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Background: Blood brain barrier (BBB) breakdown is considered a potential

mechanism of dementia. The Alzheimer’s disease (AD) biomarkers and vascular

factors are also associated with BBB permeability.

Objective: In the present study, the combination e�ects of neuropathological

biomarkers of AD and chronic vascular risk factors for BBB were investigated.

Methods: The cerebrospinal fluid (CSF)/serum albumin ratio (Qalb), an indicator

of BBB permeability, was measured in a total of 95 hospitalized dementia

patients. The demographics, clinical information, and laboratory tests were

collected from the inpatient records. The CSF neuropathological biomarkers of

AD and apolipoprotein E (APOE) genotype were also collected. The mediation

analysis model was used to calculate the associations among neuropathological

biomarkers of AD (mediator), the Qalb, and chronic vascular risk factors.

Results: Three types of dementia, AD (n= 52), Lewy body dementia (LBD, n= 19),

and frontotemporal lobar degeneration (n = 24), were included with a mean Qalb

of 7.18 (± 4.36). The Qalb was significantly higher in dementia patients with type

2 diabetes mellitus (T2DM, p = 0.004) but did not di�er based on the presence of

APOE ε4 allele, CMBs, or amyloid/tau/neurodegeneration (ATN) framework. The

Qalb was negatively associated with the levels of Aβ1-42 (B = −20.775, p = 0.009)

and Aβ1-40 (B=−305.417, p= 0.005) and positively associated with the presence

of T2DM (B= 3.382, p < 0.001) and the levels of glycosylated hemoglobin (GHb, B

= 1.163, p < 0.001) and fasting blood glucose (FBG, B = 1.443, p < 0.001). GHb is

a direct chronic vascular risk factor for higher Qalb (total e�ect B = 1.135, 95% CI:

0.611–1.659, p< 0.001). Ratios of Aβ1-42/Aβ1-40 or t-tau/Aβ1-42weremediators

of the association between theQalb andGHb; the direct e�ect of GHb on theQalb

was 1.178 (95% CI: 0.662–1.694, p < 0.001).

Conclusion: Glucose exposure can directly or indirectly a�ect BBB integrity

through Aβ and tau, indicating glucose a�ects BBB breakdown and glucose

stability plays an important role in dementia protection and management.
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Introduction

The blood-brain barrier (BBB) is a selective diffusion barrier
to separate the central nervous system (CNS) from the peripheral
blood circulation and maintains homeostasis in the CNS by
regulating ion balance, facilitating nutritional transport, and
preventing influx of potentially neurotoxic molecules from
circulation (Kadry et al., 2020). BBB damage has been commonly
observed and can be reflected in alterations in neuroimaging
(Chagnot et al., 2021) and biofluid markers (Wong et al., 2022),
indicating the important role of BBB in dementia (Raja et al.,
2018).

Literature based on post-mortem investigations and dynamic

contrast-enhanced magnetic resonance imaging (DCE-MRI)
studies have shown significant BBB damage in normal elderly
adults (Verheggen et al., 2020) and dementia patients (Sweeney

et al., 2018). The increased regional BBB Ktrans (a non-invasive
indicator of BBB permeability) in the global cortex (van de Haar
et al., 2016), median temporal lobe or hippocampus (Montagne

et al., 2019), and white matter (Kerkhofs et al., 2021) is common
in patients with cognitive impairment based on DCE-MRI (Raja

et al., 2018). Biofluid markers (Chen, 2011; Sun et al., 2021; Wong
et al., 2022), including serum levels of the S100 calcium binding
protein B, matrix metalloproteinases, glial fibrillary acidic protein,

neurofilament light chain protein, soluble platelet-derived growth
factor β (sPDGFRβ), and the cerebrospinal fluid (CSF)/serum

albumin ratio (Qalb) (Wong et al., 2022), have appropriate but
varying levels of sensitivity and specificity. The alteration of Qalb

is regarded a reliable standard surrogate marker for BBB integrity
and a potential biomarker for neurological diseases. The Qalb was

found increased in patients with Parkinson’s disease (Pisani et al.,
2012), Alzheimer’s disease (AD), and vascular dementia (VaD)

(Musaeus et al., 2020) compared with healthy individuals, as well
as in a small subset of patients with progressive supranuclear
palsy, multiple system atrophy, and Lewy body dementia (LBD)

(Llorens et al., 2015). Aging (Montagne et al., 2019; Verheggen
et al., 2020), gender (Moon Y. et al., 2021), and apolipoprotein
E (APOE) ε4 allele (Montagne et al., 2020) are typical factors

associated with BBB integrity. The neuropathological biomarkers
of AD (Wong et al., 2022) and chronic vascular risk factors such

as cerebral microbleeds (CMBs), enlarged perivascular spaces, type
2 diabetes mellitus (T2DM), arterial hypertension, dyslipidemia,
and hyperhomocysteinemia (HHcy), also contribute to increased

BBB permeability in dementia (Wang et al., 2018; Li et al., 2019;
Freeze et al., 2020; Cai et al., 2021). The Qalb is not consistently
altered in any neurodegenerative dementia (Musaeus et al.,

2020) and the association among the Qalb, APOE ε4 allele, and
neuropathological biomarkers of AD are controversial (Karch

et al., 2013; Janelidze et al., 2017). In a preliminary analysis, BBB
permeability was associated with dementia and vascular risk

factors but not amyloid pathology or APOE genotype (Janelidze
et al., 2017). Clear evidence exists for the independent role of
vascular risk factors or AD neuropathological biomarkers in

the pathogenesis of BBB dysfunction, however, chronic vascular
risk factors mediated by AD neuropathological biomarkers that
contribute to BBB dysfunction in AD and other forms of dementia

cannot be excluded.

To evaluate the Qalb in Chinese dementia patients and explore
the combined effects of neuropathological biomarkers of AD
and chronic vascular risk factors for BBB, the Qalb, β-amyloid
(Aβ), and tau levels in CSF were analyzed for neurodegenerative
dementias. These findings will contribute to the understanding
of disease mechanisms of dementia and facilitate development
of precise intervention and management measures for chronic
vascular factors to prevent dementia.

Materials and methods

This study was performed according to the Helsinki
Declaration and approved by the Ethical Review Board of
Beijing Tiantan Hospital (KYSQ 2021-068-01). Written informed
consents was obtained from patients and their family members.
All methods were performed following relevant guidelines
and regulations.

Patients

The study included 95 hospitalized patients recruited from
the department of cognitive disorders of Beijing Tiantan Hospital,
Capital Medical University from December 2021 to June 2022,
diagnosed with AD (n = 52), LBD (n = 19), or frontotemporal
lobar degeneration (FTLD, n = 24). Probable AD was diagnosed
according to the criteria of the National Institute on Aging and
the Alzheimer’s Association (NIA-AA) workgroup and 11C-PIB
PET scans to assess Aβ deposition (n = 7) or CSF test
for neuropathological biomarkers of AD (n = 52) (McKhann
et al., 2011). Consensus criteria for the diagnosis of FTLD
were formulated in 1998 (Neary et al., 1998). LBD subjects
included patients with dementia with Lewy bodies (DLBs) and
Parkinson’s disease dementia (PDD); patients with probable DLB
were diagnosed using the criteria of McKeith et al. (2017), and
probable PDD was diagnosed according to the clinical criteria
developed by the Movement Disorder Society in Emre et al. (2007).
A probable DLB diagnosis can be made with two or more core
symptoms together with or without indicative biomarkers, or
only one core symptom with one or more indicative biomarkers.
International consensus suggests DLB should be diagnosed when
cognitive impairment precedes parkinsonism or begins within
a year of parkinsonism and PDD should be diagnosed when
parkinsonism precedes cognitive impairment by more than 1 year.

