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Background: Alzheimer’s Disease (AD) and Type 2 Diabetes Mellitus (DM) have an 
increased incidence in modern society. Although more and more evidence has 
supported that DM is prone to AD, the interrelational mechanisms remain fully 
elucidated.

Purpose: The primary purpose of this study is to explore the shared 
pathophysiological mechanisms of AD and DM.

Methods: Download the expression matrix of AD and DM from the Gene 
Expression Omnibus (GEO) database with sequence numbers GSE97760 and 
GSE95849, respectively. The common differentially expressed genes (DEGs) were 
identified by limma package analysis. Then we analyzed the six kinds of module 
analysis: gene functional annotation, protein–protein interaction (PPI) network, 
potential drug screening, immune cell infiltration, hub genes identification and 
validation, and prediction of transcription factors (TFs).

Results: The subsequent analyses included 339 common DEGs, and the 
importance of immunity, hormone, cytokines, neurotransmitters, and insulin in 
these diseases was underscored by functional analysis. In addition, serotonergic 
synapse, ovarian steroidogenesis, estrogen signaling pathway, and regulation of 
lipolysis are closely related to both. DEGs were input into the CMap database 
to screen small molecule compounds with the potential to reverse AD and DM 
pathological functions. L-690488, exemestane, and BMS-345541 ranked top 
three among the screened small molecule compounds. Finally, 10 essential hub 
genes were identified using cytoHubba, including PTGS2, RAB10, LRRK2, SOS1, 
EEA1, NF1, RAB14, ADCY5, RAPGEF3, and PRKACG. For the characteristic Aβ and 
Tau pathology of AD, RAPGEF3 was associated significantly positively with AD 
and NF1 significantly negatively with AD. In addition, we also found ADCY5 and 
NF1 significant correlations with DM phenotypes. Other datasets verified that NF1, 
RAB14, ADCY5, and RAPGEF3 could be used as key markers of DM complicated 
with AD. Meanwhile, the immune cell infiltration score reflects the different 
cellular immune microenvironments of the two diseases.
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Conclusion: The common pathogenesis of AD and DM was revealed in our 
research. These common pathways and hub genes directions for further 
exploration of the pathogenesis or treatment of these two diseases.
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Introduction

Type 2 diabetes mellitus (DM) is a complex disease characterized 
by insulin resistance, the neurodegenerative mechanisms are 
inflammation, endoplasmic reticulum stress, autophagy, and 
mitochondrial dysfunction (Burillo et  al., 2021). The primary 
pathology of Alzheimer’s disease (AD) is the accumulation of amyloid 
β (Aβ) and tau hyperphosphorylation. Insulin action and impaired 
glucose metabolism are also involved in the occurrence and 
development of AD. Pathological features similar to DM in the brains 
of patients with AD were observed, such as insulin efficacy and lack 
of glucose metabolism (Takeishi et al., 2021). A study used weighted 
gene co-expression network analysis to discover the common 
mechanisms of AD and DM, such as circadian entrainment, 
phagosomes, and glutathione metabolism (Zhu et al., 2020). These 
characteristics suggest that AD may be associated with DM, leading 
to a new term, type 3 diabetes (Diniz Pereira et al., 2021). Both DM 
and AD occur commonly in elderly people, and DM has been 
considered a potential critical risk factor for AD (Wang et al., 2017). 
DM increases the risk of dementia in carriers with the APOE ɛ4 allele, 
and the heritability of the two diseases is estimated to be more than 
50% (Li et  al., 2020). A meta-analysis of 28 observational studies 
shows that people with DM are more likely to develop AD. Compared 
with non-diabetic patients people with a history of diabetes had a 73% 
increase in the risk of all types of dementia, a 56% increase in AD, and 
a 127% increase in vascular dementia (Gudala et al., 2013). AD and 
DM share many pathophysiological characteristics, comprising defects 
in glucose transporters, mitochondrial dysfunctions in the brain, 
impaired insulin sensitivity, Aβ accumulation, tau 
hyperphosphorylation, brain vasculopathy, inflammation, and 
oxidative stress (Tumminia et al., 2018). For instance, the activation 
of glycogen synthase kinase 3β requires insulin, which in turn causes 
tau phosphorylation to form neuronal fiber tangles. Interestingly, not 
only insulin significantly contributes to the formation of amyloid 
plaques but also amylin co-secreted with insulin favors this process 
(Kandimalla et  al., 2017). Chronic hyperglycemia also leads to 
neuroinflammation and tau hyperphosphorylation in the 
hippocampus leading to cognitive decline (Wirt et al., 2021). Studies 
have shown that Aβ deposition and tau phosphorylation might 

