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Introduction: Alzheimer’s disease remains the most common neurodegenerative

disorder, depicted mainly by memory loss and the presence in the brain of

senile plaques and neurofibrillary tangles. This disease is related to several

cellular alterations like the loss of synapses, neuronal death, disruption of lipid

homeostasis, mitochondrial fragmentation, or raised oxidative stress. Notably,

changes in the autophagic pathway have turned out to be a key factor in the

early development of the disease. The aim of this research is to determine the

impact of the APOE allele ε4 and G206D-PSEN1 on the underlying mechanisms

of Alzheimer’s disease.

Methods: Fibroblasts from Alzheimer’s patients with APOE 3/4 + G206D-PSEN1

mutation and homozygous APOE ε4 were used to study the effects of APOE

polymorphism and PSEN1 mutation on the autophagy pathway, mitochondrial

network fragmentation, superoxide anion levels, lysosome clustering, and

p62/SQSTM1 levels.

Results: We observed that the APOE allele ε4 in homozygosis induces

mitochondrial network fragmentation that correlates with an increased

colocalization with p62/SQSTM1, probably due to an inefficient autophagy.

Moreover, G206D-PSEN1 mutation causes an impairment of the integrity of

mitochondrial networks, triggering high superoxide anion levels and thus making

APOE 3/4 + PSEN1 fibroblasts more vulnerable to cell death induced by

oxidative stress. Of note, PSEN1 mutation induces accumulation and clustering of

lysosomes that, along with an increase of global p62/SQSTM1, could compromise

lysosomal function and, ultimately, its degradation.
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Conclusion: The findings suggest that all these modifications could eventually

contribute to the neuronal degeneration that underlies the pathogenesis of

Alzheimer’s disease. Further research in this area may help to develop targeted

therapies for the treatment of Alzheimer’s disease.

KEYWORDS

mitochondria, neurodegeneration, Alzheimer’s disease, autophagy, oxidative stress,
lysosomes and mitochondria imaging

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder marked by impaired behavior, cognitive dysfunction, and
episodic memory loss; being the most common dementia in the
elderly and the most prevalent neurodegenerative disease (Masters
et al., 2015). From the genetic standpoint, AD can be divided into
two different categories: the familiar form (<10% of all cases) and
the sporadic form (90–95% of cases). The familial form (FAD) has
an early onset. It is triggered by mutations in any of the three
primary genes linked to AD: APP (amyloid precursor protein)
gene, PSEN1 (presenilin) or PSEN2 (presenilin) gene (Dorszewska
et al., 2016) in chromosomes 21 and 14, respectively. These genes
contribute to the amyloidogenic pathway by which the APP protein
is consecutively cleaved and processed to produce Aβ oligomers
susceptible to aggregate (Hardy and Selkoe, 2002). On the other
hand, sporadic AD (SAD) results from a complex mixture of
genetic and environmental factors. However, its pathobiology is still
under investigation (Dorszewska et al., 2016).

The allele ε4 of the APOE gene encoding the apolipoprotein
E (APOE) is the major genetic risk factor for AD (Fernández-
Calle et al., 2022). Within the central nervous system, astrocytes
mainly produce this protein. It is critical in shuttling cholesterol
to neurons to maintain cell membranes and synapses and allow
their reparation after injury (Belloy et al., 2019; García-Sanz et al.,
2021). In humans, there are three APOE isoforms, which differ
only by 1 or 2 amino acids: APOE2, APOE3, and APOE4. The ε3
allele has the highest prevalence (78%), followed by ε4 (15%) and
finally ε2 (7%) (Masters et al., 2015). The ε4 allele in homozygosis
raises the risk of developing AD by twelve times (Heffernan et al.,
2016). The ε4 allele is linked to an earlier onset of the disease
(Khachaturian et al., 2004) and more severe cognitive impairment
(Najm et al., 2019). It has an approximately 50% contribution
to the development of SAD (Ashford, 2004). Furthermore, the
presence of the ε4 allele is related to the appearance of amyloid-
β (Ab) aggregates, the hyperphosphorylation of tau, and the
disorganization of mitochondrial networks (Mahley et al., 2007;
Cheng and Bai, 2018) and ultimately, it may account for specific
phenotypic heterogeneity in AD (Emrani et al., 2020).

The senile plaques composed of extracellular Aβ aggregates
and neurofibrillary tangles formed by hyperphosphorylated tau
protein remain AD’s two most critical histopathological hallmarks
(Lane et al., 2018; Vidal and Zhang, 2021). Growing evidence
suggests that abnormal mitochondrial function is involved in
AD pathophysiology (Castora et al., 2022). Environmental toxins,
such as pesticides, heavy metals, and industrial waste products,
can impair mitochondrial function and produce reactive oxygen

species (ROS) and oxidative stress, which can damage neurons and
contribute to AD pathogenesis (Sharma et al., 2021). Mitochondrial
dysfunction is observed in AD subjects within the brain and
systemically (Strope and Wilkins, 2023). AD is depicted by
disrupted energy metabolism in the brain and increased levels of
oxidative stress (Wang et al., 2020). Furthermore, Aβ aggregates
may also destabilize Ca2+ homeostasis generating a Ca2+ overload
in the mitochondria and forming a permeability transition pore
in the inner mitochondrial membrane (Wacquier et al., 2020).
Eventually, this event may trigger the release of cytochrome C from
mitochondria and the collapse of the mitochondrial membrane
potential (Brookes et al., 2004; Calvo-Rodriguez and Bacskai, 2021).
Moreover, Ca2+ can increase the number of reactive oxygen species
(ROS) through two mechanisms: nitric oxide production, which
inhibits the mitochondrial IV complex, and the increase in the
activity of the electron transport chain, which results in increased
ROS production (Brookes et al., 2004; Calvo-Rodriguez and
Bacskai, 2021). Indeed, defective mitophagy mediated a preserved
mechanism of memory loss across the AD models (Xie et al., 2022;
Zeng et al., 2022). The impairment of the endocytic, autophagic,
and lysosomal pathways is considered initiated at the early stages
of AD. It appears to be involved in most AD cases (Krance et al.,
2022) and other neurodegenerative diseases (García-Sanz et al.,
2018). Autophagy appears to be compromised in not only AD but
also in other neurodegenerative disorders. Autophagy is essential in
maintaining normal cell function by removing potentially harmful
materials, including damaged organelles (such as mitochondria)
and poorly folded or aggregated proteins (Vegh et al., 2019; Zeng
et al., 2022). Defects in this mechanism lead to an accumulation of
these toxic materials, eventually causing neuronal death as it occurs
in some neurodegenerative diseases, including AD (Filippone et al.,
2022; Griffey and Yamamoto, 2022).

The initiation of the autophagy pathway is regulated by a
plethora of different proteins, the most remarkable of which are
the mTOR and ULK complexes. In the presence of nutrients,
mTOR is phosphorylated and inhibits autophagy through the
phosphorylation (at specific inhibition sites) of ULK, which is
one of the proteins that contribute to the initiation of the
phagophore formation process. On the contrary, in nutrient
deprivation situations, mTOR will stop inhibiting ULK so that
phagophore formation can occur and, therefore, autophagy will
be enhanced (Alers et al., 2012). In AD, mTOR and other
proteins involved in autophagosome formation are especially
susceptible to changes in their function due to oxidative stress
(Lee et al., 2012; Filippone et al., 2022). Altered autophagy
is broadly established in AD, leading to damaged organelles
buildup, including mitochondria (Frake et al., 2015). However,
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TABLE 1 Features of recruited patients and control subjects used in this study.