Exclusion criteria for enrolled patients

• The patients who had diagnosis of any neurological disease
except AD, LBD, or FTLD;

• The patients could not cooperate with lumbar puncture, MRI,
and cognitive evaluation due to various reasons were excluded.

• The patients had the history of mental disorders and illicit
drug abuse;

• The patients were treated with folate or vitamin B12 in the last
3 months;
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• The patients had acute or chronic liver and kidney
dysfunction, malignant tumors, or other serious
underlying diseases.

Clinical information

The general demographics of each patient, including
gender, age, body mass index (BMI), educational level, and
blood laboratory tests performed on the day of hospital
admission (fasting blood glucose (FBG), glycosylated
hemoglobin (GHb), triglyceride, cholesterol, high-density
lipoprotein cholesterol (HDL-C), low-density lipoprotein
cholesterol (LDL-C), homocysteine (Hcy), serum folate,
serum vitamin B12, and ferritin), were obtained from inpatient
medical records.

The clinical and neurological evaluations were performed
by neurologists specialized in dementia care. A detailed
history taken from the primary caregivers of the patient
included the history of hypertension, T2DM, hyperlipidemia
(HLP), HHcy, cardio-cerebrovascular disease (CVD), smoking
habits and/or alcohol consumption, course of disease, and
prescriptions for patients in the last 3 months. Before lumbar
puncture, the blood pressure was measured twice on the
right upper arm using an electronic blood pressure monitor
(Omron HEM-7430; Omron Corporation, Kyoto, Japan)
with 1min between measurements. The mean values of
systolic blood pressure and diastolic blood pressure were
calculated and recorded. If the difference between the two blood
pressure readings exceeded 10 mmHg, a third measurement
was taken and the mean value of the last two readings was
calculated (Lu et al., 2017).

Neuropsychological assessments

Neuropsychological assessments were performed on
the same day as the lumbar puncture. The Mini-Mental
State Examination-Chinese version (C-MMSE) (Folstein
et al., 1975), the Montreal Cognitive Assessment (MoCA)
(Nasreddine et al., 2005), and the Clinical Dementia Rating
(CDR) (Morris, 1993) scale were used to evaluate global
cognitive function and severity of cognitive impairment in all
patients. The C-MMSE and MoCA scores range from 0 (severe
impairment) to 30 (no impairment). CDR is a 5-point scale;
0.0 (no dementia), 0.5 (MCI), 1.0 (mild), 2.0 (moderate), and
3.0 (severe).

Sample collection and measurements

Blood samples were drawn by venipuncture into 6-mL
plastic vacuum tubes containing EDTA on the day of hospital
admission; CSF was collected via a lumbar puncture in the
L3–L5 vertebral interspaces between 7 a.m. and 10 a.m. after
fasting. Then, all samples were centrifuged, aliquoted, and
stored at −80◦C in polypropylene tubes until use. Anti-AD

drugs were withheld for 12–14 h prior to sampling the CSF,
and the gap between blood and CSF collection was within
48 h.

All analyses of blood and CSF samples were performed
using commercial and validated instruments and kits at the
Clinical Neurochemistry Laboratory at Beijing Tiantan Hospital,
Beijing, China. Serum albumin levels were analyzed using the
absorption method and CSF albumin levels analyzed using
an immunoturbidimetric assay. The Qalb was used to reflect
BBB permeability. CSF Aβ1-42 (RE59661, IBL International,
Hamburg, Germany), Aβ1-40 (RE59651, IBL International,
Hamburg, Germany), t-tau (RE59631, IBL International,
Hamburg, Germany), and p-tau181 (30121609, IBL International,
Hamburg, Germany) concentrations were quantified using
commercial enzyme-linked immunosorbent assays (ELISAs)
according to the manufacturer’s protocol. CSF cut-off values
for Aβ-positive or Aβ-negative were Aβ1-42 < 550 pg/mL
and/or Aβ1-42/Aβ1-40 ratio ≤ 0.05. CSF cut-off values for
tau positive were p-tau181 > 50 pg/mL and/or t-tau > 399
pg/mL, all cut-off values were set based on the accumulation
of previous experimental data of Kindstar Global Genetic
Technology Co., LTD. APOE genotype was determined based
on genomic DNA using polymerase chain reaction following the
detailed protocol described in our previous study (Gan et al.,
2022).

MRI acquisition and visual rating scales
Multiplanar oblique coronal (perpendicular to the axis

of the hippocampus), transverse, and coronal position
reconstructions were made of 3D T1-weighted images for
diagnostic multisequence MRI; details of the protocol are provided
in our previous study (Zhu et al., 2021; Gan et al., 2022). All
MRI visual scales readings were reviewed by two experienced
neuroradiologists in a double-blind manner and the final rating
scores averaged.

The visual rating scales included Medial Temporal Lobe
Atrophy (MTA) and Fazekas scales. MTA is used to evaluate
the visual regional brain atrophy in the hippocampus,
parahippocampal gyrus, entorhinal cortex, and the surrounding
CSF spaces, with a range from 0 (no atrophy) to 4 (severe loss
of hippocampal volume) (Scheltens et al., 1992). Fazekas scales
reflect the whole white matter lesion and range from 0 (no or
single punctate lesion) to 3 (large confluent lesions) (Fazekas et al.,
1987). The CMBs were defined as round or quasi-round areas with
clear boundaries and black or low signal areas with a diameter of
2–10mm in the T2 gradient echo sequence or SWI (Greenberg
et al., 2009).

The reconstruction mode and the degree of the MRI visual
rating scales were used as described in our previous study (Zhu
et al., 2021) and shown in Figure 1.

Statistical analysis

The clinical information, including general demographics,
medical history, course of disease, blood pressure,
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FIGURE 1

The reconstruction mode and the description of the degree of the MRI visual rating scales. We referred our previous study by Zhu et al. (2021), and

showed the reconstruction mode and the description of the degree of the MTA scale, Fazekas scale, and CMBs based on MRI. We also showed the

rep images of Aβ positive in 11C-PiB PET (the black dot in the skull indicated by the arrow is positive). MTA, medial temporal lobe atrophy; CMBs,

cerebral microbleeds; Aβ, β-amyloid.

neuropsychological assessments, blood laboratory tests, and
neuropathological biomarker levels of AD in CSF, were collected.
For quantitative variables, if the data satisfied the normal
distribution, the mean (standard deviation, SD) was described,
and comparison among different dementia groups was performed
using the t-test; if the data did not satisfy the normal distribution,
the data were described as the medians (interquartile range, IQR),
and comparison among different groups performed using the
Mann–Whitney U test. The qualitative variables were expressed
as frequency and the chi-squared test used for comparison among
different groups. The demographic and clinical information are
expressed as mean (SD) and shown in Table 1. The participants
with APOE ε2/ε2, APOE ε2/ε3, or APOE ε3/ε3 were classified into
the APOE ε4 non-carrier group and subjects with APOE ε2/ε4,
APOE ε3/ε4, or APOE ε4/ε4 were classified into the APOE ε4
carrier group.

