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Cerebral small vascular disease (CSVD) is a common type of cerebrovascular 
disease, and an important cause of vascular cognitive impairment (VCI) and stroke. 
The disease burden is expected to increase further as a result of population aging, 
an ongoing high prevalence of risk factors (e.g., hypertension), and inadequate 
management. Due to the poor understanding of pathophysiology in CSVD, there is 
no effective preventive or therapeutic approach for CSVD. Macrophage migration 
inhibitory factor (MIF) is a multifunctional cytokine that is related to the occurrence 
and development of vascular dysfunction diseases. Therefore, MIF may contribute 
to the pathogenesis of CSVD and VCI. Here, reviewed MIF participation in chronic 
cerebral ischemia-hypoperfusion and neurodegeneration pathology, including new 
evidence for CSVD, and its potential role in protection against VCI.
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1. Introduction

Cerebral small vascular disease (CSVD) is one of the common, chronic, and progressive 
cerebrovascular disease, accounting for about 25% of ischemic stroke, and it is also an important 
cause of dementia (Wardlaw et  al., 2019). CSVD is caused by various pathological changes of 
intracranial arterioles, venules, and capillaries, with clinical manifestations of ischemic stroke, 
dementia, gait disturbance, urinary incontinence, and depression. CSVD primarily affects the small 
perforating arteries, approximately 100–400 μm in diameter, which supply the white matter and deep 
structures of the brain, with concentric smooth muscle thickening, as well as pericyte degeneration, 
basal membrane thickening, endothelial, and astrocyte endfeet swelling in capillaries (Østergaard 
et al., 2016), causing arteriolosclerosis, and the slowly progressive worsening of microcirculatory 
structure and function, resulting in white matter hyperintensity (WMH). CSVD is a highly 
heterogeneous disease that affects nearly all organs (Chojdak-Łukasiewicz et al., 2021), and is greatly 
influenced by genetic and vascular risk factors. Nearly half of all vascular cognitive impairment (VCI) 
is potentially caused by CSVD (Skrobot et  al., 2018). Therefore, further understanding the 
relationship between CSVD and VCI, and finding new sensitive and accurate biomarkers will provide 
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a critical theoretical basis for exploring the pathogenesis of CSVD, and 
may provide novel diagnostic and therapeutic approaches for CSVD.

Macrophage migration inhibitory factor (MIF) is a multifunctional 
cytokine produced by various cells, such as vascular endothelial cells, 
smooth muscle cells, and macrophages, plays a key regulatory role in 
inflammation and immune response, and has a close relationship with 
asthma, sepsis, cancer, etc. (Sumaiya et al., 2022). Previous studies have 
shown that MIF is closely involved with stroke and Alzheimer’s disease 
(AD) (Popp et al., 2009; Wang et al., 2009; Zis et al., 2015), but its relationship 
with CSVD and VCI is unclear. Therefore, this review mainly focused on 
the research progress of MIF and its relevance in CSVD and VCI.

2. Overview of CSVD and VCI

CSVD is one of the common cerebrovascular diseases, and its 
prevalence is higher than stroke in the elderly (Cannistraro et al., 2019). 
The prevalence and incidence of CSVD increase with age. The white 
matter hyperintensity, the typical imaging feature of CSVD, affects about 
5% of people aged 50 years and almost 100% of people older than 90 years. 
Similarly, cerebral microbleed (CMB) increased from 6.5% in patients aged 
45–50 years to about 36% in patients aged 80–89 years (Poels et al., 2010; 
Moran et al., 2012; Chojdak-Łukasiewicz et al., 2021). The early clinical 
manifestations of CSVD are insidious, diverse, and changeable, so they are 
difficult to identify. However, many irreversible effects occur in the 
advanced stages, such as neurological defects, vascular dementia, urinary 
and defecation disorders, etc., which can bring great burden to the patients, 
families, and society. Acute CSVD can rapidly progress to lacunar stroke 
or intracerebral hemorrhage, while chronic CSVD is mainly associated 
with progressive cognitive decline, abnormal gait, emotional and sleep 
disorders, and bowel and bladder disorders (Moran et al., 2012). The main 
imaging manifestations are recent small subcortical infarct (RSSI), vascular 
origin lacunae, WMH, perivascular space (PVS), CMB, and brain atrophy 
(Wardlaw et al., 2013b, 2019), which can exist alone or in combination and 
have different effects on cognitive function (Meng et al., 2019).