Patient (ID) Gender Age (years) Genotype Clinical features

Alzheimer’s disease patients

AD1 M 74 APOE 4/4 Dementia (more severe symptoms than
those of APOE3/3 patients)

AD2 F 66 APOE 4/4 Dementia, aphasia (more severe symptoms
than those of APOE3/3 patients)

AD3 M 79 APOE 3/3 Loss of memory and prefrontal functions.

AD4 M 73 APOE 3/3 Dementia

AD5 F 79 APOE 3/3 Dementia

AD6 M 43 APOE 3/3 + mutation in PSEN1 Severe dementia, loss of memory, and
aphasia.

Control

C1 M 85 APOE 2/3 –

C2 F 66 APOE 3/3 –

C3 M 72 APOE 3/3 –

C4 M 72 APOE 2/3 –

C5 F 63 APOE 2/2 –

C6 F 71 APOE 3/3 –

current research remains controversial regarding which stages of
autophagy are specifically impaired. A comprehensive assessment
of the autophagic process in CA1 pyramidal hippocampal neurons
from early and late-stage AD patients showed a remarkable
upregulation of autophagy-related genes, reflecting increases in
both autophagosome and lysosome biogenesis. This induced
autophagy status appears to be an early mechanism response, and
autophagy flux is gradually hampered due to the failure of the
lysosomal degradation (Bordi et al., 2016).

In fact, with age and under stress, lysosomes accumulate
lipofuscin, which cannot be degraded, leading to lysosomal
dysfunction (Brunk and Terman, 2002; Trigo et al., 2022).
Strikingly, in various lysosomal storage diseases, lysosomal defects
initially produce a burden of amyloidogenic proteins (Monaco
and Fraldi, 2020; Riera-Tur et al., 2022). In AD, allele ε4 of
the APOE gene has been related to alterations in the endocytic,
autophagic, and lysosomal processes (Schmukler et al., 2018; Eran
and Ronit, 2022; Fernández-Calle et al., 2022). In addition, it
has been shown that PSEN1 mutations produce lysosomal and
autophagic dysfunction due to defects in lysosomal acidification
and lysosomal Ca2+ homeostasis (Coen et al., 2012; Lee et al., 2015;
Yang et al., 2019; McDaid et al., 2020).

Overall, AD pathology generates increased oxidative
stress and alterations in autophagy that compromise cellular
homeostasis, favoring the mechanisms of neurodegeneration.
In this study, we evaluate the impact of the presence of the
APOEε4 allele and a mutation in PSEN1 over cellular viability,
ROS production, mitochondrial structure, autophagy status,
and lysosome accumulation and distribution in age-matched
fibroblasts from healthy and AD patients. We used fibroblasts
because they are easily isolated from skin biopsies preserving
the chronological and biological aging of patients and their
environment etiopathology. Indeed, they are extensively used as
the model of several neurodegenerative disorders, including AD

(Pani et al., 2009; Theendakara et al., 2016; Pérez et al., 2017;
Olesen et al., 2022).

2. Materials and methods

2.1. Fibroblasts culture

Skin fibroblasts were generated from 6 AD patients with
different allelic combinations of APOE (one also presenting a
the G206D mutation in PSEN1) and six age-matched healthy
controls (Table 1). The patients and control subjects were
recruited and signed informed consent, previously accepted by the
Human Research Ethics Committees Ethics of Spanish National
Research Council (CSIC) and CIBERNED (Instituto de Salud
Carlos III). All samples were sequenced at the laboratory of Dr.
Joan Comella at the Hospital Vall d’Hebron (Lonza, Barcelona,
Spain), according to the protocol established by Calero et al.
(2009). Fibroblasts were maintained in DMEM (Lonza, Barcelona,
Spain) with 10% FBS (Life Technologies, Alcobendas, Spain),
1% penicillin-streptomycin (Lonza, Barcelona, Spain), and 0.1%
amphotericin B (Invitrogen, Madrid, Spain). In oxidative stress
induction experiments, fibroblasts were treated with tert-Butyl
hydroperoxide (tBHP, Luperox

R©

TBH70X, Sigma Aldrich, Madrid,
Spain) at different concentrations. Experiments were conducted in
all fibroblasts in parallel.

2.2. Resazurin cell viability assay

We assessed cell viability using the resazurin assay, a
fluorometric method to estimate cell metabolic activity. Only
viable cells with healthy mitochondria can reduce non-fluorescent
resazurin to resorufin (λemission = 585 nm) thanks to the electrons
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transferred by mitochondrial enzymes. In contrast, non-viable cells
cannot perform this reduction and do not spawn a fluorescent
signal. Fibroblasts were seeded at 62,500 cells/cm2 in a MW96 plate,
allowed to proliferate for 24 h, and then incubated with different
treatments. After that, resazurin (Sigma-Aldrich, Madrid, Spain)
was added at 40 µg/µl, shaken for 1–2 min, and incubated in
darkness for 30 min at 37◦C, 5% CO2. Finally, the fluorescence
emission signal (585 nm) was detected with the plate reader
FLUOstar Omega (BMG LABTECH, Allmendgrün, Germany).

2.3. Flow cytometry

A superoxide anion was detected using the fluorescent probe
dihydroethidium (DHE, Invitrogen, Madrid, Spain) to measure
the intracellular ROS content. Fibroblasts were seeded in MW6
plates at 20,800 cells/cm2, allowed to proliferate for 24 h, and
then incubated with tBHP 300 µM for 1 h. After that, cells
were trypsinized, pelleted by centrifugation, and incubated in the
darkness for 30 min at 37◦C with DHE 1 µM. Finally, cells were
centrifuged again and resuspended in PBS 1X. Twenty thousand
events were acquired with CytoFLEX Flow Cytometer (Beckman
Coulter, Krefeld, Germany).

2.4. Western blot

Western Blot experiments were performed with cell lysates of
the fibroblasts under basal conditions and after a 4 h treatment
with EBSS (Earle’s Balanced Salt Solution, Sigma-Aldrich). For
LC3-II western blot, cells were treated with chloroquine (CQ)
50 µM 4 h. Cells were lysed in lysis buffer (50 mM Tris HCl
pH 7.4, 1 mM DTT, 20 mM β-Glycerophosphate, Triton X-
100). Supernatants were obtained after a 30 min centrifugation,
and the protein concentration was quantified with the BCA
Assay Kit (Sigma). 5–12 µg of protein lysates were loaded onto
a SDS-electrophoresis gel and then transferred to nitrocellulose
membranes. The membranes were blocked with appropriate 5–
10% BSA or skim milk. Then, they were incubated with primary
antibodies for TOM20 (Santa Cruz Biotechnology, Heidelberg,
Germany, 1:1000 dilution), p-mTOR Ser2448 (Cell Signaling
Technology, Leiden, Netherlands, 1:1000), mTOR (Cell Signaling
Technology, Leiden, Netherlands, 1:1000), p-ULK Ser757 (Cell
Signaling Technology, Leiden, Netherlands, 1:1000), ULK (Cell
Signaling Technology, Leiden, Netherlands, 1:1000), Beclin-1
(Santa Cruz Biotechnology, Heidelberg, Germany, 1:1000), LC3-
II (Sigma, 1:5000). Actin (Sigma-Aldrich, 1:30000) and β-tubulin
(Cell Signaling Technology, Leiden, Netherlands, 1:20000) were
used as the loading control. The appropriate secondary infrared
dye-conjugated antibodies (α-mouse IRDye 800 CW and α-rabbit
IRDye 680 LT, LI-COR Biosciences, Lincoln, NE, United States,
1:15000) were detected by Odyssey Infrared Imaging System (LI-
COR Biosciences, Lincoln, NE, United States). For each assay, a
minimum of 3 independent experiments were carried out.