The partial correlation and linear regressions, after adjusting for
gender, age, educational level, course of disease and diagnosis, were
used to analyze the association among the Qalb, neuropathological
biomarkers of AD, and chronic vascular risk factors in dementia
patients. Then, to test our hypotheses that neuropathological
biomarkers of AD in CSF could act as a mediator of the association
between the Qalb and chronic vascular risk factors, generalized
structural equation models were constructed. Because significant
differences were not observed in blood pressure, CVD, blood
lipids, blood Hcy, and smoking habits and/or alcohol consumption,

the association among the exposure (T2DM, GHb, and FBG),
mediators (the ratios of Aβ1-42/Aβ1-40 or t-tau/Aβ1-42), and
outcome (Qalb) was analyzed using linear regression after adjusting
for gender, age, course of disease, APOE ε4 status, and diagnosis.
For all pathways, standardized direct, specific indirect, and total
indirect were estimated.

Statistical analysis was performed using the IBM SPSS (version
26.0; IBM Corporation, Armonk, NY, USA). P-values < 0.05
were considered statistically significant at the 2-tailed α level, and
comparison among the three groups (AD, LBD, and FTLD) was
controlled using Bonferroni correction.

Results

Sample characteristics

Demographic and clinical characteristic are shown in Table 1.
Among the 95 patients enrolled, 54 (56.8%) were female and the
average age was 65.53 years (± 9.49 years). The mean Qalb was 7.18
(± 4.36). Except for the cholesterol and LDL-C levels, significant
difference was not found in gender, age, course of disease,
educational level, BMI, CVD, neuropsychological assessments,
MTA and Fazekas scores, presence of CMBs, and other laboratory
tests among the three groups.
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TABLE 1 Demographic features and laboratory tests in dementia cases.

All patients (n = 95) AD (n = 52) LBD (n = 19) FTLD (n = 24)

Gender

Male 41 (43.2%) 21 (40.4%) 10 (52.6%) 10 (41.7%)

Female 54 (56.8%) 31 (59.6%) 9 (47.4%) 14 (58.3%)

Age (years old) 65.53± 9.49 63.75± 9.85 68.05± 9.48 67.38± 8.18

Education (years) 8.60± 4.52 8.29± 4.76 9.16± 3.89 8.83± 4.55

BMI (kg/m2) 23.25± 3.61 22.96± 3.27 22.93± 4.08 24.15± 3.92

Course of disease (months) 35.74± 36.03 41.23± 43.58 35.26± 26.70 24.21± 18.14

Chronic vascular risk factors (n, %)

Habits of SA 26 (27.4%) 15 (28.8%) 5 (26.3%) 6 (25.5%)

Hypertension 27 (28.4%) 12 (23.1%) 6 (31.6%) 9 (37.5%)

CVD 15 (15.8%) 5 (9.6%) 4 (21.1%) 6 (25.0%)

Type 2 diabetes mellitus 24 (25.3%) 13 (25.0%) 6 (31.6%) 5 (20.8%)

Hyperlipidemia 33 (34.7%) 22 (42.3%) 6 (31.6%) 5 (20.8%)

Hyperhomocysteinemia 36 (37.9%) 21 (40.4%) 8 (42.1%) 7 (29.2%)

APOE ε4 carriers, n (%) 19 (20.0%) 11 (21.2%) 5 (26.3%) 3 (12.5%)

Neuropsychological assessments

MMSE 11.78± 6.36 11.15± 6.56 12.68± 5.83 12.42± 6.43

MoCA 7.62± 4.61 7.35± 4.93 8.05± 3.92 7.88± 4.52

CDR 2.02± 0.76 2.08± 0.74 1.89± 0.81 2.00± 0.78

MRI assessment

MTA (Left) 1.82± 0.92 1.81± 0.95 1.95± 0.91 1.75± 0.90

MTA (Right) 1.80± 0.92 1.75± 0.93 2.05± 0.97 1.71± 0.86

Fazekas scores 1.66± 0.77 1.63± 0.74 1.47± 0.70 1.88± 0.85

CMBs, n (%) 21 (22.1%) 12 (23.1%) 3 (15.8%) 6 (25.0%)

Laboratory tests

FBG (mmol/L) 5.09± 1.30 5.06± 1.18 4.98± 1.06 5.26± 4.57

Glycosylated hemoglobin (%) 6.28± 1.49 6.30± 1.60 6.35± 1.33 6.18± 1.41

Homocysteine (µmol/L) 15.48± 7.18 15.90± 7.93 15.86± 6.61 14.25± 5.94

Folate (ng/mL) 7.62± 4.89 7.86± 5.08 6.51± 4.83 7.99± 4.56

Vitamin B12 (pg/mL) 536.67± 427.91 488.75± 324.45 514.68± 436.20 657.92± 587.44

Ferritin (ng/mL) 140.46± 146.80 124.72± 99.27 177.23± 131.41 145.48± 225.86

Triglyceride (mmol/L) 1.27± 0.73 1.34± 0.88 1.23± 0.50 1.14± 0.50

Cholesterol (mmol/L) 4.71± 1.16 4.96± 1.05 4.63± 1.39 4.21± 1.06∗

HDL-c (mmol/L) 1.39± 0.41 1.45± 0.49 1.30± 0.26 1.33± 0.31

LDL-c (mmol/L) 6.03± 30.81 8.83± 41.60 2.86± 1.34 2.47± 0.99∗

S-ALB 39.63± 4.47 40.22± 4.31 39.08± 4.92 38.79± 4.46

S-IgG 11.81± 2.09 11.69± 1.69 12.26± 2.78 11.71± 2.30

CSF-24h/IgG 2.44± 6.02 2.87± 7.49 1.51± 3.18 2.26± 3.84

CSF-ALB 0.28± 0.17 0.29± 0.20 0.24± 0.08 0.30± 0.14

CSF-IgG 0.04± 0.03 0.04± 0.04 0.04± 0.01 0.04± 0.02

Qalb 7.18± 4.36 7.24± 5.11 6.31± 2.44 7.71± 3.77

Unless otherwise indicated, values are presented as mean ± standard deviation. P < 0.017 (Bonferroni correction) was considered statistically significant. ∗ There were significant differences

between AD and FTLD groups in cholesterol (p= 0.013) and LDL (p= 0.014) levels.

