
Frontiers in Aging Neuroscience 01 frontiersin.org

Multimodality neuroimaging in 
vascular mild cognitive 
impairment: A narrative review of 
current evidence
Qiuping Liu 1,2,3 and Xuezhu Zhang 1,2*
1 First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China, 2 National 
Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China, 3 Tianjin 
University of Traditional Chinese Medicine, Tianjin, China

The vascular mild cognitive impairment (VaMCI) is generally accepted as the 
premonition stage of vascular dementia (VaD). However, most studies are focused 
mainly on VaD as a diagnosis in patients, thus neglecting the VaMCI stage. VaMCI 
stage, though, is easily diagnosed by vascular injuries and represents a high-risk 
period for the future decline of patients’ cognitive functions. The existing studies 
in China and abroad have found that magnetic resonance imaging technology 
can provide imaging markers related to the occurrence and development of 
VaMCI, which is an important tool for detecting the changes in microstructure 
and function of VaMCI patients. Nevertheless, most of the existing studies evaluate 
the information of a single modal image. Due to the different imaging principles, 
the data provided by a single modal image are limited. In contrast, multi-modal 
magnetic resonance imaging research can provide multiple comprehensive 
data such as tissue anatomy and function. Here, a narrative review of published 
articles on multimodality neuroimaging in VaMCI diagnosis was conducted，and 
the utilization of certain neuroimaging bio-markers in clinical applications was 
narrated. These markers include evaluation of vascular dysfunction before tissue 
damages and quantification of the extent of network connectivity disruption. 
We  further provide recommendations for early detection, progress, prompt 
treatment response of VaMCI, as well as optimization of the personalized 
treatment plan.

KEYWORDS

vascular mild cognitive impairment, multimodal neuroimaging, resting-state functional 
magnetic resonance imaging, diffusion tensor imaging, arterial spin labeled perfusion 
imaging

1. Introduction

Due to the process of ageing, the incidence rates of cerebral vascular diseases and 
neurodegenerative diseases like Alzheimer’s disease (AD) and dementia have drastically 
increased (GBD, 2016). By 2050, the total number of dementia patients is expected to reach 1.52 
million people. Data show that 25% of them will be from the Chinese population (GBD, 2016). 
As the second most common dementia after AD, VaD has a great impact on life quality of 
patients and brings a heavy burden to the family and society (Plassman et al., 2007). Owing to 
its high prevalence and potential reversibility, VaD has attracted great attention (O'brien, 2006; 
Plassman et al., 2007). As the precursor stage of VaD (Wentzel et al., 2001), VaMCI’ s early 
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prediction and intervention play an important role in delaying the 
transition to VaD (Ravaglia et al., 2006; Jak et al., 2009; Jongsiriyanyong 
and Limpawattana, 2018). Therefore, early diagnosis and risk factor 
reduction are clinical strategies to delay the disease progression. At 
present, there is no reliable method for early diagnosis and recognition 
of VaMCI. In recent years，the American Academy of Neurology and 
European Academy of Neurology recommends the use of 
neuroimaging for the evaluation of dementia patients, due to its ability 
to identify the pathological cause of dementia syndrome and unearth 
reliable imaging markers for the early diagnosis (Knopman et al., 
2001; Filippi et al., 2012).

Here, we  review different multimodal neuroimaging methods 
such as rs-fMRI, DTI, ASL perfusion imaging, as well as their synergy 
for the diagnosis of VaMCI patients. The correlation of different 
neuroimaging features with the cognitive function of these patients is 
further summarized to provide recommendations for the successful 
evaluation of dementia progression and prevention by advanced and 
quantitative neuroimaging technologies.

2. Certain vascular risk factors 
underlie the pathological mechanisms 
of VaMCI

VaMCI is mainly induced by vascular risk factors, which include 
hypertension, diabetes, atrial fibrillation and hypercholesterolemia 
(Gorelick et al., 2011). They may induce neurovascular dysfunction 
through vascular oxidative stress and inflammation-mediated 
pathways. Oxidative stress promotes the release of prostaglandin and 
vascular endothelial growth factors by inducing endothelial 
dysfunction, which in turn promotes protein extravasation, vascular 
leakage, and cytokine production (Gorelick et al., 2011). On the other 
hand, inflammation downregulates cells’ antioxidant defence and 
upregulates the expression of reactive oxygen species generating 
enzymes (Gorelick et al., 2011; El-Sahar et al., 2021). This vicious cycle 
holds the potential to destroy the microenvironment of the brain, thus 
increasing its sensitivity to ischemia-hypoxia injury (Iadecola et al., 
2009), Additionally, Vascular risk factors are related to various 
vascular pathologies, including atherosclerotic plaque, segmental 
arterial tissue disorder, hyaline deposition of the vascular wall and 
fibrinoid denaturation (Thal et al., 2012; Caplan, 2015). These vascular 
diseases reduce the cerebral blood flow (CBF) of perforating arteries, 
which supply subcortical nuclei, cortical projection fibres, and 
commissural fibres (Dey et al., 2016). As a result, connections between 
the cerebral cortex and subcortical regions, as well as between 
intracortical regions, are disrupted, which can lead to cognitive 
impairment (Dey et al., 2016). Certain vascular risk factors underlie 
the pathological mechanisms of VaMCI showed in the Figure 1.