2.5. mtDNA content

Total DNA was isolated from fibroblasts using the Quick-DNA
Miniprep Plus Kit (Zymo Research, Irvine, CA, United States),

following the manufacturer’s instructions. The Mitochondrial DNA
(mtDNA) and the nuclear DNA (nDNA) content were determined
by using specific primers for the mitochondrial tRNALeu(UUR)

and 16S rRNA genes and for the nuclear β-2-microglobulin
(β2M) gene, respectively (Venegas et al., 2011). Quantitative
PCR was carried out with SYBR Green Master Mix (Applied
Biosystems, Alcobendas, Spain), and the fluorescence amplification
cycles were used to calculate the mtDNA: nDNA ratio for each
sample.

2.6. Immunocytochemistry

Fibroblasts (7,400 cells/cm2) were seeded on gelatin-coated
round glass coverslips (12 mm) in MW24 plates and subsequently
fixed with 4% paraformaldehyde or methanol, as appropriate.
Immunohistochemistry was done as previously described (Ruiz-
DeDiego et al., 2015). After a 1 h blocking step with 10%
BSA/0.1% Triton/PBS, fibroblasts were incubated with primary
antibodies for p62/SQSTM1 (Progen, Heidelberg, Germany,
1:200) and LAMP1 (Santa Cruz Biotechnology, Heidelberg,
Germany, 1:300). Afterward, fibroblasts were incubated with
secondary antibodies conjugated to Alexa Fluor 594 or 488.
Fibroblasts were counterstained with DAPI (Thermo Fisher
Scientific, Madrid, Spain). Finally, coverslips were mounted with
Prolong R© Gold (Life Technologies, Alcobendas, Spain). Images
were acquired with a SP5 laser confocal microscope (Leica, Wetzlar,
Germany).

2.7. LysoTracker and Filipin staining

Fibroblasts were seeded in round gelatin-coated glass coverslips
at a density of 7,400 cells/cm2. To label the lysosomes, fibroblasts
were incubated with 70 nM lysoTracker Red DND-99 probe
(Invitrogen, Madrid, Spain; λem = 590 nm) for 30 min at 37◦C.
Next, fibroblasts were fixed with 3% paraformaldehyde (PFA) for
30 min at RT, washed with glycine and stained with 25 µg/ml
Filipin (Sigma; λem = 400–484 nm) for free cholesterol detection.
Finally, the round covers were mounted with Prolong R© Gold
reagent (Life Technologies, Alcobendas, Spain) and observed using
the fluorescence microscope (Leica, Wetzlar, Germany).

2.8. Lentivirus production

A specific lentivirus was used to analyze the complexity of the
fibroblasts’ mitochondrial networks of fibroblasts. Specifically, we
used a plasmid with mtDsRed red fluorescent protein (pWPXL-
mtDsRed, λex = 580 nm/λem 630/60 nm; Clayton et al., 2012),
kindly provided by Dr. Ramón Trullas, from the Instituto de
Investigaciones Biomédicas of Barcelona. Constructions in the
pWPXL lentiviral vector contain a target sequence of the subunit
IV of the mitochondrial protein cytochrome oxidase. HEK293T
cells were used as packaging cells to obtain these lentiviruses. These
cells contain the SV40 virus T antigen, which allows an episomal
replication of plasmids containing the origin of replication of this
virus. The fibroblasts were seeded at 70,500 cells/cm2 in 100 mm
plates and transfected with the following plasmid mix: pMD2.G
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(viral envelope), psPAX2 (viral capsid), and pWPXL-mtDsRed in
a 1:2:3 ratio, using calcium chloride (CaCl2). Lentiviral particles
were collected twice: 8 h and 16 h after removing the transfection
medium. Finally, the medium containing the lentiviral particles was
ultracentrifuged at 20,000 rpm, and 16◦C for 2 h and the pellet was
resuspended in PBS and tittered by qPCR.

2.9. Fibroblast infection

Fibroblasts of all genotypes were seeded in round gelatin-coated
glass coverslips (2,000 cells/cm2) and transduced with the lentiviral
particles containing the plasmid pWPXL-mtDsRed to obtain 43
integrations/cell. Cells were fixed with 4% paraformaldehyde 36 h
later and used for p62/SQSTM1 immunocytochemistry. Finally, we
mounted coverslips with fibroblasts using Prolong Gold (Thermo
Fisher Scientific, Madrid, Spain). Images were captured and
assessed with a SP5 laser confocal microscope (Leica, Wetzlar,
Germany).

2.10. Image analysis

All images were acquired with an SP5 laser confocal microscope
(Leica, Wetzlar, Germany), using the 63X objective and 3.5X digital
zoom. For images of the mitochondrial structure, z-stacks of 6
confocal images were obtained, separated by a vertical distance
of 0.5 µm. Maximum projections of the images were analyzed
with FIJI-ImageJ software [National Institutes of Health (NIH),
Bethesda, MD], using the MiNA plug-in (Valente et al., 2017) to
obtain data related to different parameters of the mitochondrial
networks (number of individuals and networks, mean of branch
length and network size, and mitochondrial footprint). The area
analyzed in each image corresponds to a region of interest (ROI)
of 150 × 150 pixels located in a perinuclear region of the cell. At
least 6 cells per subject were examined.

The following analysis was carried out using custom-written
scripts of the FIJI-ImageJ developed by the Scientific Image and
Microscopy Unit of Cajal Institute: (i) Colocalization between
p62/SQSTM1 and mitochondria using Manders’ Coefficients.
Colocalization depicted the spatial superimpose of signal intensities
from isolated image channels. The Manders’ Coefficients, tM1
and tM2, reflect the degree of bidirectional colocalization between
two images. The tM1 coefficient refers to the sum of signal
intensities in Channel 1 having corresponding components
in Channel 2, divided by the sum of total intensities in
Channel 1. In this case, p62/SQSTM1 is depicted in Channel
1 (green), and mitochondria belong to Channel 2 (red). Thus,
tM1 ultimately represents the quantification of mitochondria
labeled with p62/SQSTM1. The tM2 coefficient is similarly
computed, the sum of signal intensities in Channel 2 having
corresponding factors in Channel 1, split by the sum of total
intensities in Channel 2. In other words, tM2 represents the
percentage of p62/SQSTM1 labeled mitochondria. (ii) Quantifying
the fluorescence integrated density (IntDen) of p62/SQSTM1,
LAMP1, and LysoTracker. Briefly, images were converted to
grayscale, their background was subtracted, and the contour of
each cell was drawn to obtain the value of its area. Finally,

the fluorescence signal was set to a threshold to determine
the integrated intensity values (IntDen; the intensity of the
fluorescence signal divided by the total cell area). (iii) Analysis
of the distribution of lysosomes (LAMP1). Maximum projections
of full cell thickness z-stacks were obtained, separated by a
vertical distance of 0.6 µm. Then, confocal images were turned
into binary ones to visualize the LAMP1 positive area inside
each cell and differentiate between individual and grouped
lysosomes (Individuals = area < 1.3 µm and circularity > 0.6;
Groups = area ≥ 1.3 µm and circularity ≤ 0.6). The lysosome
clustering index was calculated as the Groups/Individuals ratio. At
least 6 cells were analyzed for each subject in these three analyses.
(iv) The proportion of fibroblasts presenting the perinuclear
lysosomal clustering phenotype was also quantified using ImageJ
software. This phenotype was analyzed based on previous studies
(Hockey et al., 2014; García-Sanz et al., 2017). We considered
cells positive for the clustering phenotype if they presented
highly packed perinuclear lysosomal aggregates and negative if
they presented lysosomes uniformly distributed in the perinuclear
region or the whole cell. (v) To quantify Filipin in LysoTracker-
positive-tagged lysosomes, we overlapped a LysoTracker mask over
Filipin images to calculate Filipin IntDen as described (García-Sanz
et al., 2017).