be achieved through altered insulin pathways, both leading factors for 
AD development (Boccardi et  al., 2019). Neuroinflammation is a 
recognized central mechanism of aging-related diseases, such as 
cognitive impairment and diabetes. To further add to these injuries, 
adult neurogenesis that provides neuronal plasticity is also impaired 
in the diabetic brain (Pugazhenthi et al., 2017). It has been found that 
low-dose STZ-induced hyperglycemia impairs network activity in the 
hippocampus and anterior cingulate cortex, mainly by increasing the 
phosphorylation of tau in the hippocampus and cortex (Wirt et al., 
2021). Studies have shown that a vanadium compound bis(ethyl 
maltol to)-oxovanadium (IV), used initially to treat DM, effectively 
improves the inflammation in the brain of AD mice, significantly 
reduces the level of Aβ, and the spatial learning and memory activities 
of AD mice revised substantially (He et al., 2021). Since DM is a long-
term chronic disease, it takes some time to develop into AD, and more 
attention should be paid to protecting brain function to avoid AD 
during DM treatment (Li et al., 2021).

The common transcriptional feature provided a novel and feasible 
scheme for the common pathogenesis of AD and DM at the genetic 
level. We analyzed the two gene expression matrix (GSE97760 and 
GSE95849). Comprehensive bioinformatics and enrichment analysis 
will determine common DEGs and their function on AD and DM. In 
addition, the PPI network was constructed with the STRING database 
and analyzed with Cytoscape software. ImmuCellAI is a reliable and 
efficient platform for immune infiltration analysis, successfully 
quantifying 24 immune cell subsets of AD and DM. Finally, 
we identified and validated 10 significant representative hub genes in 
AD and DM. In addition, we validated the transcription factors of 
these genes and their expression in the final analysis. Revealing the 
hub genes of AD and DM helps clarify the common mechanism 
between them. It provides a new means for exploring the molecular 
biological mechanism of other multiple diseases.

Materials and methods

Data source

GEO,1 containing many high-throughput sequencing and 
microarray gene sets, is a public database submitted by research 
institutes worldwide (Edgar et al., 2002). We searched for related gene 
expression datasets using Alzheimer’s disease (AD) and Type 2 
Diabetes mellitus (DM) as keywords. Two microarray datasets 

1 http://www.ncbi.nlm.nih.gov/geo

Abbreviations: AD, Alzheimer’s disease; DM, Type 2 Diabetes Mellitus; GO, Gene 

Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes Pathway; PPI, 

Protein–protein Interaction; Aβ, Amyloid beta; DEGs, Differentially expressed 

genes; GEO, Gene Expression Omnibus; TFs, transcription factors; STRING, Search 

Tool for the Retrieval of Interacting Genes; CMap, Connectivity Map; ImmuCellAI, 
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[GSE97760 and GSE95849] from the blood genome were downloaded 
from GEO(Agilent GPL16699 platform, Phalanx Human lncRNA One 
Array v1_mRNA GPL22448 platform). The GSE97760 dataset 
contains patients with AD (n  = 9) and healthy controls (n  = 10) 
(Naughton et  al., 2015). GSE95849 consists of patients with DM 
(n = 6) and healthy female controls (n = 6) from the peripheral blood 
mononuclear cells (Luo et al., 2017).