3. Basic MRI features of VaMCI

Magnetic resonance imaging (MRI) is the key neuroimaging 
modality and has high sensitivity and specificity for detecting 
pathological changes, including small vessel disease (Mijajlović et al., 
2017). A study indicated that the presence of moderate or severe white 
matter hyperintensities (WMH) on MRI is a hallmark of VaMCI, and 
extensive white matter damage in the temporal lobe, cingulate gyrus, 

bilateral lateral ventricles and other areas in VaMCI patients (Yu et al., 
2017). Moreover, it was found that the number of lacunar infarcts in 
VaMCI was 3 times that in normal people, and white matter lesions, 
frontal Angle and third ventricle widening were also significantly 
more than in normal people (Meyer et al., 2005; Vermeer et al., 2007). 
Another studies revealed that VaMCI may display a single critical site 
infarction was sufficient to cause VaD (Snowdon et al., 1997), more 
than 2 multiple lacunar infarcts outside the brain stem (Snowdon 
et al., 1997; Chen et al., 2009), and Intracranial hemorrhage at critical 
sites, or ≥2 intracranial hemorrhage (Sachdev et al., 2014). Valenti and 
Li et al. reported that nearly one-third of VaMCI patients had at least 
one CMB and more than one-third had CMBs in multiple regions 
(Valenti et  al., 2016; Li et  al., 2021). They also found that more 
percentages of severe WMH, cerebral microbleeds (CMBs), enlarged 
perivascular spaces (EPVS) and cerebral atrophy compared with 
healthy controls.

4. Resting-state functional magnetic 
resonance imaging

4.1. Definition

rs-fMRI is a non-invasive neuroimaging technique that measures 
brain local functional connections at rest and is based on brain 
low-frequency (<0.1 Hz) MRI signal fluctuations with blood oxygen 
level dependence (BOLD; Biswal et al., 1995). Moreover, patients are 
scanned in quiet. It is generally accepted that rs-fMRI can effectively 
investigate brain networks. In other words, BOLD fMRI is applied to 
analyze the synchronization between individual cortical areas. Then, 
functional connections are delineated to illustrate the correlation 
between isolated regions and spontaneous neuron activities under 
resting-state (Biswal et al., 1995; Greicius et al., 2003; Fox and Raichle, 
2007). Data show that these BOLD signals are not direct indicators of 
neuron activities. Instead, they reflect local fluctuation of 
deoxyhemoglobin concentration determined by blood flow, blood 
volume and oxygen metabolism (Raichle and Mintun, 2006). With 
advances in fMRI, the research on the pathways underlying the brain 
connections has expanded from the structural to the functional level 
of investigation. It has been revealed that the abnormal brain FC 
detected by the fMRI predated conventional structural changes (e.g., 
encephalotrophy) and clinical symptoms (Sheline and Raichle, 2013). 
Indeed, rs-fMRI provides a promising way to explore the changes of 
spontaneous neural activities related to various brain diseases 
(Greicius, 2008; Fox and Greicius, 2010). Changes in low-frequency 
BOLD signal fluctuations were observed in patients with AD, epilepsy 
and Parkinson’s disease (PD; He et al., 2007; Wu et al., 2009; Luo et al., 
2011). Sun et  al. reported abnormality of functional connections 
located between the posterior cingulate cortex (PCC) and frontal as 
well as temporal regions in patients with VaMCI (Sun et al., 2011). A 
study found that the functional activities of medial prefrontal cortex, 
bilateral cingulate gyrus/precuneus and left inferior parietal lobule in 
patients with AD or mild cognitive impairment (MCI) have changed 
(Zhang et al., 2012). Similarly, it has been reported that the decreased 
functional activity of five clusters including the right inferior temporal 
gyrus, the left medial prefrontal gyrus, the left anterior cingulate gyrus 
(ACG), the right wedge and the right middle occipital gyrus is related 
to the severity of AD (Wang et al., 2017).
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4.2. Common clinical indicators of rs-fMRI

The ommon clinical indicators of rs-fMRI showed in Table 1.