VCI refers to cognitive impairment caused by various cerebrovascular 
diseases, principally infarction in cortical and subcortical and extensive 
white matter damage due to CSVD (Banerjee et al., 2016). CSVD is one 
of the common causes of VCI, which is usually associated with the 
progressive decline of cognitive function, and can lead to the emergence 
of new cognitive impairment (CI) (Azeem et al., 2020). Irrespective of 
stroke, CSVD will lead to CI, and is often insidious and atypical in early 
stage (van Uden et al., 2016; Wolters and Ikram, 2019). CI caused by 
CSVD accounts for 36–67% of all vascular dementias (VaD) (Peng, 2019) 
and 15–30% of all dementias, second only to AD (Boyle et al., 2018; 
Wardlaw et al., 2019; Wolters and Ikram, 2019). Recent research shows 
that CI could account for 65.0% of all CSVD cases, of which 40.0% have 
mild cognitive impairment (MCI). So it is important to identify CI as 
early as possible. The number of people suffering from dementia is 
expected to reach 100 million by 2050 (De Silva and Faraci, 2020). With 
increasingly aging population, CSVD-CI will inevitably bring huge 
challenges to public health and economic development.

3. Overview of macrophage migration 
inhibitory factor

In 1966, the migration inhibitory activity of MIF was first reported 
by Bloom and Bennett (1966) in a delayed-type hypersensitivity study. 

In 1993, MIF was identified to be a secreted pro-inflammatory protein, 
and the physiological and pathological characteristics of MIF and its 
receptors were subsequently elucidated (Bernhagen et al., 1993). MIF 
consists of 114 amino acids and is an evolutionarily highly conserved 
low molecular homotrimeric protein (about 12.5 kDa). The MIF gene 
is located on chromosome 22 (22q11.23) of the human genome, 
containing three exons and two introns (Sun et al., 1996). The MIF gene 
has polymorphisms of transcription factors and the promoter region, 
and these can significantly affect the transcription of MIF gene, which 
determines its ability to modulate susceptibility and severity of 
infectious and autoimmune diseases (Baugh et  al., 2002; Radstake 
et al., 2005).

MIF is widely expressed in various types of cells and tissues, 
including immune and nervous system cells, pituitary cells, epithelial 
cells, endothelial cells, smooth muscle cells, etc., and it is highly 
expressed in the nervous system, mainly in the cortex layer (Michell-
Robinson et al., 2015). Studies found that MIF is abundantly expressed 
in nerve cells such as astrocytes, microglia, oligodendrocytes, neurons, 
and Schwann cells (Su et  al., 2017). The concentration of MIF in 
cerebrospinal fluid is similar to serum (Ogata et al., 1998). The secretion 
of MIF is mainly regulated by the hypothalamic–pituitary system, and 
glucocorticoids are also involved in regulation (Fan et  al., 2014). 
Different from the classical synthesis and secretion of other factors, 
MIF is abundantly stored as a precursor in the cytoplasm. After 
stimulation by endotoxin, ischemia, hypoxia, etc., MIF is directly, 
massively, and rapidly released to exert potent biological functions, and 
has an inflammation magnification effect (Dayawansa et al., 2014).

MIF is involved in various biological functions including leukocyte 
recruitment, inflammation, immune response, cell proliferation, 
tumorigenesis, and regulation of glucocorticoids. Its unique 
pathological roles can be  involved in different diseases (i.e., sepsis, 
rheumatoid arthritis, diabetes, malignant tumor, acute respiratory 
distress syndrome, hepatitis, and systemic lupus erythematosus) 
(Sumaiya et al., 2022). MIF has also been reported to play numerous 
roles in neurological disorders. Clinical studies have confirmed a close 
relationship between MIF and atherosclerosis (AS), during which MIF 
can accelerate AS through immune reaction, inflammation, and 
oxidative stress, and promote neuronal death after stroke, and thus 
aggravate the development of stroke (Grieb et al., 2010; Li et al., 2017). 
MIF is associated with biomarkers of AD pathology and predicts 
cognitive decline in MCI and mild dementia (Oikonomidi et al., 2017). 
Mittelbronn et al. (2011) found that MIF expression was increased in 
astrocytes compared with the normal control group, and the expression 
was significantly positively correlated with tumor tissue grade.