Identification of DEGs

The GEO query package reads matrix data in Rstudio. Remove 
probe sets without gene symbols and take their maximum values for 
genes with multiple probe sets. Only the genes value with p < 0.05 and 
|logFC| ≥ 1 were identified as DEGs. The Funrich was used to obtain 
the common DEGs between AD and DM.

Enrichment analyses of DEGs

Gene ontology (GO) is a multifaceted annotation of the genome 
for biological processes, cellular components, and molecular functions 
(Ye et al., 2022). The Kyoto Encyclopedia of Genome and Genome 
(KEGG) annotates the genetic pathways of different species in many 
ways, providing information about biological functions (Ye et  al., 
2020). The GO and KEGG pathways were enriched by the omicshare 
database.2 The GO enrichment results were plotted by Chiplot.3 
p < 0.05 was considered significant.

Construction of protein–protein 
interaction networks and prediction of 
small molecule drugs

Search Tool for the Retrieval of Interacting Genes (STRING; 
http://string-db.org) (version 11.5) constructed an interaction 
network between genes with a combined score of over 0.4 (Deng et al., 
2020b). Cytoscape4 (version 3.9.0) observes the connections between 
targets and can be used to visualize this PPI network (Deng et al., 
2020a). Using the Connectivity Map (CMap, https://clue.io/) database, 
DEGs were compared with a reference dataset, pert type selected for 
perturbation types, and trt cp selected for compounds. A connectivity 
score was obtained according to the enrichment of DEGs in the 
reference gene expression profile. A negative correlation analysis was 
performed to predict small molecule drugs capable of reversing the 
pathology of the disease (Subramanian et al., 2017).

Analysis of immune cell infiltration

Immune Cell Abundance Identifier (ImmuCellAI, http://bioinfo.
life.hust.edu.cn/ImmuCellAI#!/), a widely used database for evaluating 
cell infiltration in the microenvironment (Healy et  al., 2008). 

2 https://www.omicshare.com

3 https://www.chiplot.online

4 http://www.cytoscape.org

ImmuCellAI can predict the abundance of 24 immune cell types in 
samples. The immune cell infiltration in different groups will 
be  analyzed with ImmuCellAI in the examined group. Using the 
ImmuCellA algorithm, the study analyzed patients with AD or DM 
data and quantified the relative proportion of 24 infiltrating 
immune cells.

Selection and analysis of hub genes

This study used the cytoHubba plugin of Cytoscape to identify 
hub genes and nine standard algorithms (MCC, Stress, Betweenness, 
Closeness, MNC, DMNC, Degree, Radiality, EPC) to evaluate and 
select hub genes. Subsequently, based on these hub genes, 
we constructed a co-expression network via GeneMANIA,5 a reliable 
and efficient bioinformatics tool for mining the intrinsic links between 
genes through the multi-angle of literature data (Warde-Farley 
et al., 2010).

Prediction and verification of transcription 
factors

iRegulon implements a genome-wide ranking and recovery 
approach to detect enriched transcription factor motifs and their 
optimal sets of direct targets (Janky et  al., 2014). Subsequently, 
we verified the TFs that regulate the hub genes and the expression 
levels of these TFs in GSE97760 and GSE95849 with the T-test, a 
p-value <0.05 was considered significant.

Results

Identification of DEGs

Figure 1 presents the idea of the article. After correlation analysis, 
standardizing processing of the microarray results (Figures  2A,B, 
3A,B), DEGs (8,091  in GSE97760 and 3,004  in GSE95849) were 
identified (Figures 2C,D, 3C,D). The 339 common DEGs (97 down-
regulated, 242 upregulated) were obtained after excluding genes with 
opposite expression trends in GSE97760 between GSE95849 
(Figures 4A). In the DEGs analysis, GSM2527027 was treated as an 
outlier sample, so this sample was removed during the subsequent 
analysis (Figures 3A:a1,a2,B:b1,b2).