4.2.1. Regional homogeneity
ReHo refers to the correlation between a voxel time series and its 

locally adjacent voxel time series, which effectively quantifies the 
synchronization of the BOLD time series between a voxel and its 
locally adjacent voxel (Zang et al., 2004; Peng et al., 2016). It is an 
important method for analyzing rs-fMRI signal local features. As it 
reflects the local spontaneous neural activities it has been widely used 
to explore indigenous brain activities (Zang et al., 2004; Peng et al., 
2016). Therefore, factors determining ReHo value include spatial 
adjacency and functional homogeneity of time series. These factors 
provide valuable spatiotemporal information from a neurobiological 
perspective (Jiang and Zuo, 2016). It has been further demonstrated 
that ReHo can be used as an imaging biomarker to monitor and/or 
identify AD pathology (Zhang et al., 2012). Additionally, ReHo has 
been demonstrated to be  significantly associated with a patient’s 
cognitive performance (Zhang et al., 2012; Liu Y. et al., 2014). Data 
showed that alterations in intracranial atherosclerosis decrease CBF 

delivery and efficiency, resulting in the inconsistency of amplitude 
and/or phase of the BOLD signal of the single neural cluster. Therefore, 
it is generally accepted that a low ReHo value reflects impaired 
cerebral perfusion (Tu et al., 2020). Meanwhile, it was demonstrated 
that ReHo was successfully used in clinical research of various 
diseases, including attention deficit hyperactivity disorder (ADHD), 
AD and MCI (Zhang et al., 2012; Wang et al., 2013). Zuo et al. found 
that ReHo was significantly reduced in the left cerebellum and right 
lentiform nucleus of VaMCI patients (Zuo et al., 2019). Meanwhile, it 
was hypothesized that the low ReHo value might be  related to 
diminished neuron activities as the mean ReHo value of the left ACG 
was negatively correlated with the trail making test (TMT; Tu et al., 
2020). Additionally, ReHo reduction of VaMCI patients was closely 
related to MoCA scores, demonstrating that fMRI-based measurement 
might indicate brain dysfunction (Zuo et al., 2019). In patients with 
VaMCI, Diciotti et al. reported that a remarkably negative association 
between ReHo and MoCA scores, with higher ReHo in the left 
posterior cerebellum of patients with outstanding integral cognitive 
impairment, with higher ReHo in the middle cingulate cortex 
bilaterally of patients with worse executive functions. The findings 
revealed that ReHo is significantly correlated with measurements of 
the cognitive disorders (Diciotti et  al., 2017). Orsolini et  al. also 

FIGURE 1

Certain vascular risk factors underlie the pathological mechanisms of VaMCI.
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revealed that patients with cognitive decline of cerebrovascular disease 
showed significantly lower ReHo in the right insula, the left superior 
frontal gyrus, and the bilateral anterior cingulated cortex, which 
belonging to networks involved in inhibition and attention (Orsolini 
et al., 2021). In short, the application of ReHo can reflect the abnormal 
changes of cognitive related brain function.

4.2.2. Amplitude of low-frequency fluctuation
ALFF is a rs-fmri derived way that primarily measures the total 

power of the BOLD time course over a specific frequency range 
(0.01 ~ 0.08 Hz; Zang et al., 2007). It reflects the size of spontaneous 
BOLD signals and designs to examine spontaneous brain activities 
(Nugent et al., 2015). As a non-invasive technique of rs-fMRI, ALFF 
is more advanced than conventional MRI for the diagnosis of 
advanced pathological changes in cerebral vascular diseases and can 
reflect local spontaneous neuron activities in the early phase of the 
disease (Zang et  al., 2007). Furthermore, the changes in  local 
spontaneous neuron activities of ALFF can be detected in animals and 
humans (Logothetis et al., 2001; Moosmann et al., 2003; Pelled and 
Goelman, 2004; Yang et  al., 2007). Recent studies indicated that 
cognitive impairment patients had abnormal ALFF within the 
PCC. For VaMCI patients, the alterations of ALFF in brain regions 
were predominantly found in the default mode network (DMN). 
Compared with the healthy control group, the ALFF was reduced in 
the bilateral medial prefrontal cortex (anterior DMN), precuneus 
(posterior DMN) and posterior parietal cortex (Yi et al., 2012; Wang 
et al., 2019; Zhuang et al., 2021). Moreover, the decrease in ALFF was 
positively correlated with the impairment of cognitive functions as 
assessed by Montreal Cognitive Assessment (MOCA), suggesting that 
the spontaneous neuron activities were associated with cognitive 
decline (Yang, 2021). Additionally, reduced ALFF in the precuneus 
was significantly correlated with the cognitive disability of AD and 
MCI patients measured by the minimum mental state examination 
(MMSE; Oakes et al., 2007; Wen et al., 2013).

Previous studies have revealed that ALFF is extensively affected 
by other physiological noises. Zou et al. proposed a method based on 
the fractional amplitude of low-frequency fluctuation (fALFF), which 

was defined as the ratio of ALFF and the given low-frequency band 
sum (Zou et al., 2008). Compared with ALFF, the fALFF effectively 
reduced the exhibited enhanced sensitivity and specificity of detected 
spontaneous neural activities due to interferences to physiological 
signals such as intracranial venous sinus and cerebrospinal fluids (Zou 
et  al., 2008). For instance, fALFF has been widely applied in the 
diagnosis of AD (Yang et al., 2018), MCI (Pan et al., 2017), and the 
amnestic mild cognitive impairment (Zhou et al., 2020). Additionally, 
a study found that the fALFF values of right frontal lobe, left 
hippocampus and right cingulate gyrus were significantly increased in 
patients with cognitive impairment after acute cerebellar infarction, 
and the fALFF value of posterior cerebellum decreased significantly 
(Fan et al., 2019).