2.11. Statistical analysis

We performed at least 3 independent experiments per
assay to obtain all data. We normalized the data acquired to
control values as appropriate. The statistical analysis of the
results was carried out with GraphPad Prism 6.0 (Graphpad
software, La Jolla, CA, United States). Data distribution was
evaluated using the D’Agostino and Pearson test. One or two-
way ANOVA parametric tests were used, followed by the post-
hoc Bonferroni, to compare results between different fibroblast
lines and treatments. In cases where the data had a non-
Gaussian distribution, we applied the Kruskal-Wallis test and
Dunn’s post-hoc. Statistical significance was set at a p-value of
P < 0.05.

3. Results

3.1. APOE 3/4 genotype in combination
with PSEN1 mutation is prone to cell
vulnerability induced by oxidative stress

To evaluate whether the ε4 or ε3 allele of the APOE gene
and/or the PSEN1 mutation could contribute to cell vulnerability,
we performed resazurin-based cell viability tests in control
and AD fibroblasts. Oxidative stress was induced by tert-butyl
hydroperoxide (tBHP). We found that this treatment significantly
decreased cell viability in all fibroblasts, regardless of their
genotype. This decrease was proportional to the concentration
of tBHP used in the treatment: 50 µM, 150 µM, and 300 µM,
during 2.5 h (Figure 1A). However, APOE 4/4 and APOE 3/3
fibroblasts showed a significantly smaller decrease in cell viability
compared to controls. While APOE 3/4 + PSEN1 fibroblasts
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FIGURE 1

Vulnerability of fibroblasts to tert-butyl (tBHP) induced oxidative stress and increased production of ROS species in APOE 3/4 + PSEN1 fibroblasts.
(A) Percentage of the viability of fibroblasts from AD patients compared to controls and to respective basal conditions. (B) Quantification of DHE
signal measured as the percentage of DHE positive cells by the mean fluorescence intensity in the fibroblasts under basal conditions and after 1 h
treatment with 300 µM tBHP. (C) Representative graph of events versus fluorescence intensity of the DHE probe obtained by flow cytometry from
control and APOE 3/4 + PSEN1 fibroblasts. Samples were processed in parallel; data represent the mean ± SEM of at least n = 3 independent
experiments for all cell lines. *P < 0.05; **P < 0.01; ***P < 0.005 vs. Control; #P < 0.05; ##P < 0.01; ###P < 0.005; ####P < 0.0001 vs. basal;
following 2-way ANOVA, post hoc Bonferroni.

showed a significantly higher decrease in viability, particularly
at 300 µM, indicating that they are more vulnerable to the
treatment than controls. To determine whether these viability
alterations affect the cellular redox state, we performed a flow
cytometry assay using the dihydroethidium (DHE) probe in
all fibroblasts. This assay allowed us to detect the superoxide
anion levels after treatment with tBHP for 1 h at 300 µM (the
concentration which produces the most significant changes in
cell viability). As expected, tBHP increased superoxide anion in
all fibroblasts (Figure 1B). APOE 3/4 + PSEN1 fibroblasts show
slightly higher superoxide anion levels than controls at baseline
and after treatment with tBHP, although this difference is not
statistically significant (Figures 1B, C). In summary, fibroblasts
carrying the PSEN1 mutation show decreased viability, thus
more vulnerable to oxidative stress. In contrast, APOE 4/4 and
APOE 3/3 genotypes appear to be more resistant to oxidative
stress.

3.2. Lysosomal free cholesterol is
impaired in APOE 3/4 + PSEN1 fibroblasts

Several studies underscore that alterations in cholesterol
metabolism are involved in the pathogenesis of AD (Wood
et al., 2014; Loera-Valencia et al., 2019; van der Kant et al.,

2019), and APOE mediates cholesterol exchange between brain
cells (Liu et al., 2013). Thus, we next measured free cholesterol
levels using Filipin staining in combination with the LysoTracker
probe. Filipin staining of all fibroblasts disclosed intracellular
punctuate structures. In addition, these structures were identified
as lysosomes according to co-labeling with the LysoTracker probe
(Figure 2). Total free cholesterol levels (quantified by Filipin
IntDen; García-Sanz et al., 2017; Wilhelm et al., 2019) were
significantly decreased in APOE 3/4 + PSEN1 fibroblasts. In
contrast, APOE 3/3 and APOE 4/4 fibroblast did not show
significant changes compared to controls (Figures 2A, B). Next,
we quantified free cholesterol in lysosomes. Strikingly, we found
that Filipin IntDen in LysoTracker-positive organelles is higher, but
not significant, in both APOE 3/3 and APOE 4/4 fibroblasts than in
controls, while in APOE 3/4 + PSEN1 fibroblasts the levels are again
slightly decreased (Figures 2A, C).

3.3. Aberrant mitochondrial networks in
AD patients with APOE 4/4 and APOE 3/4
+ PSEN1 genotypes

Since the altered resazurin reduction and the slight increment
in ROS production in some of the AD fibroblasts could be
due to mitochondrial dysfunction, we next analyzed the status
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FIGURE 2

Representative images and quantification of total free cholesterol and free cholesterol levels inside the lysosomes of control and AD fibroblasts.
(A) Representative confocal images of control and AD fibroblasts stained with LysoTracker (acid compartments, red) and Filipin (free cholesterol,
green). (B) Integrated density (IntDen = intensity*µm2) quantification of Filipin in the total cell area. (C) Integrated density (IntDen = intensity*µm2)
quantifications of Filipin in the area occupied by LysoTracker staining. Samples were processed in parallel; data represent mean ± SEM of n = 2
independent experiments, with a minimum of 80 cells per genotype analyzed. ***P < 0.005 vs. control by Kruskal Wallis, post-hoc Dunn. Calibration
bar = 20 µm.
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of mitochondria in AD fibroblasts. First, the levels of the
mitochondrial internal membrane protein TOM20 (a marker
for mitochondrial biomass) were measured by Western blot
(Figures 3A, B). At baseline, AD fibroblasts showed a slight,
though not significant, decrease of TOM20 compared to controls
(Figure 3B). After 4 h-EBSS treatment to induce autophagy, only
APOE 4/4 fibroblasts displayed a reduction in TOM20, although
not significant as before. In addition, we determined the mtDNA
content in control and AD fibroblasts (Figure 3C). The levels of
the mtDNA genes tRNALeu(UUR) and 16S rRNA were obtained
by qPCR and normalized to a nuclear gene. Consistent with
western blot results, all AD fibroblasts showed a slight non-
significant decrease in basal mtDNA content compared to controls
(Figure 3C).

Next, to determine mitochondrial morphology in greater
detail, fibroblasts were infected with pWPXL-mtDsRed lentivirus
to label mitochondrial networks. First, confocal images of the
mitochondrial networks showed that control fibroblasts distribute
their mitochondria as reticulum-like uninterrupted networks,
spread through the cytoplasm (Ježek and Plecitá-Hlavatá, 2009),
while AD fibroblasts present a less reticular distribution than
controls (Figure 3D). In particular, mitochondria in APOE 3/4 +
PSEN1 fibroblasts displayed a stippled appearance rather than the
usual network one. Secondly, MiNA structural analysis (Valente
et al., 2017; Figures 3E–I) showed a higher number of fragmented
individual mitochondria in AD fibroblasts than in controls,
which is only significant in the case of the APOE 4/4 genotype
(Figure 3E).

Remarkably, APOE 3/4 + PSEN1 genotype also produces a
significant decline in the length of the mitochondrial branches
(Figure 3G), in the cellular area occupied by mitochondria
(mitochondrial footprint, Figure 3H) and in the size of the
mitochondrial networks but not being significant in this latter
case (Figure 3I). All these results suggest that the mitochondrial
network’s morphology and integrity are compromised in all
fibroblasts from AD patients and that these changes are much more
evident in APOE 3/4 + PSEN1 fibroblasts and in APOE 4/4.