Analysis of the functional features of 
common DEGs

GO functions and KEGG Pathway enrichment analyses were 
performed to analyze the biological functions and pathways involved 
in the 339 common DEGs (Supplementary Table S1). GO analysis 
results show that 4,236 biological process (BP), which contains 
3’-UTR-mediated mRNA stabilization, vesicle organization, cytokinetic 

5 http://www.genemania.org/
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process, and astrocyte development; 567 cellular components (CC), 
involved endosomal part, lipopolysaccharide receptor complex, Wnt 
signalosome and glycosylphosphatidylinositol-mannosyltransferase 
I complex; 720 molecular functions (MF), such as structural constituent 
of muscle, Toll-like receptor 4 binding, lipopolysaccharide receptor 
activity and Toll-like receptor binding (Figure 4B). KEGG Pathway 
includes organismal systems, metabolism, environmental information 
processing, and human diseases. Three significant enrichment 
pathways in terms of metabolism are glycan biosynthesis and 

metabolism, metabolism of cofactors, glycan biosynthesis and 
metabolism; thyroid hormone synthesis, ovarian steroidogenesis, and 
regulation of lipolysis in adipocytes were enriched in organismal 
systems; MAPK signaling pathway, cAMP signaling pathway and 
Hippo signaling pathway found in environmental information 
processing; endocrine resistance, malaria, legionellosis classed in 
human diseases (Figures  4C,D). These results indicate that 
inflammatory, hormones, cytokines, and glycan are jointly involved in 
the occurrence and development of AD and DM.

A

B C D

E F G

FIGURE 1

Research design flow chart. (A) Download AD and DM blood transcriptome data from GEO and analyze, (B) functional enrichment analysis of common 
differential genes, (C) PPI network map of common genes, (D) DM or AD immune infiltration analysis, (E) Hub gene expression level and co-expression 
network analysis, (F) Hub gene neural network analysis, (G) Hub gene TFs expression level and phenotypic correlation analysis.
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PPI network construction and small 
molecule drug prediction

The PPI network contains 233 nodes and 286 interaction pairs 
(Figure 5). DEGs were input into the CMap database to predict small 
molecule compounds that may reverse two diseases’ pathology by 
connectivity (Supplementary Table S2). To explore the feasibility of 
this method, we searched the approved drugs for both disorders in 
Drugbank6 and obtained 10 drugs for AD and 52 medications for DM 
(Supplementary Table S3). Interestingly, in the CMap results, seven 
drugs for AD were matched with a score range of −0.9247 to −1.3658; 
similarly, 27 pills for DM were obtained with a score range of −0.6906 

6 https://go.drugbank.com/

to −1.0733. Among the 7,952 negatively correlated small molecule 
compounds, the score range of the top 10 small molecules is −1.6824 
to −1.8921, which is significantly lower than the listed drugs of the 
two diseases, suggesting that these small molecules have the potential 
to reverse two diseases’ pathology.

Immune infiltration analyses

Detecting the microenvironment has a significant reference 
value for clinical treatment sensitivity and disease diagnosis (Liu 
et  al., 2021). After studying the relationship between immune 
infiltration and gene matrix, we  further explored the potential 
molecular mechanism of genes affecting the progression of the two 
diseases (Figure  6). The results indicated that the AD group’s 
fractions for monocytes, NKT, Tr1, iTreg, Tcm, and Tem were 

A B

C D

FIGURE 2

Microarray normalization and differential gene analysis in the AD group. (A) The heatmap of AD, (B) The PCA map of AD, (C) The volcano map of AD, 
and (D) Differential heatmap of partial gene expression between AD and normal group.
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A a1 a2

B
b1 b2

C D

FIGURE 3

Microarray normalization and differential gene analysis in the DM group. (A) The heatmap of DM, (B) The PCA map of DM, (C) The volcano map of DM, 
and (D) Differential heatmap of partial gene expression between DM and normal group. The data is represented by a1/b1 before processing and a2/b2 
after processing.
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remarkably higher than those of the regular patients. In 
comparison, the particles of many cells are lower than those of 
normal patients, such as DC, Neutrophil, nTreg, and CD8_navie 
(Figure  6A). However, the condition of immune infiltration 
behaved differently in the DM group. Compared with regular 
patients, Neutrophil increased significantly in the DM group, 
whereas monocytes, iTreg, and iTreg decreased significantly, and 
other significant decreases were NK, CD4_T, CD8_T, Tgd, CD4_
navie, nTreg, Tfh, and CD8_naive (Figure 6B). The above results 
reflect the different cellular immune microenvironments of 
various diseases.