4.2.3. Functional connections
Seed-based FC analysis is a correlation analysis method for 

exploring connectivity patterns in specific brain regions (Sala-
Llonch et al., 2015). Anatomically separated brain regions are 
found to fluctuate synchronously and exhibit strong FC, thus 
forming a complex functional network (Biswal et al., 1995). FCs 
between different brain regions correspond well to their nerve 
fiber connections, indicating a strong anatomical basis for FCs 
(Greicius et al., 2009; Honey et al., 2009). In addition, FC has also 
been proved to be closely related to regional CBF and metabolism, 
such as regions with strong connections show more obvious CBF 
(Liang et al., 2013), higher oxygen consumption (Wu et al., 2009) 
and glucose metabolism (Tomasi et al., 2013). Therefore, it can 
be used to map remote connections and detect hemodynamic 
responses in the brain detected by rs-fMRI not found by ReHo 
(Peng et al., 2016). Multiple literatures have shown that FC is also 
associated with dynamic changes in  local neuronal ensemble 
activity, which reflects the neural flexibility or the dynamic range 
that affects the adaptability and efficiency of the nervous system 
(Garrett et  al., 2013; Nomi et  al., 2017). Regional neural 
variability and brain network dysfunction (Dennis and 
Thompson, 2014; Colasanti et al., 2016) in patients with stroke 
(Kielar et al., 2016), multiple sclerosis (AS; Petracca et al., 2017), 

TABLE 1 The common clinical indicators of rs-fMRI in VaMCI.

Indicators ReHo ALFF FC DC

Effects  1. Analyzing rs-fMRI signal 

local features

 2. Reflecting the local 

spontaneous neural 

activities

 3. Reflecting the abnormal 

changes of cognitive related 

brain function

 1. Reflecting the size of 

spontaneous BOLD signals 

and examining spontaneous 

brain activities

 2. Reflecting local 

spontaneous neuron 

activities in the early phase 

of the disease

 3. fALFF effectively reduced 

the exhibited enhanced 

sensitivity and specificity of 

detected spontaneous 

neural activities due to 

interferences to 

physiological signals such 

as intracranial venous sinus 

and cerebrospinal fluids

 1. Exploring connectivity 

patterns in specific brain 

regions

 2. Maping remote connections 

and detect hemodynamic 

responses in the brain 

detected by rs-fMRI not 

found by ReHo

 3. Reflecting abnormal patterns 

in specific brain regions

 1. Focuses on the relationship 

between voxels and the entire 

network connection

 2. Objectively and 

comprehensively provide 

functional connectivity 

information of resting state in 

the whole brain network, 

which
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AD (Scarapicchia et al., 2018) and other neurological disorders 
(Zoller et al., 2017). Some researches suggesting that FC is highly 
relevant to the cognitive performance of a specific field, including 
DMN, executive control network and dorsal attention network, 
all of which are closely related to attention and execution 
(Barkhof et al., 2014; Shaw et al., 2015). In the FC analysis, the 
selections for regions of interest (ROIs) are not consistent. 
Existing studies show that the main focus is mainly on the PCC 
connections and their critical role in brain cognitive function and 
memory (Ding et al., 2015). Ding et al. reported that FC of PCC 
and the left thalamus were significantly reduced in patients with 
VaMCI (Ding et  al., 2015). In VaMCI patients, a significant 
reduction of FC was found in the right inferior frontal gyrus, the 
right middle frontal gyrus, bilateral precentral gyrus, and the 
right postcentral/superior parietal lobule (Zuo et  al., 2019). 
Additionally, MOCA scores were positively correlated with the 
decrease of FC in the anterior cingulate cortex and posterior 
parietal cortex, suggesting that the local FC was related to 
cognitive impairment (Wang et al., 2021). In brief, FC can reflect 
abnormal patterns in specific brain regions.