4. Macrophage migration inhibitory 
factor and CSVD

CSVD is believed to be  a dynamic disorder of the brain. The 
abnormal function of neurovascular unit (NVU) plays an important 
role in CSVD (Iadecola, 2017). The pathogenesis of CSVD includes 
chronic ischemia and hypoperfusion, endothelial dysfunction (ED), 
blood–brain barrier (BBB) damage, interstitial fluid reflux disorder, 
inflammatory and genetic factors, etc., as well as some shared 
mechanistic interactions. CSVD is a small ischemic or bleeding lesion 
caused by pathological small vessels or brain degeneration (Wardlaw 
et al., 2013b), and is an important cause of ischemic stroke. In order to 
identify detection and treatment targets, studies have detected the 
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lineage changes of various cytokines/chemokines in the plasma of 
ischemic stroke patients, and confirmed that MIF is significantly 
elevated (Liu et al., 2018). Given that CSVD is also a chronic ischemic 
cerebrovascular disease, pro-inflammatory cytokines and chemokines 
are elevated during ischemia caused by CSVD, which promotes post-
ischemic inflammation and leads to neuronal damage. CSVD has 
similar etiology and pathological mechanisms as hypoxia, inflammation, 
and immunoreaction. It is speculated that MIF may act on CSVD 
through different pathogenesis and become a reliable target for the 
detection and treatment of CSVD.

4.1. MIF and chronic cerebral 
ischemia-hypoperfusion

Chronic cerebral ischemia-hypoperfusion plays a key role in the 
pathogenesis of CSVD, especially in arteriosclerosis. Similar to risk 
factors for macrovascular stroke, common factors in CSVD include 
hypertension, diabetes, hyperlipidemia, and hyperhomocysteinemia. 
These factors can stimulate systemic inflammation and promote 
arteriolosclerosis (Ighodaro et al., 2017), and are also associated with 
WMH, PVS, and CMB (Verhaaren et al., 2013). Hypertension and age 
are the most important independent factors (Gyanwali et al., 2019), 
which can cause microvascular damage, increase in the medial-lumen 
diameter ratio, and decrease in cerebral blood flow (CBF), resulting in 
hypoxia, BBB leakage, inflammation, edema, a cascade of NVU 
dysfunction, and ischemia caused by oligodendrocyte impairment 
(Wardlaw et al., 2013a; Mestre et al., 2017; Evans et al., 2021). Studies 
have shown CBF reduction of white matter in CSVD. Local low CBF is 
significantly negatively correlated with BBB permeability (Bailey et al., 
2012). Patients with lower CBF usually had more WMH (O'Sullivan 
et al., 2002; Shi et al., 2016), and WMH may be a predictor of vascular 
cognitive dysfunction (Meng et al., 2019). Moreover, CBF reduction 
also occurred in normal white matter surrounding the WMH, which is 
possibly related to future WMH expansion (Promjunyakul et al., 2015). 
Both WMH and white matter segmented as normal-appearing by 
structural MRI exhibited BBB damage and hypoperfusion, which 
increased near the WMH and were correlated.

Arteriosclerosis may be a common pathogenesis of CSVD (Nam 
et al., 2020). Hypertension is associated with or preceded by arterial 
stiffening (Webb and Werring, 2022). Stiffened arterioles lose 
autoregulation in the brain, and chronic exposure to high-fluctuating 
pulse energy in arterioles can cause damage to the vessel wall, leading 
to ED and fatty hyaluronan deposition, which disrupts blood–brain 
barrier integrity, promotes neuroinflammation, and may contribute to 
amyloid deposition and Alzheimer pathology (Santisteban et al., 2023). 
In addition, the loss of resistance can maintain the diastolic blood 
pressure lower than normal, resulting in chronic hypoxia of the brain. 
Studies have shown that even in the absence of intracranial vascular 
stenosis, arteriosclerosis detected by MRI may be an important risk 
factor for WMH (Kim et al., 2014). Arteriosclerosis has been shown to 
be independently associated with WMH, overall cognitive function, and 
an increased risk of AD and dementia (Saji et al., 2011; Arvanitakis 
et al., 2016; Ighodaro et al., 2017).