Selection and analysis of hub genes

According to the characteristics of the nine algorithms of 
cybHubba, we  obtain the first 30 hub genes, respectively 
(Supplementary Table S4). Notably, these hub genes share 10 
targets, including seven upregulated genes (PTGS2, RAB10, 
LRRK2, SOS1, EEA1, NF1, and RAB14) and three down-regulated 
genes (ADCY5, RAPGEF3, PRKACG) (Figure 7A). Table 1 shows 
the full name and the hub genes of related functions. Based on the 
GeneMANIA database, we  got a complex PPI network with a 
co-expression of 59.87%, Reactome of 31.95%, physical 
interactions of 7.09%, and pathway of 1.10%. GO analysis involved 
response to glucagon, cellular response to peptide hormone 

stimulus, cAMP metabolic process, insulin secretion, regulation 
of neurotransmitter secretion, cellular response to the metal ion, 
and innate immune response activating cell surface receptor 
signaling pathway. These results of Reactome emphasized the 
critical role of the immune system and insulin in AD and DM 
(Figure 7B). Furthermore, pathway analysis with WebGestalt is 
associated with the serotonergic synapse, ovarian steroidogenesis, 
and estrogen signaling pathway, regulation of lipolysis in 
adipocytes, and human cytomegalovirus infection (Figure 7D). 
Interestingly, two genes (ADCY5 and PRKACG) were almost 
involved in all top  10 KEGG Pathways (Figure  7C). Thus, 
neurotransmitters, insulin, immunity, and sex hormones play 
essential roles in developing these two diseases. Figure 7E shows 
the mRNA expression of 10 Hub genes.

To explore the contribution of the Hub gene to the immune 
infiltration of disease, we carried out a correlation analysis. For AD 
patients, EEA1, LRRK2, NF1, PTGS2, RAB10, RAB14, and SOS1 were 
significantly positively associated with immune infiltration scores, and 
ADCY5, RAPGEF3 were significantly negatively associated with 
immune infiltration scores (Figure  6C). And only PTGS2 was 
significantly positively associated with immune infiltration scores in 
DM patients (Figure 6D).

In addition, we  established multilayer perceptron (MLP) 
networks, which have two hidden layers and five neurons in each 
hidden layer. For the obtained mlpcla model, the network structure of 
the model can be  visualized using the plotnet () function. After 

A B

C D

FIGURE 4

DEGs enrichment analysis results. (A) The two datasets showed an overlap of 339 DEGs, (B) The enrichment analysis results of GO, and (C–D) The 
enrichment analysis results of the KEGG Pathway. Adjusted p-value <0.05 was considered significant.
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running the program, the image shown in Figure 8 can be obtained. 
In the connection weights between neurons in the network, the 
positive importance uses red lines, the negative consequence uses gray 
streaks, and the line’s thickness reflects the weight’s size (Figures 8A,D). 
For the MLP network, the importance of each independent variable 
to the model prediction results can be computed and visualized. Our 
study found that the top three most positive important variables for 
AD classification were PRKACG, RAPGEF3, and LRRK2. Three 
negative weights, such as EEA1, RAB14, and NF1. The top three most 
positive variables for DM classification were PRKACG, RAPGEF3, 
and RAB14.

Similarly, the negative weights are NF1, LRRK2, EEA1, etc. 
(Figures  8B,E). The prediction effect of the MLP classifier on the 
dataset can also be visualized using the confusion matrix. As shown 
in Figure 8, the seeds of AD and DM can be found in the confusion 
matrix, which can be predicted 100% correctly (Figures 8C,F).

