape of the hyperplane. Two dimensions input vectors have been mapped into three-
dimension, then classified by a hyperplane. The SVM was trained by 361 samples from GSE1522 and verified with 31 pieces in GSE1297. The result 
shows that a hyperplane can classify most samples, it suggests that these four genes may play a decisive role in the formation of AD. (B) The cure of 
Receiver Operating Characteristic. X is the false positive rate equal (1-specificity), and Y is the recall term of sensitivity. The area below the red line is the 
accuracy of SVM, which is 0.72.

FIGURE 4

The structure and results of Neural Network. (A) The input layer is a four dimensions vector that represents the expression value of BAG2, HSC70, 
STUB1 and MAPT. Y  is the predicted MMSE value by NN. Matrix W  and C are weight parameters composed of relative information between input 
and output. (B) Curve fitting based on Neural Network with MMSE scatters on Test and Training Data. X indicates different patients, Y is the value of 
MMSE, the blue line represents the fitting result of training data, and the red line represents the fitting result of test data. The green dash line is the 
boundary between training and testing patients. (C) Pearson coefficient analysis of Neural Network result, the x-axis is the MMSE and the y-axis is the 
predicted MMSE for test patients, the black line is the fitting line and the grey plane represents the 95% confidence interval. The correlation coefficient 
is represented as r which is 0.915 showing the results of NN are close to true value. All the data points scatter in the grey plane and the value of p of the 
hypothesis test is only 0.011, which means our model is robust as well as highly accurate.

https://doi.org/10.3389/fnagi.2023.1090400
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Yang et al. 10.3389/fnagi.2023.1090400

Frontiers in Aging Neuroscience 09 frontiersin.org

area under the ROC curve was calculated to be 0.72, indicating a high 
level of accuracy in identifying Alzheimer’s disease patients based on 
the expression levels of the four genes.

4. Discussion

It is widely known that Beta-amyloid and Tau proetin are related 
to Alzheimer’s disease pathology and not directly related to the protein 
folding system. However, there are molecular markers related to the 
protein folding system that are used in research to study protein 
folding and misfolding (Sallaberry et al., 2021). Examples of such 
markers include chaperone proteins, which help to maintain proper 
protein folding, and molecular chaperones, which recognize misfolded 
proteins and target them for degradation. Other examples include 
post-translational modifications such as ubiquitination and 
phosphorylation, which can affect protein folding and stability 
(Stocker et al., 2021). Although molecular markers related to protein 
folding may not be used for diagnosing or understanding Alzheimer’s 
disease specifically, they are important in understanding the basic 
mechanisms of protein folding and how misfolding can lead to various 
diseases including neurodegenerative diseases. In this study, the 
alterations in the expression of four genes were examined in 
individuals at various stages of Alzheimer’s disease to elucidate the 
role of BAG2, HSC70, STUB1 in folding and degradation of Tau in 
disease pathogenesis and progression.

The study focused on analyzing the gene expression levels of 
Affymetrix Microarray, including 9 healthy subjects and 22 
Alzheimer’s patients. In a previous study, team performed 
normalization and t-testing on the expression data of all 22,283 genes, 
resulting in the identification of 16 up-regulated genes and 14 down-
regulated genes (Guiqiong et al., 2019). The differential expression 
genes were described in the Supplementary Tables S7, S8. Of note, 
BAG2 was found to be one of the down-regulated genes. Further 
analysis of the Uniport database of BAG21 revealed a strong correlation 
with HSC70 and STUB1. Based on the literature survey and Uniport 
database findings, this article focuses on the effects on the protein 
folding and degradation system and Alzheimer’s disease when the 
molecular network consisting of BAG2, HSC70, STUB1 and MAPT 
is dysregulated.

As shown in Figure 1, the results of matrix decomposition analysis 
showed that the difference between eigenvalues changed less in the 
early stages of the disease, while the distribution became more skewed 
toward the extremes in the severe stage. This indicates that the overall 
correlation among these four genes decreases as the condition 
worsens, resulting in reduced efficiency of MAPT folding and 
degradation. Moreover, the eigenvectors revealed a shift in the 
direction of maximum variation in the gene expression data (Table 2), 
with BAG2 potentially acting as a triggering protein since its 
expression consistently and significantly declined while the other 
proteins remained unchanged (Figure 2). To further investigate the 
expression patterns and coordination of BAG2, STUB1, HSC70, and 
MAPT in Alzheimer’s disease patients, we  performed a WGCNA 
analysis. Figure 3 showed that these four genes have similar expression 

1 https://www.uniprot.org/uniprotkb/O95816/entry#interaction

patterns and are functionally related, with BAG2, STUB1, and MAPT 
belonging to module blue, while HSC70 belonged to module yellow. 
The module blue exhibited the highest correlation with disease 
severity among all the identified modules, suggesting a significant 
association between the co-expression pattern of genes in module blue 
and the disease condition.