Some cross-sectional investigations have underscored that 
subclinical atherosclerosis and arteriosclerosis often coexist (Vishnu 
et al., 2015; Kim and Kim, 2019), and both arterial stiffening and plaque 
formation depend partly on the same systemic pathophysiological 
process causing the accumulation of extracellular matrix in the arterial 

walls (Lee and Oh, 2010). Dysfunctional endothelium and increased 
vascular stiffness are the main features of preclinical atherosclerosis, 
and stiffened vessels supply the environment for vascular disease 
progression, and are regarded as an independent predictor of 
cardiovascular disease events (Laurent et al., 2006). Clinical evidence 
indicates an association of MIF plasma levels with diminished 
endothelial function and increased vascular stiffness in patients with 
established cardiovascular risk (Rammos et  al., 2013). MIF is 
involvement in the preclinical atherosclerosis process based on 
low-grade inflammation (Schober et al., 2008), has pro-inflammatory 
and pro-atherogenesis functions, and has become the main regulator 
of atherosclerosis (Asare et al., 2013).

Previous studies have found that MIF promoter activity is 
significantly up-regulated under hypoxia (Zis et al., 2015), and MIF is 
elevated in ischemic stroke in rodent models and patients (Wang et al., 
2009; Zis et al., 2015; Liu et al., 2018), is associated with stroke clinical 
severity (Yang et al., 2017), and could predict severity and prognosis in 
patients with ischemic stroke (Li et al., 2017; Wang et al., 2019). Lin et al. 
(2000) first demonstrated that MIF is significantly up-regulated during 
AS, which promotes macrophage aggregation, infiltration, proliferation, 
and activation, enhances macrophage phagocytosis, and mediates 
inflammatory damage to brain tissue after hypoxia (Grieb et al., 2010). 
MIF is a key mediator of AS, promoting leukocyte recruitment and 
inflammation, and is involved in the entire development (Burger-
Kentischer et al., 2002). Furthermore, MIF expression by macrophages 
may initiate and amplify AS process (Lin et  al., 2000). In the 
MIF-knockout mice, the inflammation in AS was reduced, preventing 
further thickening of the arterial intima (Pan et al., 2004). Studies have 
shown that MIF has a detrimental effect in permanent cerebral ischemia 
under hypertensive conditions, in which MIF can specifically aggravate 
the loss of vascular integrity after stroke. The MIF antagonist ISO-1 
plays a protective role in ischemic stroke (Liu et al., 2018), after the 
neutralizing function is effective and the expression of MIF in 
inflammatory cytokines was suppressed (Lan et al., 1997). However, 
some studies have shown that MIF exerts neuronal protection (Kim 
et  al., 2022), and down-regulation of MIF in hypoxic conditions 
accelerates neuronal damage during stroke. Furthermore, MIF reduced 
the activation of caspase-3 (the critical terminal cleavage enzyme in 
apoptosis) and protected neurons from oxidative stress and ischemia/
reperfusion-induced apoptosis in vitro (Zhang et  al., 2014). MIF 
knockout mice showed activated caspase-3, neuronal loss, and infarct 
development during stroke. The broad spectrum of MIF’s actions and 
the complexity of MIF expression in the brain post-stroke, challenge 
the identification of the mechanism or mode of action of MIF in 
cerebral ischemia.