3.4. APOE 4/4 fibroblasts increase
mitochondria degradation via
p62/SQSTM1

Since mitophagy could be induced in AD fibroblasts to
eliminate damaged mitochondria, specifically in those with the ε4
allele (APOE 4/4 and APOE 3/4+PSEN1), we first performed a
p62/SQSTM1 immunofluorescence in all fibroblasts (Figure 4A).
The quantification of the fluorescence integrated density (IntDen)
of p62/SQSTM1 showed an increase in APOE 4/4 and APOE 3/4 +
PSEN1 fibroblasts (Figure 4B).

Subsequently, to determine if mitochondria are suitably
targeted for degradation via mitophagy in AD fibroblasts,
we labeled p62/SQSTM1 in fibroblasts infected with pWPXL-
mtDsRed. We quantified the colocalization of p62/SQSTM1 with
mitochondria (mtDsRed) using Mander’s Coefficients (tM1 and
tM2). The results showed that, in all fibroblasts, the tM1 coefficient
is always higher than tM2 (Figure 4C), which indicates that
the percentage of mitochondria being labeled for degradation is

higher than the percentage of p62/SQSTM1 that is intended to
mark those mitochondria (that is, there is a certain percentage
of p62/SQSTM1 that remains free to mark other substrates for
degradation). In addition, we found that APOE 3/3 fibroblasts
have significantly fewer mitochondria marked for degradation than
controls, which is consistent with APOE 3/3 fibroblasts not showing
significant changes in the structure of the mitochondrial networks
compared to controls. In contrast, APOE 4/4 fibroblasts had a
much significantly higher percentage of mitochondria that will
probably undergo mitophagy (Figure 4C). These results correlate
with the noted disruption of the mitochondrial networks found
in APOE 4/4 fibroblasts (Figure 3E). However, the disruption
of the mitochondrial networks shown by APOE 3/4 + PSEN1
fibroblasts did not correlate with increased colocalization of
p62/SQSTM1 with mitochondria (Figure 4C). Thus, in this case,
the morphological changes may not be due to an increased effective
mitophagy.

3.5. Autophagic flux is slightly induced in
AD fibroblasts

To further investigate if the changes observed in the
mitochondrial networks of the fibroblasts with the ε4 allele of the
APOE gene are due to an increased mitophagy, we studied the
autophagic pathway (Figure 5). The phosphorylation of mTOR,
one of the central regulators of the pathway, and ULK, its target
protein as well as Beclin-1 (an essential protein complex for the
formation of the autophagosome) were determined by Western
blot. Under basal conditions (in the presence of nutrients), mTOR
is phosphorylated, and the p-mTOR-dependent phosphorylation
of the initiator protein ULK inhibits autophagy. Thus, at baseline
state, p-mTOR and p-ULK levels are increased. On the contrary,
under nutrient deprivation conditions (4 h EBSS treatment),
mTOR de-phosphorylates and stops inhibiting ULK, thus favoring
the induction of autophagy. As expected, starvation decreased
the levels of phosphorylation of both proteins in all fibroblasts
(Figures 5A–C). However, under basal conditions, we also detected
a slight (but not statistically significant) decrease in the mTOR
and ULK phosphorylation in AD fibroblasts compared to controls,
more evident in the case of p-ULK (Figure 5C). This could
indicate that basal mTOR-dependent autophagy is moderately
induced, which is consistent with our previous results for APOE 4/4
fibroblasts showing a slight decrease in mitochondrial biomass and
an increased colocalization with p62/SQSTM1. Likewise, Beclin1
was increased in AD fibroblasts under basal conditions, only
significant in APOE 3/3 and APOE 3/4 + PSEN1 fibroblasts
(Figures 5D, E). These results suggest that AD fibroblasts can
over-activate autophagy through mTOR- and Beclin-1-dependent
mechanisms. Then, we assessed the lipidation of LC3I into LC3-II
as a potential marker of autophagosome formation. Our Western
blot results displayed that basal LC3-II was slightly increased,
although not significant, in APOE 3/4 + PSEN1 fibroblasts over
controls (Figures 5F, G). However, when we determined the
LC3II/LC3I ratio, we found no differences in basal conditions. CQ
treatment significantly increased LC3-II levels normalized to β-
actin (Figures 5F, G) and increased LC3II/LC3I ratio compared
to basal conditions in all fibroblasts (Figure 5G′). We suggest
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FIGURE 3

Alterations in mitochondrial morphology in fibroblasts of AD patients. (A) Representative western blots of TOM20 levels after treatment with EBSS
for 4 h. (B) Quantitative densitometry of TOM20. Samples were processed in parallel; data represent mean ± SEM of n = 3 independent experiments.
2-way ANOVA, post-hoc Bonferroni. (C) Normalized mtDNA:nDNA ratio, calculated with the levels of the mtDNA genes tRNALeu(UUR) (left) and 16S
rRNA (right) after treatment with EBSS for 4 h. Data represent mean ± SEM of n = 3 independent experiments. (D) Representative confocal images of
mtDsRed stained mitochondria in control and AD fibroblasts and examples of the skeletonization of the networks obtained with the MiNA plug-in
for ImageJ. Nuclei are stained with DAPI. Calibration bar = 10 µm. (E–I) Analysis of different parameters related to the complexity of the
mitochondrial networks. Samples were processed in parallel; data represent mean ± SEM of n = 6 images for all cell lines. *P < 0.05; **P < 0.01 vs.
Control; $P < 0.05 vs. APOE3/3; &P < 0.05 vs. APOE4/4 by One-way ANOVA, post-hoc Bonferroni.
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FIGURE 4

Mitochondria and p62/SQSTM1 colocalization in AD fibroblasts. (A) Representative images of mtDsRed-labeled mitochondria and
immunofluorescence for p62/SQSTM1 in AD fibroblasts (APOE 4/4, APOE 3/3, and APOE 3/4 + PSEN1) Nuclei are stained with DAPI. (B) Integrated
density (IntDen = intensity*µm2) quantifications of p62/SQSTM1. (C) Quantitation of mtDsRed and p62/SQSTM1 colocalization with Manders’
Coefficients (tM1 and tM2). Samples are processed in parallel; data represent mean ± SEM of n = 6 images for all cell lines. **P < 0.01; ***P < 0.005;
****P < 0.0001 vs. control by One-way ANOVA, post-hoc Bonferroni. Calibration bar = 10 µm.

that the accumulation of LC3II is due to the inhibition of the
autophagosome-lysosome fusion produced by CQ, which leads to
hindering the regular degradation of LC3II rather than to a new
process of lipidation. Moreover, we found that CQ significantly
potentiated the LC3II buildup in the APOE 3/4 + PSEN1 fibroblasts
compared to controls (Figures 5F, G) but did not enhance LC3
lipidation measured by LC3II/LC3I ratio (Figure 5G′). Despite this,
it should be noted that after CQ treatment, we detected a tendency
to increase in LC3II/LC3I ratio in all AD fibroblasts compared to
controls, although not statistically significant (Figure 5G′). This
tendency could be due to inhibition of lysosomal degradation
causing autophagosome accumulation, as shown by the increased
p62/SQSTM1 signal in APOE 3/4 + PSEN1 fibroblasts (Figure 4B).
However, we cannot rule out that part of the effect is due to CQ
activation of non-canonical autophagy that induces LC3 lipidation
in single membrane compartments (Jacquin et al., 2017; Fletcher
et al., 2018).