AD, Alzheimer’s disease; LBD, Lewy body dementia; FTLD, frontotemporal lobar degeneration; BMI, body mass index; SA, habit of smoking and/or alcohol consumption; CVD, cardiac-

cerebral vascular disease; APOE, Apolipoprotein E; MMSE, Mini-Mental State Examination; MoCA, the Montreal Cognitive Assessment; CDR, the clinical dementia rating; MRI, Magnetic

Resonance Imaging; MTA, medial temporal lobe atrophy; CMBs, cerebral microbleeds; FBG, fasting blood glucose; HDL-c, high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein

cholesterol; S-ALB, serum albumin; S-IgG, serum immunoglobulin G; CSF-24h/IgG, 24h cerebrospinal fluid immunoglobulin G; CSF-ALB, cerebrospinal fluid albumin; CSF-IgG, cerebrospinal

fluid immunoglobulin G; Qalb, CSF/serum albumin quotient.
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TABLE 2 The median level of Qalb and CSF AD neuropathological biomarkers according to chronic vascular risk factors.

Chronic vascular risk factors Qalb Aβ1-42 (pg/ml) Aβ1-40 (pg/ml) p-tau181p (pg/ml) t-tau (pg/ml) Aβ1-42/Aβ1-40 t-tau/Aβ1-42

Hypertension Without (n= 68) 5.72 (4.54, 7.23) 469.60 (311.96, 614.15) 10,233.89 (6,076.93, 13,044.38) 57.95 (43.25, 80.75) 506.76 (374.39, 645.56) 0.05 (0.04, 0.07) 1.10 (0.68 2.01)

With (n= 27) 6.76 (4.79, 9.03) 545.64 (345.79, 902.08) 9,680.74 (8,447.45, 13,174.44) 56.61 (42.26, 67.03) 540.67 (389.21, 718.60) 0.05 (0.04, 0.08) 0.98 (0.53, 1.55)

Z-score −1.135 −1.692 −0.734 −0.021 −0.355 −1.143 −1.493

P-value 0.257 0.091 0.463 0.984 0.723 0.253 0.135

T2DM Without (n= 74) 5.61 (4.50, 6.99) 492.85 (345.79, 678.95) 10,952.22 (8,429.93, 13,315.14) 59.24 (43.76, 80.01) 537.75 (412.00, 700.45) 0.05 (0.04, 0.07) 1.08 (0.68, 1.81)

With (n= 21) 7.36 (5.63, 14.21) 361.99 (218.28, 647.49) 7,429.46 (5,558.52, 10,299.55) 54.77 (36.21, 60.02) 386.33 (257.25, 606.50) 0.05 (0.04, 0.06) 1.00 (0.51, 1.64)

Z-score −2.912 −1.439 −2.569 −1.507 −2.424 −0.163 −0.856

P-value 0.004 0.150 0.010 0.132 0.015 0.871 0.392

CVD Without (n= 80) 5.88 (4.55, 7.96) 462.33 (322.33, 616.08) 9,842.74 (6,525.25, 12,981.47) 57.95 (42.27, 80.75) 509.41 (369.76, 668.19) 0.05 (0.04, 0.07) 1.10 (0.67, 1.79)

With (n= 15) 6.12 (4.62, 7.31) 699.90 (278.35, 1,414.38) 12,537.31 (8,447.45, 13,073.24) 54.70 (50.12, 66.12) 610.33 (431.72, 798.00) 0.05 (0.04, 0.09) 0.83 (0.54, 1.60)

Z-score −0.051 −1.939 −1.031 −0.143 −1.368 −1.506 −1.010

P-value 0.959 0.052 0.303 0.886 0.171 0.132 0.312

HLP Without (n= 62) 5.88 (4.52, 8.30) 495.08 (323.46, 826.53) 10,519.91 (6,617.96, 13,234.63) 57.95 (43.39, 69.71) 529.24(396.31, 749.19) 0.05 (0.04, 0.07) 1.01(0.57, 1.60)

With (n= 33) 6.20 (4.95, 7.39) 411.84 (264.08, 581.89) 9,635.67 (6,841.04, 11,851.92) 57.24 (42.75, 85.52) 493.99 (370.44, 625.24) 0.05 (0.04, 0.06) 1.13 (0.71, 1.94)

Z-score −0.180 −1.587 −0.766 −0.063 −1.157 −1.189 −0.836

P-value 0.857 0.113 0.444 0.950 0.247 0.235 0.403

HHcy Without (n= 59) 6.20 (4.62, 7.86) 480.30 (345.15, 699.90) 9,635.67 (6,421.48, 12,537.31) 57.68 (43.40, 66.29) 517.81 (377.60, 675.34) 0.05 (0.04, 0.07) 1.01 (0.67, 1.53)

With (n= 36) 5.72(4.47, 8.31) 455.59 (242.11, 654.14) 10,510.17 (7,516.88, 14,419.32) 58.11 (42.27, 103.59) 506.76(399.61, 764.20) 0.04 (004, 0.06) 1.28(0.60, 2.51)

Z-score −0.529 −0.813 −0.875 −0.702 −0.173 −1.466 −0.744

P-value 0.597 0.416 0.382 0.483 0.863 0.143 0.457

Habits of SA Without (n= 59) 5.64 (4.55, 7.04) 492.85 (345.17, 703.50) 10,926.83 (7,765.80, 13,261.46) 59.24 (43.58, 89.22) 514.21 (385.20, 709.53) 0.05 (0.04, 0.07) 1.01 (0.69, 1.97)

With (n= 26) 7.21 (4.72, 9.28) 411.85 (235.12, 619.47) 8,824.72 (5,609.41, 11,543.75) 56.82 (40.82, 61.00) 464.91 (351.59, 575.63) 0.05 (0.04, 0.07) 1.15 (0.66, 1.63)

Z-score −1.565 −1.319 −2.195 −1.219 −1.452 −0.555 −0.192

P-value 0.118 0.187 0.028 0.223 0.146 0.579 0.848

APOE ε4 allele Without (n= 76) 6.27 (4.58, 8.18) 486.57 (311.96, 694.66) 10,048.02 (5,924.00, 12,898.19) 57.52 (42.27, 66.24) 508.17 (369.76, 672.22) 0.05 (0.04, 0.07) 1.05 (0.57, 1.69)

With (n= 19) 5.21 (4.48, 5.65) 456.00 (345.79, 615.00) 9,913.04 (8,023.33, 13,315.14) 62.01 (49.95, 103.87) 543.69 (412, 700.45) 0.04 (0.03, 0.05) 1.12 (0.77, 1.81)

Z-score −1.740 −0.465 −0.744 −1.312 −0.940 −1.801 −0.986

P-value 0.082 0.642 0.457 0.190 0.347 0.072 0.324

CSF, cerebrospinal fluid; Qalb, cerebrospinal fluid/serum albumin quotient; AD, Alzheimer’s disease; Aβ, β-amyloid; p-tau181, phosphorylated tau181; t-tau, total tau; T2DM, type 2 Diabetes mellitus; CVD, cardiac-cerebral vascular disease; HLP, hyperlipidemia;

HHcy, hyperhomocysteinemia; SA, smoking and/or alcohol consumption; APOE, Apolipoprotein E.
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FIGURE 2

Qalb levels in ATN framework. The median (interquartile range) was

used to show the distribution of Qalb in dementia according to ATN

framework. The two bars in this finger were Q25 and Q75 range.

Qalb, cerebrospinal fluid/serum albumin quotient; ATN, the Amyloid

Tau Neurodegeneration framework.