4.2.4. Degree centrality
DC is a graph-based brain network measurement method, 

which calculates the temporal correlation between a single voxel 
and other intracerebral voxels within a mask at the voxel level 
(Zuo et al., 2012). In other words, Consider each voxel as a node 
and calculate the number of functional connections between each 
node and other nodes (Buckner et al., 2009). The larger the DC 
of a node, the more important the node is in the whole brain 
network, and the stronger its information communication 
abilities (Zhu et  al., 2019). DC focuses on the relationship 
between voxels and the entire network connection, also be used 
to detect abnormal changes in functional connectivity in brain 
(Buckner et  al., 2009; Gao et  al., 2016). Unlike ALFF which 
reflects local brain activities, voxel-level DC can objectively and 
comprehensively provide functional connectivity information of 
resting state in the whole brain network, which is different from 
traditional functional neural research methods such as regional 
homogeneity (Zuo et al., 2012; Adriana et al., 2013). It explains 
the relationship betweesn the local brain activities and the whole 
brain network. Moreover, compared with other methods such as 
ALFF and ReHo (Huang et al., 2015; Shao et al., 2015), DC does 
not involve defining ROIs and assessing connectivity across the 
human brain at voxel level (Zuo and Xing, 2014; Shao et  al., 
2015), which can provide valuable information for the changes of 
nodes in human brain connections caused by diseases (Adriana 
et al., 2013). It has high repeatability (Zuo and Xing, 2014). At 
present, DC has been widely used to explore the neurobiological 
mechanism and pathophysiological mechanism of brain network 
changes in various diseases (Lou et al., 2015; Shen et al., 2015). 
Therefore, DC method has attracted a lot of attention and has 
been used to explore the neural mechanisms of several diseases, 
such as Alzheimer’s disease (Guo et al., 2016), alcohol dependence 
(Luo et al., 2017), attention deficit hyperactivity disorder (Wang 
et al., 2017), and Parkinson’s disease (Guo et al., 2020). Abnormal 
DC has been observed in MCI, AD and PD patients (Grau-
Olivares et  al., 2010; Li et  al., 2017). Studies have found that 
increased DC values in temporal gyrus and hippocampus may 

be associated with impaired memory function (Feng et al., 2021). 
Yang et  al. demonstrated that DC reduction was significantly 
correlated with the Hamilton Anxiety Scale (HAMA) in VaMCI 
patients, suggesting that VaMCI patients may be more likely to 
develop symptoms of anxiety (Yang, 2021). Existing literature 
reported that many studies combined DC and FC to explore 
changes in functional patterns in patients with neurological 
diseases (Cui et al., 2016; Guo et al., 2020).

5. Diffusion tensor imaging

The hyperintensity in White Matter (WM) is associated with 
impaired executive and overall cognitive function of the brain (Dao 
et al., 2018). Specifically, the white matter tract is essential for the 
maintenance of the normal brain cortex and cortico-subcortical 
connections. Therefore, the integrity of WM plays a key role in the 
synchronous activities and neural activation of the brain functional 
network. DTI can be used as a sensitive method to explore the neural 
mechanisms of different cognitive impairments (Liu et al., 2019). It is 
an MRI technique that directly measures the integrity of the brain 
white matter (WM; Wang et al., 2013). Compared with conventional 
techniques, it is more sensitive in detecting cognitive impairments and 
has a higher correlation with the patient’s cognitive function, especially 
in the early stage of neurological diseases (Xu et al., 2010; Wang et al., 
2013). It explores the integrity of WM in patients with dementia or 
cognitive impairments, and even detects minor changes in the 
complex brain structural networks, creating the great potential to 
discover early stages of the disease and to optimize personalized 
treatment regimens (Sabri et al., 1999; Buckner et al., 2009; Xu et al., 
2010; Wang et al., 2013). Recent studies revealed that the assessment 
for correlation between the WM damage and the cognitive function 
by DTI was superior to those by T2 weighted or FLAIR sequences 
(O’Sullivan et al., 2004a,b). In other words, the dispersion of lesions 
and normal white matter on DTI was increased, and the average 
diffusion rate of normal white matter was related to the performance 
of functional tests. These correlations remain significant after 
controlling age, gender, brain volume and T1/T2 lesion volume 
(O’Sullivan et  al., 2004a,b). No significant correlation between 
neuropsychological scores of T2 lesions. Additionally, DTI appeared 
as the most sensitive technique to assess structural WM 
microstructural damage in patients with cerebrovascular diseases 
(Banerjee et al., 2016). It was further demonstrated that DTI reflected 
the processes of the white matter tracts (e.g., cortical tract and spinal 
tract) and the overall extent and shape of the water proton diffusion 
by measuring the water proton diffusivity inside the brain tissue (Nir 
et al., 2013). It also finally clarifies the microstructural integrity of 
WM. It was demonstrated that fractional anisotropy (FA) appeared as 
a widely used DTI measurement method in clinical studies to describe 
diffusion anisotropy. It was further demonstrated that DTI was very 
sensitive to changes in the integrity of WM and neuron connections, 
with higher values indicating stronger axonal integrity and lower 
values suggesting incomplete or loss of neuron connections (Nir 
et al., 2013).