3.6. APOE 3/4 + PSEN1 fibroblasts show a
higher number and clustering of
lysosomes

To determine whether the increase in autophagy induction
contributes to further degradation of the mitochondria, we

analyzed the final stage of the pathway, specifically, the distribution
and number of lysosomes. We measured LAMP1 (a marker
of these organelles), detecting its levels by immunofluorescence
(Figure 6A). The lysosomal distribution was assessed by measuring
the lysosomal clustering index. We observed that APOE 3/4
+ PSEN1 fibroblasts present a significant increase not only
in the number of lysosomes (Figure 6B) but also in their
lysosomal clustering index (Figure 6C). Strikingly, the number
and clustering levels of lysosomes in APOE 4/4 and APOE 3/3
fibroblasts are similar to controls (Figures 6B, C). However,
using the LysoTracker probe to label the lysosomes, we found
that AD lysosomes were significantly more clustered around
the perinuclear region than controls (Figures 6D, E), probably
indicating some lysosomal disturbance. Notably, this increase of
perinuclear clustered lysosomes is potentiated in APOE 3/4 +
PSEN1 fibroblasts.

4. Discussion

In this study, we evaluated the impact of the ε4 allele of the
APOE gene and the mutation G206D in PSEN1 on the molecular
mechanisms leading to AD pathology. We found that PSEN1
and APOE4/4 or APOE3/4 confer different phenotypes in human
fibroblasts, similarly to that reported in iPSC-derived human
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FIGURE 5

Impaired autophagy in AD fibroblasts. (A) Representative western blots of p-mTOR and p-ULK levels under baseline and nutrient deprivation
conditions (EBSS treatment for 4 h). (B) Quantitative densitometry of p-mTOR (normalized against β-tubulin and total mTOR levels). (C) Quantitative
densitometry of p-ULK (normalized against β-tubulin and total ULK levels). (D) Representative Western blot of Beclin-1 levels. (E) Quantitative
densitometry of Beclin-1 (normalized against β-actin). (F) Representative Western blot of LC3-II and LC3I levels under baseline and chloroquine (CQ)
treatment conditions. (G) Quantitative densitometry of LC3-II (normalized against β-actin). (G′) Quantitative densitometry of LC3II (normalized
against LC3I) relative to the ratio from untreated controls. Samples are processed in parallel; data represent mean ± SEM of n = 3 independent
experiments for all cell lines. *P < 0.05 vs. Control; **P < 0.01 vs. Control;#P < 0.05 vs. basal; ##P < 0.01 vs. basal; ###P < 0.005 vs. basal. 2-way
ANOVA, post-hoc Bonferroni [Kruskal Wallis, post-hoc Dunn for panel (E)].
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FIGURE 6

Increased number of lysosomes, lysosomal clustering in APOE 3/4 + PSEN1 fibroblasts, and perinuclear clustered lysosomes in all AD fibroblasts.
(A) Representative images of LAMP1 (a lysosome marker) immunofluorescence in AD fibroblasts (APOE 4/4, APOE 3/3 and APOE 3/4 + PSEN1).
(B) Integrated density (IntDen = intensity*µm2) of LAMP1. Kruskal-Wallis, post-hoc Dunn. (C) Lysosomal clustering index (number of clustered
lysosomes / number of individual lysosomes). Samples are processed in parallel; data represent mean ± SEM of n = 6 images for all cell lines.
**P < 0.01 vs. Control; $P < 0.05 vs. APOE 3/3; &&&&P < 0.0001 vs. APOE 4/4, 1-way ANOVA, post hoc Bonferroni. Calibration bar = 10 µm.
(D) Representative images of LysoTracker staining. Arrows indicate the zoomed areas in the top right corner of each image. Arrowheads indicate
lysosomal clusterings. (E) The proportion of fibroblasts of each genotype presenting lysosomal aggregates. Samples are processed in parallel; data
represent mean ± SEM of a minimum of 80 cells per genotype analyzed. ***P < 0.005 vs. Control, χ2 test. Calibration bar = 20 µm.

microglia; however, in microglia, PSEN1 and APOE4/4 or APOE3/4
affects other underlying mechanisms (Konttinen et al., 2019). Our
results show alterations in the vulnerability of AD fibroblasts to
oxidative stress and a disruption in the mitochondrial network
of APOE 3/4 + PSEN1 and APOE 4/4 fibroblasts, as summaries
in Figure 7. Moreover, the mutation in PSEN1 also affects

the autophagy pathway and the lysosomal function, increasing
lysosomal accumulation and clustering along with an increase of
global p62/SQSTM1 (Figure 7).

First, we found that APOE 4/4 and APOE 3/3 genotypes
confer protection to human fibroblasts against oxidative stress-
induced cellular vulnerability (Figures 1A–D), which disagrees
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FIGURE 7

Schematic representation of the main findings of this study. APOE allele ε4 in homozygosis and APOE 3/4 + PSEN1 induces the fragmentation of the
mitochondrial networks. The increase in p62/SQSTM1 in APOE 4/4 and its colocalization with mitochondria indicates that, in this case, the observed
loss of mitochondrial biomass may be caused by its degradation via autophagy. Autophagy is first initiated when vesicles come from the plasma
membrane, and different organelles fuse to form a double membrane structure called phagophore. The phagophore eventually fuses its two ends
surrounding a portion of the cytoplasm that contains material destined to be degraded, generating the autophagosome. The specificity of the
process is given by the p62/SQSTM1 complex, which binds to ubiquitinated proteins and is recognized by LC3-II in the inner face of the
autophagosome, which recruits the cargo and internalizes it (Johansen and Lamark, 2011). The next step is the maturation and acidification of the
autophagosome (Vegh et al., 2019), which fuses with the lysosome, where the hydrolases degrade the cargo (Kimura et al., 2007). This process can
only occur if a sufficiently acidic pH is maintained inside the lysosome (Menzies et al., 2015). Rapamycin and nutrient deprivation inhibit the mTOR
complex, the primary autophagy inhibitor. In this situation, mTOR stops phosphorylating ULK1 in Ser-757 (this phosphorylation makes ULK1
catalytically inactive), allowing AMPK to phosphorylate it in Ser-317 and Ser-777, activating it (Menzies et al., 2015). On the other hand, under nutrient
deprivation, the PI3K class III complex is also activated. The activations of ULK1 and Beclin1 are essential for the formation of the phagophore, which
engulfs the charge that will be degraded. After that, the now-called autophagosome fuses with the lysosome to form the autophagolysosome,
where the cargo is finally degraded. The mutation in PSEN1 induces a significant disruption of mitochondrial networks in APOE 3/4 + PSEN1
fibroblasts and an accumulation of lysosomes and higher levels of superoxide anion inside these cells, which are more vulnerable to oxidative stress.