Interestingly, after querying the AlzData (high-throughput 
omics data for AD, http://www.alzdata.org/), we  found that 
RAPGEF3 was significantly positively correlated with Aβ and 
Tau, while NF1 was significantly negatively correlated with Aβ 
and Tau. Besides, we also use the Attie lab diabetes database (the 
interactive database of gene expression and diabetes-related 
clinical phenotypes, http://diabetes.wisc.edu/correl_f2.php) and 
found that ADCY5 and SOS1 had a significant positive association 
with insulin and body weight, but significantly negatively 
associated with glucose; On the contrary, PTGS2, EEA1 were 
significantly and positively associated with glucose, but a 
significant negative association with insulin and body weight. 
Human Genetic Evidence Calculator (HuGE Calculator, Evidence 
from human genetics can provide important support for 
hypotheses about the roles of genes in disease, https://hugeamp.
org/hugecalculator.html?prior), the query results showed 

FIGURE 5

PPI network and common DEGs. Red indicates upregulated genes, and blue-violet indicates down-regulated genes.
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ADCY5, NF1 significant associations with type 2 diabetes 
phenotypes (Figures 9C).

Key gene validation

Accumulating epidemiological and biochemical evidence suggests 
that insulin resistance in the brain leads to altered gene expression 
profiles in the hippocampus and prefrontal cortex of rats, suggesting 
an association between type 2 diabetes mellitus and Alzheimer’s 
dementia. The GSE34451 dataset contains triplicates of samples 
prepared from each brain region of type 2 diabetic Goto-Kakizaki rats 
and controls animals, providing further experimental evidence for the 
recently elaborated theory that Alzheimer’s is type 3 diabetes(Abdul-
Rahman et al., 2012). Compared with the normal group, EEA1, NF1, 
and RAB14 were significantly up-regulated in the hippocampus. 
ADCY5 and RAPGEF3 were significantly down-regulated in the cortex, 
LRRK2, RAB10, and SOS1 were significantly down-regulated in the 
striatum, and NF1 was significantly up-regulated. It has been shown 
that T2D db/db mice exhibit deficits in short-term and spatial working 

memory compared to db/m mice. Microarray analysis of hippocampal 
tissue from T2D db/db mice using the GSE151294 dataset revealed that 
EEA1 and LRRK2 were significantly down-regulated in the 
hippocampus, while NF1 was significantly up-regulated.

The above validation results look somewhat different from 
those of our bioinformatics analysis, which may be  due to the 
different species and subjects tested. In this paper, human blood 
transcriptomics of DM and AD were studied, and the verification 
samples were animal brain tissues for verification, but the final 
results were favorable to us. For example, the mRNA expression 
trend of NF1, RAB14, ADCY5, and RAPGEF3 in the blood is the 
same as that in encephalopathy, suggesting that the purpose of 
assessing brain state can be achieved by detecting blood-related 
indicators (Table 2).

Prediction and verification of TFs

Based on the iRegulon plugin, we found that 10 TFs (NES ≥ 5) 
may regulate the expression of hub genes (Figure  9A, 

A

B

C D

FIGURE 6

Immune infiltration analysis. (A) Analysis of immune infiltration in an AD group (blue) and blank group (red), (B) Analysis of immune infiltration in DM 
group (red) and blank group (blue), (C) Analysis of the relationship between Hub gene and immune infiltration in the AD group, and (D) Analysis of the 
relationship between Hub gene and immune infiltration in the DM group. Unpaired t-test, Mean ± SD, p-value <0.05 was considered significant.
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FIGURE 7

Acquisition of Hub Gene and Analysis of Co-expression Network. (A) The Venn diagram showed that nine algorithms have screened out 10 overlapping 
hub genes, (B) Ten hub genes and their co-expression network were analyzed by GeneMANIA, (C) Functional distribution of Hub gene, (D) Pathway 
analysis with WebGestalt, and (E) The mRNA expression of 10 Hub genes. Unpaired t-test, Mean ± SD, p-value <0.05 was considered significant, 
*p<0.05, **p<0.01, ***p<0.001.