Comparison of Qalb and neuropathological
biomarkers of AD

The Qalb and Aβ1-42, Aβ1-40, p-tau181, and t-tau levels in
CSF were measured and compared based on different chronic
vascular risk factors (Table 2). In patients with a history of T2DM,
the median (IQR) Qalb [7.36 (5.63–14.21) vs. 5.61 (4.50–6.99),
p = 0.004] was significantly higher, and CSF Aβ1-40 [7,429.46
pg/mL (5,558.52–10,299.55 pg/mL) vs. 10,952.22 pg/mL (8,429.93–
1,3315.14 pg/mL), p = 0.010] and t-tau [386.33 pg/mL (257.25–
606.50 pg/mL vs. 537.75 pg/mL (412.00–700.45 pg/mL), p= 0.015]
were significantly lower than in subjects without a history of
T2DM. In addition, the Aβ1-40 levels were significantly decreased
in patients with smoking habits and/or alcohol consumption
(p = 0.028) compared with subjects who did not smoke and/or
consume alcohol. Significant differences were not found in the Qalb
and Aβ1-42, Aβ1-40, p-tau181, and t-tau levels in hypertension,
CVD, HLP, HHcy, and APOE ε4 allele groups.

The amyloid/tau/neurodegeneration (ATN) did not influence
Qalb due to the similar Qalb among A–T– [mean ± SD, 6.58 ±

1.80), A–T + [median (IQR) = 5.64 (4.62–7.31)], A+T– (median
(IQR) = 7.14 (6.21–13.26)], and A + T + [median (IQR) = 5.65
(4.47–7.68)] patients (p = 0.245, Figure 2). In addition, significant
differences were not observed in the Qalb and Aβ1-42, Aβ1-40,
p-tau181, t-tau levels as well as Aβ1-42/Aβ1-40 and t-tau/Aβ1-42
ratios based on the presence of CMBs (Figure 3).

In A + T + patients with T2DM, the Qalb was increased
[with T2DM: 8.24 (5.72–15.21) vs. without T2DM: 5.29 (4.29–6.78),
p = 0.001] but t-tau levels were lower [with T2DM: 399.33 pg/mL

(230.27–589.49 pg/mL) vs. without T2DM: 543.69 pg/mL (438.94–
745.80 pg/mL), p = 0.027] compared with A + T + patients
without T2DM (Table 3). Patients with T2DM had slightly but not
significantly higher Qalb than patients without T2DM (A + T–
patients with T2DM: 7.18 pg/mL (5.69–18.21 pg/mL) vs. without
T2DM: 6.64 pg/mL (6.20–13.64 pg/mL), p= 0.855; A–T+ patients
with T2DM: 5.87 pg/mL (4.77–8.57 pg/mL) vs. without T2DM:
5.64 pg/mL (4.59–8.24 pg/mL), p = 0.726). The levels of Aβ1-42
(p = 0.726 in A–T + patients, p = 0.100 in A + T– patients), Aβ1-
40 (p = 0.726 in A–T + patients, p = 0.100 in A + T– patients),
p-tau181 (p = 0.161 in A–T + patients, p = 0.068 in A + T–
patients), t-tau (p = 0.889 in A–T + patients, p = 0.361 in A +

T– patients), and the ratios of Aβ1-42/Aβ1-40 (p= 0.753 in A–T+

patients, p= 0.314 in A+ T– patients) and t-tau/Aβ1-42 (p= 0.363
in A–T + patients, p = 0.201 in A + T– patients) were similar in
A–T+ and A+ T– patients with and without T2DM.

Associations among the Qalb,
neuropathological biomarkers of AD and
chronic vascular risk factors

The associations among the Qalb, neuropathological
biomarkers of AD, and chronic vascular risk factors in dementia
patients were analyzed based on correlation and linear regression
models in Table 4 and Supplementary material.

The results showed the Qalb was negatively associated with
the levels of Aβ1-42 (B = −20.775, 95% CI: −36.150 – −5.399,
p = 0.009) and Aβ1-40 (B = −305.417, 95% CI: −514.705 –
−96.129, p = 0.005) but not the levels of p-tau181, t-tau,
or the ratios of Aβ1-42/Aβ1-40 or t-tau/Aβ1-42. Furthermore,
the Qalb was positively associated with the presence of T2DM
(B = 3.382, 95% CI: 1.531–5.234, p < 0.001), the levels
of GHb (B = 1.163, 95% CI: 0.634–1.692, p < 0.001) and
FBG (B = 1.443, 95% CI: 0.799–2.087, p < 0.001) after
adjusting for gender, age, educational level, course of disease,
and diagnosis. While there were no significant associations
among the Qalb and APOE ε4 allele, blood pressure, CVD,
blood lipids, blood Hcy, or the habits of smoking and/or
alcohol consumption.

To determine the mediating effect of neuropathological
biomarkers of AD on the association between the Qalb
and glucose exposure, the specific indirect effects were
investigated. GHb was a direct chronic vascular risk factor
for higher Qalb (total effect B = 1.135, 95% CI: (0.611–
1.659), p < 0.001). Ratios of Aβ1-42/Aβ1-40 or t-tau/Aβ1-42
were mediators of the association between Qalb and GHb.
The direct effect of GHb on the Qalb was 1.178, 95% CI:
0.662–1.694, p < 0.001). All direct, total indirect, and specific
indirect effects of T2DM and FBG on the Qalb are shown in
Figure 4.

Discussion

In the present study, the association between BBB
permeability and the Qalb, neuropathological biomarkers of
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FIGURE 3

The levels of Qalb and CSF AD neuropathological biomarkers according to CMBs. The medians (interquartile range) were used to show the

distribution of Qalb (A) and CSF AD neuropathological biomarkers (B–G) in dementia according to CMBs. The two bars in these figures were Q25 and

Q75 range. CSF, cerebrospinal fluid; Qalb, cerebrospinal fluid/serum albumin quotient; AD, Alzheimer’s disease; CMBs, cerebral microbleeds; Aβ,

β-amyloid; p-tau181, phosphorylated tau181; t-tau, total tau.

AD, and chronic vascular risk factors was investigated in a
cohort of patients with different types of dementia. Results
showed that chronic vascular risk factors could influence the
Qalb and neuropathological biomarkers of AD. In particular,
the Qalb was associated with coexisting T2DM, glucose
exposure could directly or indirectly affect the integrity
of the BBB through Aβ and tau in this limited number
of patients.

Qalb in dementia

Post-mortem brain tissue, neuroimaging, and CSF biomarkers
from patients with AD or other neurodegenerative disorders have
shown BBB disruption (Sweeney et al., 2018), and the Qalb is
considered an indirect measurement of the BBB permeability.
Reports are conflicting whether BBB damage can be associated
with dementia and differ among subtypes. Reports of increased
Qalb in AD, DLB, FTLD, and VaD compared with controls have
been published (Llorens et al., 2015; Janelidze et al., 2017; Skillbäck
et al., 2017; Musaeus et al., 2020), as well as reports where no
difference in BBB integrity was found compared with controls
(Bien-Ly et al., 2015; Olsson et al., 2016). In addition, higher
BBB damage was reported in patients with VaD compared with
AD or LBD patients (Skillbäck et al., 2017), however, conflicting
results showed patients with DLB and VaD had a higher Qalb
than AD and FTLD patients (Musaeus et al., 2020). In the present
study, significant difference in the Qalb was not found among AD,
LBD, and FTLD patients, however, the effect size in this study
was small.