with the increased ROS described in other AD studies (Pérez
et al., 2017; Sarasija et al., 2018; Drabik et al., 2021). This is
particularly striking in the case of the APOE 4/4 genotype because
it contributes to mitochondrial respiratory chain disruption (Orr
et al., 2019) and impairs mitochondrial neuron function in vivo
and in vitro (Liang et al., 2021). In this regard, a study detected
an increase in ROS in the plasma of APOE 4/4 AD patients
(Massaccesi et al., 2019). However, in this case, the differences
observed with our results could be due to blood analyses not
exhibiting accurate intracellular or tissue ROS content. Moreover,
one of the natural mechanisms by which the cell tries to protect
itself against oxidative damage is the arrest of the cell cycle to

enable the repair of ROS-induced DNA damage. This occurs
through the activation of p53, which triggers cell cycle arrest,
DNA repair, and activation of apoptosis (Szybińska and Leśniakx,
2017). Fibroblasts from AD patients exhibited ROS-mediated p53
activation, implying that these cells are less susceptible to oxidative
stress and, thus, more resistant than control fibroblasts (Naderi
et al., 2006; Uberti et al., 2006). This could be why APOE 4/4
and APOE 3/3 fibroblasts are less prone to oxidative stress-
induced cell death. Moreover, p53-induced antioxidant response
in vivo could develop a neuroprotective function. However, the
neuroprotective effects of p53 in AD remain controversial (Abate
et al., 2020).
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APOE is an apolipoprotein with an essential function in
cholesterol trafficking. The presence of the APOE ε4 allele has
typically been related to a lipid homeostasis imbalance in AD
patients since this isoform has lower transport affinity and binding
capacity for lipids and, in particular, cholesterol (Chang et al., 2017;
Jeong et al., 2019; Lanfranco et al., 2020). Previous studies with
Filipin staining show that AD fibroblasts (Pani et al., 2009) and,
more specifically, APOE 4/4 astrocytes (Lin et al., 2018) present
higher levels of free cholesterol compared to controls. Contrary
to these, our results do not show evidence of this accumulation
(Figures 2A, B). However, we did surprisingly find a remarkable
reduction of the free cholesterol levels inside APOE 3/4 + PSEN1
fibroblasts (Figure 2B). This could be due to a defect in its synthesis,
which can eventually lead to a disruption in organelle membranes
and cell death (King et al., 2016). Therefore, our results could
indicate that the observed decreased cell viability of APOE 3/4 +
PSEN1 fibroblasts could probably be enhanced by this abnormal
cholesterol depletion. We also quantified the free cholesterol levels
inside lysosomes in our fibroblasts (Figure 2C). Although no
significant results were obtained, we observed a slight increment
of free cholesterol in APOE 3/3 and APOE 4/4 fibroblasts and a
slight lessening in APOE 3/4 + PSEN1 fibroblasts. Other authors
described that the lysosomal accumulation of cholesterol (García-
Sanz et al., 2021) could rescue cells from lysosome-dependent
cell death (Appelqvist et al., 2011; King et al., 2016). Hence, this
lysosomal cholesterol build-up could be one of the reasons why
these APOE 3/3 and APOE 4/4 fibroblasts appear to be protected
against cell death. Defects related to lysosome dysregulation, lipid
membrane disruption, intracellular cholesterol distribution, and
altered Ca2+ signaling depend on the APOEε4 allele and sex in
immortalized astrocytes (Larramona-Arcas et al., 2020). Therefore,
this could be a possible explanation for our APOE 4/4 results.

Aging stands out as the most pivotal risk factor for
neurodegenerative disorders, including AD (Hou et al., 2019).
Aging decreases the cellular ability to produce energy (Ozgen et al.,
2022; Trigo et al., 2022), and mitochondria play an essential role in
producing such energy. They are necessary for regulating critical
biochemical processes such as Ca2+ storage and homeostasis,
activation of the oxidative stress response, and cell death pathways
(Ribas et al., 2014). Therefore, mitochondrial dysfunction is closely
linked to AD pathogenesis (Swerdlow, 2018; Perez Ortiz and
Swerdlow, 2019; Castora et al., 2022). In this context, our results
showed that fibroblasts from patients with AD have mitochondria
with fewer reticular networks (Figures 3D–I, 5). This is especially
evident inAPOE 3/4 + PSEN1 fibroblasts, which present dot-shaped
mitochondria (Figure 3D). This dotted appearance is observed
in other studies as an indicator of fragmented mitochondria in
unhealthy and oxidatively stressed cells (Ježek and Plecitá-Hlavatá,
2009).

Moreover, AD fibroblasts, especially those with the ε4 allele of
the APOE gene in homozygosis, have higher mitochondria labeled
with p62/SQSTM1 (Figure 4A), a fragmented mitochondrial
network (Figures 3A–E). This could be due to the early
enhanced induction of autophagy in AD fibroblasts, as previously
described (Bordi et al., 2016). This induction would eventually
lead to a higher degradation of damaged mitochondria. In this
regard, a slight disruption of the mitochondrial network was
detected in all our fibroblasts from AD patients (Figures 3D–
I). From the mitochondrial perspective, this could entail a

common pathogenic origin of the disease, regardless of the
genotype (Yin et al., 2020). Specifically, APOE 4/4 fibroblasts
exhibited increased mitochondrial fragmentation as indicated by
the significant increase of individual fragments (Figure 3E) as was
shown in other studies (Cabezas-Opazo et al., 2015; Pérez et al.,
2017). It was recently determined that despite also showing an
impaired mitochondrial network, APOE4 astrocytes displayed an
increased number of branches and fewer individual mitochondria,
contrary to our findings (Schmukler et al., 2020). Impairments
in the mitochondria of these astrocytes are also supported by
deficiencies in their synthesis, recruitment, ubiquitination, fission,
fusion, and mitophagy (Eran and Ronit, 2022). The mitochondrial
disorganization we have found is more evident in the case of
APOE 3/4 + PSEN1 fibroblasts due to the decreased size of the
mitochondrial network, the length of its branches, and the area
occupied by mitochondria (Figures 3G–I). This latter parameter,
which may also be indicative of the percentage of mitochondrial
biomass in the fibroblasts (Sinha et al., 2019; Li et al., 2020), suggests
that APOE 3/4 + PSEN1 fibroblasts could have a reduction in
the overall mitochondrial mass. These mitochondrial abnormalities
found in APOE 3/4 + PSEN1 fibroblasts agree with those previously
found in fibroblasts from AD patients with PSEN1 mutation (Gray
and Quinn, 2015; Bell et al., 2018). This impaired integrity of
the mitochondrial network could be responsible for the subtle
higher superoxide anion levels and increased vulnerability to
oxidative stress of APOE 3/4 + PSEN1 fibroblasts. This mechanism
may be primarily caused by the deregulation of the Ca2+

homeostasis induced by the mutation in PSEN1, as described in
PSEN1 mutant AD iPSC-derived astrocytes (Oksanen et al., 2017).
Mitochondria form an interconnected network, which allows them
to communicate rapidly and distribute energy throughout the cell
(Trigo et al., 2022). However, this connectivity puts the energy
conversion system at risk because the entire network could suffer
the consequences if any elements are damaged (Trushina et al.,
2012). Mitochondria are dynamic organelles constantly fusing
and dividing (Bertholet et al., 2016). The dynamic equilibrium
between fusion and fission phenomena defines the morphology
of the mitochondria, allowing their adaptation to energy needs.
Therefore, the increased mitochondrial fragmentation of AD
fibroblasts suggests a possible fusion and fission balance disruption.
Moreover, previous studies on AD also demonstrated that oxidative
stress increases the fragmentation of the mitochondrial network
via the deregulation of mitochondrial fusion and fission dynamics
(Zhu et al., 2012; Misrani et al., 2021; Olesen et al., 2022).

Another critical mechanism in controlling mitochondrial
quality is mitophagy. The defects in mitochondrial networks’
complexity in APOE 4/4 and APOE 3/4 + PSEN1 fibroblasts
(Figure 3), aligns with the significantly higher levels of
p62/SQSTM1 detected in these fibroblasts (Figure 4B), which
probably indicates an induced mitophagy to eliminate these
harmful organelles (Figure 7). Consistently, APOE 4/4 fibroblasts
also had a higher percentage of mitochondria labeled with
p62/SQSTM1 destined for degradation, as shown by the
colocalization analysis (Figure 4C). However, fibroblasts with
the PSEN1 mutation did not show an increased colocalization
of their mitochondria with p62/SQSTM1 compared to controls
(Figure 4C). These results could be explained because of a defect in
mitochondrial biogenesis processes, which would result in aberrant
mitochondria, thus, contributing to the pathophysiology of AD,
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as already demonstrated in previous studies where mitochondrial
biogenesis markers such as PGC-1a are reduced (Sheng et al.,
2012). Another possibility is that APOE 3/4 + PSEN1 fibroblasts
undergo an ineffective mitophagy process. This would align with
previous studies in PSEN1 fibroblasts and iPSC-derived neurons
from patients, where mitochondria were labeled correctly but
unable to be degraded (Trushina et al., 2012). In addition, APOE
3/3 fibroblasts do not present significant changes in mitochondrial
biomass (Figure 3), p62/SQSTM1 levels, and mitochondria labeled
with p62/SQSTM1 compared to controls (Figure 4). These results
align with the ε3 allele of the APOE gene being less related to the
pathophysiology of the disease (Heffernan et al., 2016), as also
demonstrated in mouse model studies (Simonovitch et al., 2019).