4.2. MIF, endothelial dysfunction and blood–
brain barrier disruption

In the central nervous system (CNS), endothelial cells (ECs) are the 
main structures that constitute the NVU and BBB, and play an 
important role in maintaining vascular morphology and biological 
function (De Silva and Faraci, 2020). The BBB only allows water and 
small-molecule lipid-soluble substances to diffuse freely due to a 
concentration gradient, and it is critical in maintaining the homeostasis 
of the internal environment of the CNS. Studies have shown that BBB 
dysfunction is an important pathogenesis of CSVD (Wardlaw, 2010), 
and the increased BBB permeability is associated with higher white 
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matter overload and cognitive decline (Walsh et al., 2021), and is an 
early biomarker of cognitive decline (Nation et al., 2019). Recent studies 
have shown that ED may be the initiating factor of CSVD, prior to other 
pathological mechanisms (Rajani et al., 2018), and can cause vascular 
wall lipid hyaline degeneration, toxic damage to brain parenchyma 
nerve cells, etc. (Hainsworth and Fisher, 2017; Quick et  al., 2021) 
leading to lacunar infarction (Pretnar-Oblak et al., 2006). Studies have 
shown that the integrity of ECs declines with age, leading to a decline 
in BBB function (Montagne et al., 2015), which may be a potential 
reason for the high incidence of CSVD in the elderly (Farrall and 
Wardlaw, 2009). Studies have shown that pericyte dysfunction could act 
on BBB, angiogenesis, and CBF (Uemura et al., 2020). In pathological 
conditions of ischemic cerebrovascular disease (Hall et al., 2014) and 
AD (Nortley et al., 2019), the contraction of pericytes leads to capillary 
constriction and narrowing, resulting in a decrease in CBF, and amyloid 
β beta (Aβ) clearance disorders, which are thought to be key factors for 
aggravating dementia diseases such as VCI and AD (Montagne et al., 
2018). Studies have shown that MIF is related to BBB damage. ECs 
express MIF receptors and MIF can induce ECs autophagy, leading to 
ED and increased vascular permeability (Chen et al., 2015). It is known 
that MIF promote the production of pro-inflammatory cytokines 
including tumor necrosis factor-α (TNF-α), interleukin-1(IL-1), and 
interleukin-6(IL-6), which has been reported to increase BBB 
permeability (Sandoval and Witt, 2008). In an in vitro study on primary 
cortical cells and an in vivo study in an animal model of middle cerebral 
artery occlusion (pMCAo), MIF did not produce direct toxicity in 
primary culture, but disrupted tight junctions of ECs (Liu et al., 2018). 
Administering MIF after pMCAo can damage the tight junction of the 
BBB, increase the infarct size, and severely impair neurological function, 
leading to a deleterious effect on stroke. In addition, ISO-1 has a strong 
neuroprotective effect. These findings suggested that MIF may be a 
target for the treatment of stroke. Studies have found that perivascular 
macrophages could produce a large amount of superoxidase and 
reactive oxygen species by increasing brain barrier permeability, 
thereby causing neurovascular damage and cognitive dysfunction 
associated with hypertension (Faraco et al., 2016; Santisteban et al., 
2020). While under hypoxic conditions caused by arteriosclerosis, a 
large amount of MIF stored in macrophages is activated and released, 
triggering a series of inflammatory and immune responses, which may 
be closely related to cognitive damage caused by CSVD.

4.3. MIF and inflammation

Inflammation is involved in the overall process of CSVD. Many 
mechanisms, including ED, BBB damage, arteriosclerosis, and white 
matter lesions, are all associated with inflammation (Evans et al., 2021). 
A potential cause of arteriosclerosis involved in age and hypertension 
is considered the chronic low-grade inflammation of the vessel wall. 
The upregulation of the inflammatory response is the consequence of 
a remodeling of the innate and acquired immune system with a chronic 
inflammatory cytokine production (Baylis et  al., 2013). Chronic 
inflammation directly influences premature atherosclerosis and arterial 
stiffness (Roman et  al., 2005), probably plays an important role in 
triggering fibrosis in cardiovascular disease and hypertension. ED can 
destroy BBB, increase its permeability, and allow peripheral 
lymphocytes to enter the brain to produce an immune response to CNS 
antigens, promote the infiltration of inflammatory cells into the lesion 
and surroundings, and even participate in the immune response, thus 