Another common method of DTI measurement is the mean 
diffusivity (MD), which is used to characterize the pattern of water 
diffusion within a tissue, reflecting the average amplitude of diffusion 
in various directions. Research found that MD was seen to correlate 
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negatively and FA to correlate positively with global and selective 
cognitive performance in patients with VaMCI (Xu et  al., 2010). 
Moreover, FA and MD correlated with patients’ memory and attention 
executive scores (Xu et al., 2010). Additionally, FA and MD within the 
cingulate bundle correlated with verbal memory scores in 
non-demented elderly with cerebral small vessel disease, while MD in 
the frontal lobe was associated with psychomotor speed performance 
(Tuladhar et  al., 2015). Mascalchi et  al. reported that patients of 
VaMCI with increased MD substantially corresponded to area of 
decreased FA in WM exhibiting. The result reveals that a substantially 
symmetric damage of the long WM tracts in terms of increased MD 
and decreased FA emerged (Mascalchi et al., 2014). Another study 
found that MoCA scores were positively correlated with FA as well as 
MD (negative correlation) of almost the global cerebral hemispheres 
to the patients with VaMCI, in an almost symmetrical fashion. The 
study indicates that the cognitive deficits are consistently sustained by 
the microstructural damage of the normal-appearing WM revealed by 
DTI (Mascalchi et al., 2019). In summary, loss of microstructural 
integrity in WM is usually reflected in decreased FA and/or increased 
MD (Beaulieu, 2002; Sen and Basser, 2005).

6. Arterial spin labelling

ASL perfusion imaging is a promising non-invasive tool for 
assessing CBF, which can be used to discover certain vascular features 
of early cognitive impairment (Yoshiura et al., 2009; Iturria-Medina 
et al., 2016). It is generally accepted that imaging of CBF patterns not 
only provides direct information of cerebral tissue perfusion but has 
also been used as a marker for the functional integrity of brain tissue 
(Roman and Pascual, 2012). It has been widely used to clinically 
evaluate patients with cognitive impairments (Roman and Pascual, 
2012). Data show that CBF changes may be  present even in 
asymptomatic dementia risk individuals (Thambisetty et al., 2010; 
Lunau et al., 2012; Okonkwo et al., 2014). This indicates that CBF 
measurements hold the ability to detect subclinical brain pathologies. 
Additionally, the reduction in total CBF was not only confirmed to 
be present in dementia patients but was also associated with structural 
signs of brain ageing and cognitive decline in non-dementia 
individuals (Bisschops et al., 2004; Ruitenberg et al., 2005; Appelman 
et al., 2008; Vernooij et al., 2008). In summary, cerebral hypoperfusion 
may appear at an early stage of cognitive function impairment. 
Meanwhile, other authors’ results showed that alterations in CBF also 
reflected the possible effects of vascular risk factors (Pase et al., 2012; 
Henriksen et al., 2014) especially those that led to encephalopathy 
(Meltzer et al., 2000; Zonneveld et al., 2015).

Numerous evidence indicated that cerebral hypoperfusion caused 
by vascular diseases led to neuron and astrocyte death, impaired brain 
volume and neuron function, thereby serving as a biomarker for 
cognitive decline (Jack et al., 2010; Wierenga et al., 2014). Henriksen 
et al. revealed that typical CBF changes preceded the appearance of 
subjective cognitive difficulties (Henriksen et al., 2017). Global CBF 
was shown to be associated with encephalatrophy, ischemic lesions 
and cognitive decline (Ruitenberg et al., 2005; Appelman et al., 2008; 
Vernooij et al., 2008). Moreover, it was shown that the ischemic brain 
injury and cognitive changes suggested a decrease of global CBF 
(Brundel et al., 2012; van der Veen et al., 2015; Zonneveld et al., 2015). 
It was demonstrated that the cerebral flow correlated with cognition 

in patients with VaD, in whom the CBF was significantly reduced 
mainly in the frontal, parietal, and temporal cortices (Schuff et al., 
2009; Gao et al., 2013).