A dampened lysosomal autophagic clearance or an
altered activation of autophagy could be responsible for the
aforementioned increased p62/SQSTM1 in APOE 3/4 + PSEN1
and APOE 4/4 fibroblasts (Figure 7). Similarly, higher levels of
p62/SQTM1 and parkin were found in the hippocampus of APOE4
mice compared to APOE3 mice, showing reduced mitophagy
(Simonovitch et al., 2019). In addition, even though the analysis of
the levels of p-mTOR showed no conclusive outcome (Figures 5A,
B), in the case of ULK, there was a slight decrease of p-ULK in all
AD fibroblasts compared to controls (Figures 5A, C). Beclin1 was
also significantly increased in APOE 3/3 and APOE 3/4 + PSEN1
fibroblasts (Figures 5D, E). This is consistent with the increased
colocalization of mitochondria with p62/SQSTM1 detected in
APOE 4/4 fibroblasts (Figure 4C), indicating a possible impaired
mitophagy. Therefore, these results could indicate that fibroblasts
from AD patients may develop an altered and induced autophagic
pathway onset, which differs from previous studies with AD
patients that show an accumulation of defective mitochondria
due to defects in autophagy induction (Martín-Maestro et al.,
2017b; Vegh et al., 2019). This could suggest that PSEN1 mutation
might not only accelerate autophagosome synthesis through
Beclin1 and mTOR pathways but also alter autophagic clearance
(increased p62/SQSTM1) likely due to a secondary degradation
defect in lysosomes, triggering an autophagosome buildup (LC3II
accumulation after CQ treatment). However, as mentioned before,
it cannot rule out that this effect could be due to the non-canonical
autophagy activation (Jacquin et al., 2017; Fletcher et al., 2018).
In either case, the results could point to an anomalously induced
autophagy, probably as a compensatory mechanism due to a
decline in the degradation of the last step of autophagy (Martín-
Maestro et al., 2017a). Moreover, it must be considered that there is
still debate about whether autophagy is altered in single or multiple
stages in AD (Bordi et al., 2016), and further studies regarding this
are still needed to clarify this question.

Consistently with the possible degradation failure, we found
lysosomal impairment in AD fibroblasts. We found higher levels
of LAMP1 in APOE 3/4 + PSEN1 fibroblasts (Figures 6A, B)
which aligns with previous studies displaying elevated LAMP1
levels and its mRNA in AD patients’ cortexes (Barrachina et al.,
2006). PSEN1 mutations generate a defect in the N-glycosylation of
the V0a1 subunit of the v-ATPase, causing problems in its transport
toward the lysosomes. This fact leads to defects in the acidification
of the lysosomes, as well as deficiencies in their proteolysis (Lee
et al., 2010; Vegh et al., 2019). Also, under acute mitochondrial
stress conditions, AMP-dependent protein kinase (AMPK) is
repressed, leading to an accumulation of lysosomal Ca2+ and a

loss of lysosomal hydrolysis due to defects in acidification (Deus
et al., 2020). Thus, the accumulation of lysosomes in our PSEN1
fibroblasts could be due to these acidification deficiencies. This
would result in dysfunctional lysosomes that tend to accumulate,
increasing their clustering rate (Figure 6C), as previously described
in APP and PSEN1 mutant neurons (Hung and Livesey, 2018).

Furthermore, the higher proportion of perinuclear lysosome
clusters in all our AD fibroblasts (Figures 6D, E), even more,
enhanced in those with the APOE 3/4 + PSEN1 genotype could
also be an indicator of lysosomal disturbance, probably by blocking
the lysosomal exocytosis. The cellular distribution of lysosomes
is relevant in modulating lysosomal function and coordinating
cellular responses to the presence or absence of nutrients (Tancini
et al., 2020). One of the cellular responses coordinated by the
changes in the intracellular localization of lysosomes is the process
of autophagy since mTOR, the primary regulator of this pathway,
is found inside lysosomes. The position of lysosomes within the
cell changes in response to nutrient availability, thus coordinating
the mTOR activity and the successive autophagy induction. When
nutrients are scarce, there is an increase in the intracellular pH,
and lysosomes move toward the perinuclear region. This causes
the inactivation of mTOR, which activates autophagy, facilitating
the fusion of the autophagosome with the lysosome. Conversely,
when nutrients are available, cytoplasmic pH decreases, lysosomes
return to peripheral regions, and mTOR is activated again, thus
inhibiting autophagy (Korolchuk et al., 2011). Consequently, AD-
derived alterations in this lysosomal transport could be responsible
for this perinuclear clustering phenotype, as already described
(Kanaan et al., 2013; Hwang et al., 2019; Lie and Nixon, 2019).

In brief, in this study, we have assessed the impact of the ε4
allele of the APOE gene and a mutation in PSEN1(G206D) on the
cellular mechanisms underlying the pathogenesis of AD using skin
fibroblasts derived from AD patients (Figure 7). Although this
cellular model has some limitations, this experimental approach
has allowed us to obtain significant differences between control and
patient-derived fibroblasts in several parameters. Hence, fibroblasts
can be a good model for studying pathological mechanisms in AD,
since they constitute an easily accessible patient-specific cellular
model of the disease. This is due to the cellular plasticity of
skin fibroblasts, which endows them with the potential to be
easily cultured and have levels of gene expression and damage
accumulation similar to those of neurons (Bell et al., 2018; Tong
et al., 2022).

5. Conclusion

Alzheimer’s disease, as in other neurodegenerative diseases,
has a systemic element that can affect peripheral cells outside
the nervous system, characterized by a series of changes at the
metabolic level, such as alterations in autophagy or mitochondrial
dysfunction. Therefore, the study of these changes in fibroblasts
derived from AD patients can contribute to the deciphering of the
molecular physiopathology of the disease. We found that the APOE
allele ε4 in homozygosis produces an increased fragmentation
of the mitochondrial network, probably due to slightly induced
mitophagy to eliminate these damaged mitochondria. Moreover,
PSEN1 mutation disrupts the integrity of the mitochondrial
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network, triggering high superoxide anion levels and, thus,
making APOE 3/4 + PSEN1 fibroblasts more vulnerable to cell
death induced by oxidative stress. In this regard, G206D-PSEN1
mutation probably produces an autophagosome accumulation due
to degradation defect. It induces a buildup and altered distribution
of lysosomes, along with an increase of global p62/SQSTM1 that
could compromise lysosomal degradation, as shown in Figure 7.
All these alterations could contribute eventually to the neuronal
degeneration that underlies the pathogenesis of Alzheimer’s disease.
However, a limitation of our study is that the PSEN1 study is
based on a single fibroblast cell line, and therefore, the conclusion
drawn cannot be generalized; nevertheless, it opens the possibility
of having mutation-specific treatments in the future.

This work constitutes an interesting characterization of the
mitochondrial status and autophagy mechanisms in patients’
fibroblasts that could offer new targets for developing AD
biomarkers and therapies.
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