aggravating tissue damage. Meanwhile, fibrinogen enters the CNS and 
is converted into fibrin, which in turn activates microglia and 
macrophages, leading to oligodendrocyte and neuronal damage, 
resulting in chronic inflammatory microenvironment in the 
extracellular matrix and NVU, and exacerbating CSVD. In addition, 
fibrinogen can inhibit the expression of peroxisome proliferator-
activated receptor in smooth muscle cells, resulting in increased 
expression of C-reactive protein and MMP-9, and accelerated 
progression of AS (Wang et al., 2015), while high MMP-9 was found to 
be an important risk factor for non-dementia VCI. Arteriolosclerosis 
causes chronic ischemia-hypoperfusion and massive inflammatory 
reactions, and the resulting lacunar infarction may also activate 
inflammation due to necrosis of brain tissue (Lambertsen et al., 2019; 
Al Mamun et  al., 2020), further leading to acute or chronic 
brain damage.

MIF has pro-inflammatory effects in  local and systemic 
inflammation (Calandra and Roger, 2003), and may severely affect the 
inflammatory response under pathological conditions (Denkinger 
et al., 2004; Liu et al., 2018). It is an inflammatory mediating factor 
that can be  secreted by various cells such as monocytes and 
macrophages, and can mediate the recruitment of monocytes, 
neutrophils, and T lymphocytes through non-homologous 
interactions with chemokine receptor-2 and chemokine receptor-4 
(Bernhagen et al., 2007; Schmitz et al., 2018), thereby promoting the 
expression of cytokines such as TNF-α, IL-1, interleukin-8(IL-8), 
intercellular adhesion molecule-1(ICAM-1), vascular cell adhesion 
molecule-1(VCAM-1), etc., which promote leukocyte–endothelial cell 
interactions (Cheng et al., 2010), and exert an inflammatory effect 
during AS. These cytokines can also lead to the development of CSVD 
by increasing the permeability of the BBB (Calandra and Roger, 2003; 
Sandoval and Witt, 2008). Previous studies showed that the increase 
of MIF was stronger than other cytokines, suggesting that it plays a 
regulatory role in the inflammation in stroke (Liu et al., 2018). MIF 
levels have been found to be  highly expressed in human active 
multiple sclerosis lesions, and MIF plays an upstream mediating role 
in many neuroinflammations involving autoimmune (Cox et  al., 
2013). Some studies have also shown that MIF-treated rats have 
increased gliosis in the ipsilateral cerebral hemisphere peri-infarct 
area, where astrocytes produce varied pro-inflammatory cytokines, 
which can aggravate ischemic injury (Barreto et al., 2011; Neuhaus 
et al., 2014). While ISO-1 could suppress inflammation (Al-Abed and 
Van Patten, 2011), in ISO-1-treated rats, there were fewer cells stained 
for astrocyte activation markers in the brain after stroke (Liu et al., 
2018) (See Figure 1).

5. MIF and cognitive dysfunction

MIF is a pro-inflammatory lymphokine with broad immune and 
inflammatory biological activities that can cause CI through multiple 
mechanisms. CSVD is a small ischemic or bleeding lesion caused by 
pathological small vessels or brain degeneration. MIF can promote CI 
through vascular risk factors and neurodegenerative lesions. Previous 
studies showed that MIF can bind β-amyloid with potentially important 
pathophysiological implications for the accumulation of Aβ in AD, and 
MIF co-localizes with microglia surrounding amyloid plaques in AD 
brains (Oyama et al., 2000). Studies have shown that serum MIF levels 
are higher in MCI and AD than in the normal control groups (Lee 
et al., 2008).
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MIF plays a central role in the regulation of microglial activation 
and inflammatory accumulation, caused by local inflammation in  
AD brains, and is associated with amyloid pathology, tau 
hyperphosphorylation, and neuronal damage in early stages of AD, 
and also exerts pro-inflammatory effects on AD (Oikonomidi et al., 
2017). MIF levels are significantly elevated in the cerebrospinal fluid 
in MCI and AD, and higher MIF levels are associated with accelerated 
cognitive decline in MCI and mild dementia (Oikonomidi et al., 2017; 
Nasiri et al., 2020). The neuroinflammation mediated by MIF may 
persist in all clinical stages of AD (Popp et al., 2009). In experimental 
models of AD, attenuation of MIF inhibits astrocyte activation and 
tau hyperphosphorylation (Li et  al., 2015). In a cell culture study 
conducted by Bacher, blocking MIF using ISO-1 significantly reduced 
Aβ-mediated neurotoxicity, suggesting direct effects of MIF on 
microglia (Bacher et al., 2010).