7. Synergy of multimodality 
neuroimaging

7.1. Synergy of BOLD and ASL

As is one of the most important factors contributing to VaMCI 
(Pasi et al., 2015), the cerebral small vessel disease (CSVD) may cause 
endothelial cell damage, abnormal perfusion, and disruption of the 
brain structure as well as damage in brain functional connections 
(Wallin et al., 2018; Thrippleton et al., 2019), which in turn results in 
dysregulation of the neurovascular unit (NVU) composed of neurons, 
astrocytes, and blood vessels (Muoio et al., 2014). The NVU plays a 
crucial role in maintaining the homeostasis and the normal function 
of the brain microenvironment (Pasley and Freeman, 2008; Helman 
and Murphy, 2016). Under physiological conditions, the microvascular 
flow matches well with neurons and astrocytes in the NVU, termed 
neurovascular coupling (Girouard, 2006). The occurrence of CSVD 
may disturb its coupling and lead to disorders in cerebral blood supply 
and neuron activities, which are regarded as the main possible cause 
of cognitive impairment (Caruso et al., 2019; Moretti and Caruso, 
2020). Currently, most studies focused mainly on ASL perfusion 
imaging to find CBF perfusion or on a single imaging technique that 
embodied neuronal activities, which did not comprehensively reflect 
dysregulated neurovascular coupling. Many authors suggest that CBF 
fusion and neuron activities be regarded as a functional complex (Liu 
et al., 2021). Other authors’ results showed that FC in brain regions 
had a similar pattern to CBF, which generated synergy with cerebral 
perfusion and neuronal activities in different voxels (Liang et al., 2013; 
Zhu et al., 2013; Jann et al., 2015). The significant correlation between 
BOLD and ASL perfusion imaging, respectively, represented by the 
two is a measurable indicator. The abnormal CBF distribution was 
found to be consistent with FC changes in VaD patients (Schuff et al., 
2009; Gao et al., 2013). Liu et al. combined ReHo with CBF via the 
synergy of BOLD and ASL perfusion imaging and used the overall 
ReHo-CBF correlation coefficient and ReHo/CBF ratio to measure the 
intrinsic links between neuron activities and vascular responses (Liu 
et al., 2021). They found that the overall ReHo-CBF correlation was 
significantly lower, and the ReHo/CBF ratio was significantly 
abnormal in patients with cognitive impairment compared with 
healthy individuals. It showed an indication of more severe 
neurovascular coupling impairment in the patients with cognitive 
impairment. Meanwhile, the study suggested that a coupling exists 
between cerebral perfusion and functional activities in patients with 
mild cognitive impairment. It indicated abnormal neurovascular 
coupling in the early stages, and the development of the disease might 
be  related to disease severity and cognitive impairment (Liu 
et al., 2021).

In summary, data show that the ReHo-CBF correlation coefficient 
measured the spatial distribution consistency between cerebral blood 
supply and neuron activities at the whole brain voxel level, while 
ReHo/CBF ratio represented the strength of connections between the 
neuron supplied by a CBF unit and the surrounding brain areas (Liu 
et al., 2021).
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7.2. Interactions between the structure and 
function of cerebrum

The human brain has been modelled as a large-scale integrated 
complex network in functional and structural domains (Zhang et al., 
2011). It is increasingly recognized that the anatomical constraints are 
imposed on FC by structural connections in the network (Honey 
et al., 2009). In turn, FC exerts influence on the structural connections 
through the brain plasticity (Hagmann et al., 2010; Guerra-Carrillo 
et al., 2014). The demonstration of the association between structure 
and function holds huge potential to expand our understanding of 
how the association between brain structure and function affects 
human cognition and behavior (Wang et al., 2015). This close and 
complex association is of increasing interest to researchers and will 
contribute to a better understanding of the intrinsic integration of 
neural resources and will advance our knowledge about the 
neuropathological basis of brain - related diseases. Here, we present 
an conclusion of the existing literature on the imaging approaches for 
examination of brain pathologies in patients to explore the relationship 
between the functional abnormalities in the brain and its structural 
damage which further targeted elucidation of the related central 
mechanisms underlying neurological pathologies.

7.2.1. Synergy of BOLD-fMRI and DTI
Both DTI and BOLD-fMRI as discussed previously are highly 

sensitive modalities for measuring the structural and functional brain 
abnormalities in cognitively impaired patients. The close association 
between the brain structure and function indicates the integration of 
these two modalities as a valuable tool for exploring the pathogenesis 
of brain pathologies (Ye and Bai, 2018). DTI and BOLD imaging of 
spontaneous neuron activities showed the relationship between the 
brain structure connections (Koch et al., 2002; De Luca et al., 2006). 
Thus proving them as tools for identifying subtle WM changes and 
intrinsic connections between different cortical areas (Hagmann et al., 
2008; van Eimeren et al., 2010). DTI and fMRI have been increasingly 
shown to detect early structural and functional brain alterations 
related to VaMCI, especially in the last 2 years (Ye and Bai, 2018). A 
close link between them has been confirmed by a series of studies (van 
Eimeren et al., 2010; Khalsa et al., 2014). The researches also revealed 
that brain regions showing prominent FC are also structurally 
connected in DTI anatomy, regions presenting stronger FC are also 
more significantly connected in structure (Hagmann et  al., 2008; 
Khalsa et  al., 2014). Moreover, it has been documented that the 
structures with abnormal DTI were generally consistent across the 
brain regions associated with abnormal FC changes (Ye and Bai, 
2018). Therefore, Combining DTI and fMRI findings may be highly 
valuable for the study of early and specific brain alterations in VaMCI.