The artificial intelligence models were used to calculate the 
mapping relationship between the expression levels of the four hub 
genes and clinical parameters: the results of NN (Figure 4) showed 
that there was a significant linear relationship between the 
expression levels of the four core genes and the golden index for AD 
diagnosis, MMSE (Spearman The correlation coefficient is 0.97). 
The SVM model trained by GSE15222 and tested by GSE1297 
(Figure 5), showed that the expression levels of the four hub genes 
could be used to accurately predict the MMSE score of the subjects, 
and the subjects were classified to determine whether they suffer 
from AD (The area under the ROC curve is 0.72). We trained two 
reliable artificial intelligence models to predict the status of AD 
subjects at different stages. The results showed that the expression 
patterns of four hub genes (BAG2, HSC70, STUB1, and MAPT) 
affecting protein folding and degradation were significantly 
correlated with clinical diagnostic indicators at all stages of 
AD progression.

Figure 6 shows a brief interaction among the hub genes. As a 
molecular chaperone, HSC70 corrects the misfolding of nascent 
peptides and promotes the formation of the correct structure of the 
target protein with biological functions (such as natural Tau) (Lo 
et al., 2004). HSC70 consists of two main domains: the N-terminal 
nucleotide-binding domain (NBD) and the C-terminal substrate-
binding domain (SBD). The NBD is responsible for binding and 
hydrolyzing ATP, which drives the conformational changes required 
for substrate binding and release (Schuermann et al., 2008). The 
SBD is responsible for binding to unfolded or misfolded proteins 
and facilitating their folding or targeting them for degradation 
(Khachatoorian et  al., 2014). As a common partner of HSC70, 
BAG2 can play a crucial role in the degradation and folding of Tau 
by affecting the proteasome and lysosomal systems (Schönbühler 
et al., 2016), and BAG2 can also interact with E2 enzymes, thereby 
inhibiting STUB1 activity and affects the STUB1-mediated 
proteasomal degradation pathway (Quintana-Gallardo et al., 2019). 
There are two roles of HSC70 in AD development. On the one hand, 
HSC70 can recruit local Tau in the form of ATP binding and fold 
them in the form of ADP binding in the substrate binding domain 
(SBD) (Papsdorf et  al., 2019). BAG2  in the surrounding 
environment can combine with HSC70 (NBD) as a nucleotide 
exchange factor (NEF) to accelerate the frequency of conformational 
change by stimulating HSC70 ATPase activity (Bracher and 
Verghese, 2015). On the other hand, HSC70 can transport abnormal 
Tau to the lysosome/proteasome degradation system guided by 
BAG2/STUB1; They are important to maintain Tau’s internal 
balance (Demand et al., 2001; Young et al., 2016). In the process of 
lysosome degradation mediated by STUB1, the abnormal MAPT 
combined with HSC70 is ubiquitinated to a target protein 
containing multiple ubiquitin chains, which can be recognized by 
the proteasome and be  refolded to the normal structure. This 
system will produce considerable abnormal MAPT if the 
coordination of the molecular network becomes disordered. When 
excessive abnormal Tau needs to be degraded, Tau’s proteasome 
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degradation system is easy to block or loses function (Lee et al., 
2013; Watanabe et al., 2020).

Overall, this study found the worsening of correlation of BAG2, 
HSC70, STUB1, and MAPT molecular network leads not only to a 
decrease in folding efficiency, but also to an elevated error rate. It may 
cause the formation of NFT and the changes of MMSE by contributing 
to the aggregation of abnormal tau.

5. Conclusion

This study revealed that the interaction consisting of BAG2, 
HSC70, STUB1, and MAPT play an important role in AD. By 
detecting their expression patterns, the clinical stages of AD can 
be diagnosed and determined. It facilitates epidemiological screening 
and early diagnosis of AD. The new method for predicting and 
detecting AD mentioned in this study does not require professional 
medical institutions and experienced experts. It can easily be rolled 
out to communities or hospitals, which will help reduce national and 
household health expenditures worldwide.
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FIGURE 6

Diagram for the folding and degradation system of Tau. The HSC70 is divided into two domains in this figure: nucleotide-binding domain (NBD) and 
substrate-binding domain (SBD). Unfolded/Misfolded tau can be folded in the SBD of ADP form of HSC70 and degraded in lysosome or proteasome in 
cooperation with BAG2 and STUB1, respectively. In proteasome pathway, the ubiquitin ligase STUB1 catalyzes transfer of ubiquitin from an E2 enzyme 
to form a covalent bond with tau. Therefore, tau supports being tagged with ubiquitin before the lysosome degradation process with STUB1. BAG2 as 
Nucleotide exchange factor (NEF) of HSC70 binding to NBD plays a dual role to accelerate folding efficiency and assist tau in delivering tau to the 
lysosome.
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