E�ects of Qalb on dementia

Previous evidence indicated that vascular pathology, including
cerebrovascular disease, lacunae and multiple microinfarcts
indicative of small vessel disease, hemorrhage, atherosclerosis,
arteriolosclerosis, and cerebral amyloid angiopathy (CAA), was
a main cause of BBB dysfunction (Llorens et al., 2015; Musaeus
et al., 2020; Wong et al., 2022). Superficial siderosis (Zonneveld
et al., 2014) and CMBs (Yates et al., 2014) were shown prevalent
in AD, indicating the important role of vascular pathology in the
pathogenesis of AD. The CMBs in AD, LBD, and FTLD patients
were common, however, due to the limited sample size in the
present study, a difference was not found in prevalence among the
three types of dementia.

Vascular disruption can be influenced by APOE ε4 allele and
chronic vascular risk factors, and might act independently and/or
synergistically with Aβ to promote AD pathology (Sweeney et al.,
2018). In the present study, the Qalb was slightly higher in patients
with hypertension, CVD, HLP, or who smoked and/or consumed
alcohol than in subjects without hypertension, CVD, HLP, or who
did not smoke and/or consume alcohol. In addition, significant
difference was found between patients with and without a history
of T2DM. Furthermore, a higher Qalb was associated with the
presence of T2DM as well as higher GHb and FBG levels after
adjusting for all confounders in dementia cases. In several studies,
diabetes reportedly led to the impairment of BBB integrity and
subsequent BBB permeability increase in in vivo and in vitro

models, which is in agreement with our results (Hawkins et al.,
2007; Banks, 2019; Zhao et al., 2019). Cai et al. provided in

vivo evidence that db/db mice (an animal T2DM model) have
significant BBB impairments even at a young age (Cai et al., 2021).
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TABLE 3 Comparisons of Qalb and CSF AD neuropathological biomarkers according to ATN framework and T2DM.

A-T- A-T+

With T2DM (n = 0) Without T2DM (n = 2) P-value With T2DM (n = 6) Without T2DM (n = 17) P-value

Qalb ns 6.58±1.80 ns 5.87 (4.77, 8.57) 5.64 (4.59, 8.24) 0.726

Aβ1−42 (pg/ml) ns 957.98± 394.60 ns 1,078.50 (701.89, 1,439.86) 927.18 (705.18, 1,207.00) 0.726

Aβ1−40 (pg/ml) ns 12,329.21± 5,582.06 ns 11,675.56 (9,567.95, 14,843.85) 13,072.14 (9,615.91, 14,761.10) 0.726

p-tau181 (pg/ml) ns 39.61± 5.08 ns 55.22 (36.36, 71.04) 60.66 (55.66, 82.76) 0.161

t-tau (pg/ml) ns 311.25± 13.08 ns 609.41 (446.75, 71.04) 585.00 (507.50, 809.61) 0.889

Aβ1-42/Aβ1-40 ns 0.08± 0.00 ns 0.07 (0.06, 0.13) 0.08 (0.06, 0.090) 0.753

T-tau/Aβ1-42 ns 0.36± 0.16 ns 0.52 (0.48, 0.71) 0.59 (0.52, 0.86) 0.363

A+T- A+T+

With T2DM (n = 5) Without T2DM (n = 7) P-value With T2DM (n = 13) Without T2DM (n = 45) P-value

Qalb 7.18 (5.69, 18.21) 6.64 (6.20, 13.64) 0.855 8.24 (5.72, 15.21) 5.29 (4.29, 6.78) 0.001

Aβ1−42 (pg/ml) 193.78 (100.97, 431.12) 492.85 (234.63, 542.85) 0.100 324.11 (233.38, 408.31) 411.84 (268.82, 496.93) 0.148

Aβ1−40 (pg/ml) 5,099.47 (1,701.89, 6,919.74) 8,249.93 (4,888.13, 11,550.00) 0.100 6,421.48 (5,643.56, 9,760.86) 10,768.44 (7,334.30, 12,768.67) 0.051

p-tau181 (pg/ml) 24.73 (16.31, 42.00) 43.76 (42.30, 49.95) 0.068 57.98 (54.16, 93.09) 59.60 (50.33, 91.47) 0.823

t-tau (pg/ml) 268.98 (188.87, 318.54) 367.11 (190.09, 368.57) 0.361 399.33 (230.27, 589.49) 543.69 (438.94, 745.80) 0.027

Aβ1-42/Aβ1-40 0.06 (0.04, 0.07) 0.05 (0.05, 0.07) 0.314 0.04 (0.03, 0.05) 0.04 (0.04, 0.05) 0.730

T-tau/Aβ1-42 1.39 (0.69, 2.22) 0.75 (0.67, 1.06) 0.201 1.18 (0.68, 2.97) 1.55 (1.03, 2.82) 0.244

Since there were only two patients in the “A-T-/without T2DM” group, the data was displayed with mean (SD); while data in other groups did not meet normal distribution, and was displayed with median (IQR).

CSF, cerebrospinal fluid; Qalb, cerebrospinal fluid/serum albumin quotient; AD, Alzheimer’s disease; T2DM, type 2 diabetes mellitus; Aβ, β-amyloid; p-tau181, phosphorylated tau181; t-tau, total tau; SD, standard deviation; IQR, interquartile range.
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TABLE 4 Associations between Qalb and neuropathological biomarkers of AD or chronic vascular risk factors.

Linear regressions

B SE Beta t P2-value 95%CI

Lower bound Upper bound

CSF AD neuropathological biomarkers Aβ1−42 −20.775 7.737 −0.257 −2.685 0.009 −36.150 −5.399