7.2.2. Synergy of BOL-fMRI and VBM
Voxel-based morphometry (VBM) obtains anatomical 

information of a patient’s brain by high-resolution 3D T1 weighted 
imaging and utilizes the voxel-based cortical morphometric analysis 
method to quantitatively calculate the cortical grey matter (GM) 
density or volume of each 3D voxel in the brain structure images. 
Then the differences of anatomical structure were obtained, and the 
changes of gray matter in brain were evaluated. As a common measure 
in VBM measurements, the brain grey matter volume (GMV) predicts 
the presence of cognitive impairment and the rate of cognitive decline 

(Mungas et  al., 2002). In addition to cerebral alterations directly 
related to cerebrovascular damage, the global or local GM atrophy 
may also be responsible for cognitive impairment in patients with 
cerebral vascular diseases (Laakso et  al., 1996; Fein et  al., 2000; 
Mungas et al., 2001). A VBM study showed extensive volume atrophy 
in patients with VaMCI, especially in the frontal cortex and subcortical 
regions (Thong et  al., 2014). Specifically, in the study of Seo, the 
thinning of frontal cortex in patients VaMCI is closely related to 
executive dysfunction (Seo et al., 2010). Fein et al. also found that the 
severity of cognitive impairment is significantly correlated with GM 
atrophy, and the GM atrophy of hippocampus and frontal lobe are 
predictors of brain cognitive impairment (Fein et al., 2000; Mungas 
et al., 2001, 2002; Mok et al., 2005). Moreover, the GM atrophy was 
shown to reflect the loss of neurons or other types of neuropathological 
outcomes (Markus, 2007). Consequently, GM atrophy has been a 
cause of cognitive decline (e.g., memory loss, attention/executive 
dysfunction, language impairment, visuospatial function, and 
depression of VaMCI patients; Lei et al., 2016; Li et al., 2017; Lyu 
et al., 2019).

Because the fact that regions of interest were not predefined, VBM 
provided unbiased whole-brain comparisons between the studied 
patients’ groups, making it an ideal method for exploratory cross-
sectional studies (Stebbins et al., 2016). Hence, the established synergy 
between BOL-fMRI and VBM provided comprehensive visualization 
of characteristic changes in brain function and structure. As an early 
stage of VD, VaMCI is regarded as the most important subtype of 
vascular disease caused by CSVD (Peng, 2019). Indeed, CSVD was 
typically accompanied by changes in the brain function and structure 
(Ter Telgte et al., 2018) and GMV atrophy was observed in the frontal, 
temporal versus parietal cortical areas, pons, thalamus, caudate 
nucleus, and hippocampus of VaMCI patients (Seo et al., 2010, 2012; 
Thong et  al., 2014). These morphological changes interacted with 
functional activities (Koch et al., 2002; Liu C. et al., 2014; Tu et al., 
2020). For patients with ischemic vascular diseases, GM atrophy 
strongly correlated with dementia severity and it was an independent 
predictor for the cognitive decline of patients with cerebral vascular 
diseases (Fein et al., 2000; Mungas et al., 2002). Yang et al. found that 
GMV of the right precentral gyrus and right inferior temporal gyrus 
of VaMCI patients decreased (Yang, 2021) and this was related to 
ALFF reduction, indicating that CSVD patients might be exposed to 
impairments of the brain structure and function (Zhao et al., 2015; 
Lyu et al., 2019).

8. Technical problems or difficulties

Although many neuroimaging studies have reported the brain 
structure and functional characteristics related to cognitive 
function in patients with VaMCI, most of the previous studies 
evaluated the single-modality image information. Due to the 
different imaging principles, the data provided by single-modality 
images are limited. In contrast, multi-modality magnetic resonance 
imaging can provide multiple comprehensive data such as tissue 
anatomy function and find imaging markers related to the 
occurrence and development of VaMCI, but there are still some 
technical problems to be solved: (1) The b value selected in each 
study is different, which needs to be optimized combined with 
signal-to-noise ratio, image quality and scanning time.  
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(2) Different research institutions use different scanning 
instruments, imaging parameters and reconstruction algorithms, 
which can improve the comparability between different studies by 
establishing standardized image acquisition and post-processing 
processes. (3) The method of manually drawing the region of 
interest is greatly affected by subjective factors, and semi-automatic 
or automatic segmentation techniques can be used to improve the 
repeatability of imaging parameters. (4) By establishing 
standardized data analysis methods and evaluation methods, the 
comparison and feasibility of different studies are improved. 
Different data analysis methods and evaluation methods may affect 
the analysis of structure and function.

9. Conclusion

This article conducts a narrative review in the clinical 
applications of multimodal MRI diagnostic approaches for 
VaMCI. The close association between the brain structure and 
function indicates that the integration of rs-fMRI, DTI and ASL 
patterns may be valuable for the detailed neuroimaging exploration 
of the pathogenesis of VaMCI. These findings provide a valuable 
basis for a better understanding of VaMCI pathophysiological 
mechanisms, its unique features for recognition and diagnosis, as 
well as provide suggestions for possible targets in the development 
and evaluation of new cognitive and pharmacological interventions 
of VaCI pathologies. In future, we can conquer the limits of single-
modality analysis and advance the diagnostic and prognostic 
potential on single patient examination.
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