However, AD mouse model experiments conducted by Nasiri et al. 
(2020) showed that MIF improved cognitive function by down-
regulating the production of pro-inflammatory cytokines, 
demonstrating that MIF deletion has a protective effect on spatial 
learning defects. Studies have also shown that pro-inflammatory stimuli 
can significantly up-regulate MIF in the hippocampus, which may 
be  related to CI in schizophrenia patients, who have significantly 
reduced abilities in daily work and memory (Chai et al., 2020). In an in 
vitro model of Parkinson’s disease (PD), overexpression of MIF could 
protect dopaminergic neurons and reduce neuronal neuroinflammation, 
while knockout of MIF in an AD mouse model could impair cognition, 
suggesting that MIF may be involved in the process of PD and even 
PD-CI (Li et al., 2019; Zhang et al., 2019). Therefore, the effect and 
mechanism of MIF on cognitive function need to be further studied.

It is generally accepted that mixed pathologies (coexistence of 
cerebrovascular diseases and neurodegenerative pathologies) are 
currently an important factor in the development of AD and other forms 
of dementia (Kapasi et al., 2017). Many studies indicated a complex 
relationship between AD and cerebrovascular disease, although the 
initiating factors of neuronal degeneration are different, they both lead 
to neuronal damage by initiating the cascade reaction of inflammatory 
cytokines (Wada-Isoe et al., 2004). Studies have shown that CSVD can 
promote the occurrence and development of AD by increasing the 
expression of Tau protein (Laing et al., 2020), and arteriolosclerosis and 
WMH have been shown to be associated with an increased risk of AD 
and dementia (Arvanitakis et al., 2016; Bos et al., 2018). MIF may cause 
CI through different pathological mechanisms, which also provides more 
ideas for the diagnosis and treatment of VCI based on inflammatory 
factors (See Figure 2).

6. Summary and outlook

With the increase in population aging worldwide, CSVD and CI 
impose a significant burden on individuals and the society. Since the 
pathogenesis remains unclear and diagnosis of CSVD-CI remains 
controversial, the search for sensitive and accurate biomarkers will 
provide new scientific ideas. Many studies have shown that MIF 
plays a crucial role in ischemic stroke, AD, and other diseases. Given 
that CSVD and ischemic stroke, and VCI and AD have similar 
pathogenesis, MIF may be  involved in multiple pathogenesis of 
CSVD leading to VCI, and MIF can cause CI through AD-related 
pathological processes. Hence, MIF may be a promising biomarker 

FIGURE 1

The underlying mechanisms of MIF acting on CSVD. Stimulated by hypoxia, inflammation and other factors, MIF is expressed in large quantities from 
immune cells (i.e., mononuclear, macrophages), which promotes arteriolosclerosis, narrows the lumen and reduces cerebral blood flow, resulting in further 
hypoxia and ischemia of the brain parenchyma. After binding to receptors, MIF causes endothelial autophagy, promotes endothelial cell dysfunction and 
BBB destruction, increases vascular permeability, allows harmful components and immune cells to enter the brain parenchyma, and causes 
neuroinflammation and direct neurotoxic effects. Meanwhile, MIF activates immune cells and microglia, promotes the expression of MIF, activates a series 
of cytokines (IL-1, IL-6, TNF-α, VCAM, MMP, etc.), accelerates inflammatory response, induces vascular damage, and destroys the integrity of the blood–
brain barrier and white matter. These inflammatory factors directly stimulate astrocytes and neurons to produce more cytokines, promoting further BBB 
damage and inflammation. There are overlapping reactions between various mechanisms.
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for predicting and treating CSVD and VCI. However, the underlying 
pathogenesis of CSVD and VCI remains unclear and needs 
further study.
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