Aβ1−40 −305.417 105.313 −0.301 −2.900 0.005 −514.705 −96.129

p-Tau181 −1.498 0.981 −0.165 −1.527 0.130 −3.447 0.452

t-Tau −12.381 7.656 −0.169 −1.617 0.109 −27.596 2.833

Aβ1−42/Aβ1−40 −0.001 0.001 −0.131 −1.268 0.208 −0.002 0.000

t-Tau/Aβ1−42 0.072 0.039 0.188 1.841 0.069 −0.006 0.149

APOE ε4 allele −1.893 1.073 −0.174 −1.765 0.081 −4.024 0.239

Blood pressure HT −0.360 0.966 −0.037 −0.372 0.711 −2.279 1.560

SBP −0.011 0.027 −0.043 −0.421 0.675 −0.066 0.043

DBP −0.015 0.038 −0.040 −0.404 0.687 −0.091 0.060

Blood glucose T2DM 3.382 0.932 0.339 3.630 < 0.001 1.531 5.234

GHb 1.163 0.266 0.398 4.366 < 0.001 0.634 1.692

FBG 1.443 0.324 0.429 4.455 < 0.001 0.799 2.087

CVD CVD −0.690 1.216 −0.058 −0.568 0.572 −3.106 1.725

Fazakes 0.086 0.568 0.015 0.152 0.880 −1.043 1.215

Blood lipid HLP −1.049 0.944 −0.115 −1.111 0.270 −2.925 0.827

TG 0.531 0.606 0.089 0.876 0.383 −0.674 1.736

CHO −0.326 0.399 −0.087 −0.815 0.417 −1.119 0.468

HDL −2.069 1.127 −0.195 −1.836 0.070 −4.308 0.171

LDL-c −0.008 0.014 −0.059 −0.591 0.556 −0.037 0.020

BMI −0.222 0.121 −0.183 −1.838 0.069 −0.462 0.018

Blood Hcy HHcy −0.751 0.942 −0.084 −0.797 0.427 −2.624 1.121

Hcy −0.021 0.065 −0.034 −0.322 0.748 −0.149 0.107

FA 0.134 0.092 0.150 1.461 0.148 −0.048 0.317

VitB12 0.001 0.001 0.069 0.680 0.498 −0.001 0.003

Fer −0.004 0.003 −0.133 −1.263 0.210 −0.010 0.002

Habits of SA 0.044 1.219 0.004 0.036 0.971 −2.378 2.466

The linear regression models were analyzed after adjusting gender, age, education, course of disease, and diagnosis. The variables of HT, T2DM, CVD, HLP, and HHcy meant the history of these

diseases. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

CSF, cerebrospinal fluid; AD, Alzheimer’s disease; Aβ, β-amyloid; p-tau181, phosphorylated tau181; t-tau, total tau; Qalb, cerebrospinal fluid/serum albumin quotient; APOE, Apolipoprotein E;

HT, hypertension; SBP, systolic blood pressure; DBP, diastolic blood pressure; T2DM, type 2 diabetes mellitus; GHb, glycosylated hemoglobin; FBG, fasting blood glucose; CVD, cardiac-cerebral

vascular Disease; HLP, hyperlipidemia; TG, triglyceride; CHO, cholesterol; HDL, high-density lipoprotein cholesterol; LDL-c, low-density lipoprotein cholesterol; HHcy, hyperhomocysteinemia;

Hcy, homocysteine; FA, folic acid; VitB12, vitamin B12; Fer, ferritin; SA, smoking and/or alcohol consumption.

Janelidze et al. (2017) reported a higher Qalb in individuals with
T2DM compared with subjects without T2DM in two different
cohorts with a total of 1,015 subjects, and the authors demonstrated
that T2DM was associated with high CSF levels of intercellular
adhesion molecule-1 (p < 0.001), vascular cellular adhesion
molecule-1 (p = 0.007), and vascular endothelial-derived growth
factor (p= 0.024), CSF biomarkers of angiogenesis and endothelial
dysfunction. Individuals with T2DM also showed increased BBB
permeability in basal ganglia (Starr et al., 2003), hippocampus,
occipital lobe, and frontal lobe (Abuhaiba et al., 2018) based
on DCE-MRI. Furthermore, significant correlations were found

between occipital (R = 0.612, p = 0.013) or frontal Ktrans (R =

0.579, p = 0.019) and GHb level (Abuhaiba et al., 2018), a marker
indicating the long-term status of blood glucose. Wang et al. (2020)
reported the BBB breakdown in the hippocampus, white matter,
and cortex inferior temporal gyrus in syphilis individuals with high
GHb levels.

CMBs did not significantly affect the Qalb and CSF
neuropathological biomarkers of AD in the present study.
Although clear evidence exists for the role of CMBs in
the pathogenesis of BBB in AD, whether this effect is
widespread in DLB and FTLD has not been investigated in
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FIGURE 4

The interrelations of Qalb (Y), neuropathological biomarkers of AD (M) in CSF, and glucose exposure (X). Through the mediating e�ect analysis by

linear regression models after adjusting gender, age, course of disease, apolipoprotein ε4 carrier, and diagnosis. All data was described as

“unstandardized coe�cients (B) with 95%CIs”. AD, Alzheimer’s disease; T2DM, type 2 diabetes mellitus; GHb, glycosylated hemoglobin; FBG, fasting

blood glucose; 95%CIs, 95% confidential intervals; Aβ, β-amyloid; t-tau, total tau; Qalb, cerebrospinal fluid/serum albumin quotient.

many studies (De Reuck et al., 2012; Mendes et al., 2021).
Llorens et al. demonstrated the Qalb in DLB negatively
correlated with CSF Aβ1-42 levels but not with t-tau and
p-tau levels (Llorens et al., 2015). Hijazi et al. (2022) found
no association between the presence of CMBs and cortical
Aβ deposition on PET imaging. Thus, the role of CMBs in
different subtypes of dementia is controversial and needs
further investigation.

Traditionally, APOE ε4 allele involves and accelerates BBB
breakdown through the proinflammatory cyclophilin A-matrix
metalloproteinase-9 (CypA-MMP9) pathway activated by brain
capillary pericytes (Bell et al., 2012; Halliday et al., 2013; Montagne
et al., 2020, 2021). Montagne et al. (2020) found APOE ε4 carriers
(ε3/ε4 and ε4/ε4) had obvious BBB breakdown in the hippocampus
and medial temporal lobe compared with non-carriers (ε3/ε3)
and suggested the breakdown of the BBB contributes to APOE
ε4-associated cognitive decline independently of AD pathology.
Moreover, prior studies including animal models (Nishitsuji et al.,
2011; Bell et al., 2012; Montagne et al., 2021; Jackson et al.,
2022; Liu et al., 2022), human neuropathological studies (Salloway
et al., 2002; Zipser et al., 2007; Halliday et al., 2016), molecular
biomarkers of BBB damage in CSF [like sPDGFRβ (Montagne
et al., 2020)], and MRI neuroimaging biomarkers (Zonneveld
et al., 2014; Montagne et al., 2020; Moon W. J. et al., 2021) had
clearly shown that APOE ε4 allele contributed to or enhanced
BBB breakdown through synaptic plasticity compromission, or

dysregulation of astrocytic end foot interactions with vessels and
other ways in AD. Furthermore, permanent CMBs were shown
sensitive markers indicating BBB dysfunction, and the APOE ε4
genotype can significantly increase the prevalence of CMBs (Yates
et al., 2014), or promote the AD pathology toward BBB dysfunction
bymodulating inflammationmarkers in AD (Riphagen et al., 2020).
However, in the present study with a relatively small sample and
detected by Qalb, the association was not found between APOE
ε4 allele and the Qalb. Karch et al. (2013), Janelidze et al. (2017)
demonstrated similar findings and suggested APOE ε4 genotype
and BBB damage were not significantly directly associated. The
inconsistencies in these findings may be due to the small study
cohort and because the patients were from a single institution
and diagnosed with AD, LBD, or FTLD with moderate dementia
severity. Furthermore, blood pressure (hypertension, systolic blood
pressure, and diastolic blood pressure), CVD (Fazekas score),
blood lipid profile (HLP, levels of triglyceride, cholesterol, HDL-
C, LDL-C, and BMI), blood Hcy (HHcy, levels of Hcy, serum
folate, serum vitamin B12, and ferritin), and the smoking habits
and/or alcohol consumption were not associated with the Qalb
in this study. In several studies, arterial hypertension (Santisteban
et al., 2020), lipids, lipoproteins, apolipoproteins (Rhea and Banks,
2021), and HHcy (Kamath et al., 2006) were suggested to be
involved in BBB disruption, which was inconsistent with the
results of the present study, thus, their role in BBB function needs
further investigation.
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In agreement with earlier studies (Burgmans et al., 2013; Nation
et al., 2019; Park et al., 2019; Riphagen et al., 2020), significant
associations were observed between BBB and neuropathological
biomarkers of AD in dementia subjects in the present study.
The Qalb was negatively associated with Aβ1-42 and Aβ1-40,
and positively correlated with the t-tau/Aβ1-42 ratio in dementia
patients. Riphagen et al. (2020) reported BBB dysfunction was
associated with greater AD pathology in APOE ε4 carriers.
Neuropathological evidence showed that Aβ and tau pathology
are not specific for AD but are present in other subtypes of
dementia and in normal aging. Normally, the BBB can facilitate
the clearance of Aβ and tau via the cerebrovascular system.
In addition to the toxic effects of increased AD biomarker
deposition and accumulation that induce a breakdown of the
BBB, BBB disruption can disturb this pathway and enhance Aβ

aggregation and tau deposition. Furthermore, the interactive and
facilitative effects between neuropathological biomarkers of AD
and BBB disruption cause oxidation, proinflammatory signaling,
and endothelial damage to further negatively affect the pathway
(Cai et al., 2018; Michalicova et al., 2020; Custodia et al., 2021; Kurz
et al., 2022).

Associations among the Qalb, AD
biomarkers, and chronic vascular risk
factors

The results of the present study indicated an uncertain
relationship between T2DM and CSF neuropathological
biomarkers of AD. Dementia patients with a history of DM
had lower tau levels (both p-tau and t-tau) than subjects without a
history of DM. However, significant associations between history
of T2DM, FBG, or GHb levels and the ratios of Aβ1-42/Aβ1-40
or t-tau/Aβ1-42 were not found in the present study based
on partial correlation analysis after adjusting for confounders
such as gender, age, educational level, course of disease, and
diagnosis. In addition to the association between history of
hypertension and Aβ1-42/Aβ1-40 ratio, associations were not
observed between Aβ1-42/Aβ1-40 or t-tau/Aβ1-42 ratios and HLP,
HHcy, CVD and the smoking habits and/or alcohol consumption
in dementia patients.

Based on the two-hit vascular hypothesis of AD, damage
to blood vessels is the initial insult, causing BBB dysfunction
and diminished brain perfusion that consequently leads to
neuronal injury and Aβ accumulation in the brain (Murray-
Stewart et al., 2013). Blood glucose was hypothesized to affect the
neuropathological biomarkers of AD, thus affecting BBB function
in dementia patients which was confirmed in the present study
using human mediation models. Blood glucose (including the
history of T2DM, FBG and GHb levels) was shown to affect the
AD biomarkers (t-tau/Aβ1-42 ratio) and indirectly regulate the
permeability of BBB. The T2DM-caused BBB dysfunction played
a critical role in the pathology of neurological complications.
Recent experimental results (Zhao et al., 2019) showed that
histone deacetylase 3 (HDAC3) expression and activity were
significantly increased in the hippocampus and cortex of db/db
mice, and its activity/mRNA levels positively correlated with

proinflammation, poor glycemic control, and insulin resistance.
Reportedly, HDAC3 inhibition regulates Keap1/Nrf2 balance
by modulating the miR-200a expression, which binds to the
3
′

-terminal regions of the Keap1 mRNA to downregulate its
translation (Zhang et al., 2018). The reduced Keap1 level leads
to an increase in Nrf2 nuclear translocation (Nrf2 dysregulation)
(Montagne et al., 2015), subsequently increasing the transcription
of antioxidant and anti-inflammatory genes, and mediating
oxidative/inflammatory stress-induced neurovascular dysfunction
and BBB disruption. Furthermore, the increased transendothelial
permeability and reduced junction protein expression were
found in T2DM insult in vitro (Zhao et al., 2019). The
HDAC3 inhibition significantly attenuated the transendothelial
permeability and junction protein downregulation due to HDAC3
inhibition-mediated miR-200a/Keap1/Nrf2 signaling pathway and
downstream targeting junction protein expression.

Strengths and limitations

Although some clinical evidence has indicated that BBB
permeability is associated with AD biomarkers or chronic
vascular factors (including history of T2DM, FBG, and
GHb) involved in dementia, this is the first study in which
all the variables were included in a comprehensive analysis
to investigate the relationship between the three types of
dementia. The results showed blood glucose, rather than other
chronic vascular factors, could affect BBB permeability in
patients with dementia by directly or indirectly regulating
AD biomarkers.

The present study had several limitations. We only use the
single parameter of BBB dysfunction measurement (Qalb), there
were many other important biomarkers reflecting BBB function,
such as sPDGFRβ, were not evaluated. Elevated sPDGFRβ in
CSF was shown to indicate pericyte injury and BBB breakdown
and predict future cognitive decline in APOE ε4 carriers but
not in non-carriers independent of AD pathology (Farrall and
Wardlaw, 2009; Nation et al., 2019; Montagne et al., 2020).
This is similar to our findings demonstrating an indirect role of
APOE ε4 in BBB. However, this was a retrospective study and
all data were derived from hospitalized medical records in the
cognitive impairment inpatient department, lacking CSF samples
for further testing and an age-matched cognitively normal control
group. The small study cohort may be the main reason why our
results are inconsistent with previous relevant literature. Thus,
the results require further validation in a larger study population
with multiple diagnoses. In addition, the Qalb, an easy to assess
indicator commonly used in practice but still affected by age and
other factors, was used to reflect BBB permeability. Although
adjustments were made for the potentially confounding effects of
age when analyzing the data, the contribution of CSF turnover
to the Qalb cannot be entirely excluded. However, in several
reports regarding different research topics (Chen, 2011; Castellazzi
et al., 2020), the albumin ratio was still considered a robust and
reliable standard surrogate marker used to measure BBB integrity
in epidemiological studies and daily practice, and has been shown
to accurately reflect BBB integrity. Altogether, direct assessments
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of BBB permeability and function, such as using DCE- MRI and
specifically labeled tracers, are warranted to confirm the results of
the present study.

Conclusion

In the present study, clinical evidence showed that chronic
vascular risk factors could influence the BBB function and
neuropathological biomarkers of AD in dementia patients. Glucose
exposure could directly or indirectly affect the integrity of the
BBB through Aβ and tau, however, the APOE ε4 allele, CVD,
HLP, HHcy, or smoking habits and/or alcohol consumption did
not show significant effect on the Qalb which might be due
to the study patients and small sample-size cohort. The results
indicate glucose stability plays an important role in dementia
protection and management. Future studies with large number
of dementia cases are necessary, and should be performed
in which the molecular mechanisms underlying the effect of
glucose on BBB breakdown are investigated and therapeutic
interventions explored.
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