Supplementary Table S5). Further verification revealed that CEBPD, 
E2F6, and FOXO4 were significantly upregulated in the DM group, 
while KDM4A and HOXB7 were significantly down-regulated. 

Similarly, CNOT4 was significantly upregulated in the AD group, but 
FOXO4 was significantly down-regulated. They coordinated in 
regulating 10 hub genes (Figure 9B).
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TABLE 1 The details of the hub genes.

Gene Symbol Gene name Attribute Functions
ADCY5 adenylate cyclase 5 Pka Activation, Pka-Mediated Phosphorylation of Creb, 

Glucagon-Like Peptide-1 (Glp1) Regulates Insulin Secretion, 

Regulation of Insulin Secretion, Pka Activation In Glucagon 

Signalling

activation of protein kinase activity

EEA1 early endosome antigen 1 Immune System, Innate Immune System cytosolic transport
LRRK2 leucine-rich repeat kinase 2 cellular response activation of protein kinase activity
NF1 neurofibromin 1 Immune System negative regulation of kinase activity
PRKACG protein kinase cAMP-activated catalytic 

subunit gamma

Pka-Mediated Phosphorylation of Creb, Glucagon-Like Peptide-1 

(Glp1) Regulates Insulin Secretion, Pka Activation, Immune 

System, Integration of Energy Metabolism, Rap1 Signalling, 

Regulation of Insulin Secretion, Pka Activation In Glucagon 

Signalling, Innate Immune System

activation of innate immune response

PTGS2 prostaglandin-endoperoxide synthase 2 Immune System nucleoside phosphate biosynthetic 

process
RAB10 RAB10, member RAS oncogene family Immune System, Innate Immune System cellular response to peptide
RAB14 RAB14, member RAS oncogene family Immune System, Innate Immune System cytosolic transport
RAPGEF3 Rap guanine nucleotide exchange factor 3 Immune System, Glucagon-Like Peptide-1 (Glp1) Regulates 

Insulin Secretion, Integration of Energy Metabolism, Integrin 

Signaling, Rap1 Signalling, Regulation of Insulin Secretion

cyclic-nucleotide-mediated signaling

SOS1 SOS Ras/Rac guanine nucleotide exchange 

factor 1

Immune System, Innate Immune System, Integrin Signaling cellular response to peptide

A

B

C

D

E

F

FIGURE 8

Multilayer perceptron networks analysis. (A,D) Neural network analysis of Hub gene in AD and DM groups, (B,E) The importance of each independent 
variable to the AD or DM model prediction, and (C,F) The prediction effect of the MLP classifier on the dataset of AD or DM.
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A

B C

FIGURE 9

TFs regulatory network and its expression in GSE97760 and GSE95849. (A) The expression level of TFs in GSE97760 and GSE95849. The comparison 
between the two sets of data uses the mean T-test. *p < 0.05, **p < 0.01, ***p < 0.001, (B) TFs regulatory network. TFs were marked in green, and the hub 
genes were marked in red, and (C) Evidence from human genetics can provide important support for hypotheses about the roles of genes in DM via 
the HuGE Calculator.

TABLE 2 Key gene validation.

Gene Value of p LogFC Tissues Data source

EEA1 0.001 0.91 hippocampus GSE34451

NF1 0.001 1.05 hippocampus GSE34451

RAB14 0.015 0.64 hippocampus GSE34451

ADCY5 0.031 −0.64 prefrontal cortex GSE34451

RAPGEF3 0.014 −0.76 prefrontal cortex GSE34451

LRRK2 0.038 −1.14 striatum GSE34451

NF1 0.030 0.91 striatum GSE34451

RAB10 0.037 −0.90 striatum GSE34451

SOS1 0.038 −0.73 striatum GSE34451

EEA1 0.021 −0.45 hippocampus GSE151294

LRRK2 0.036 −0.40 hippocampus GSE151294

NF1 0.020 1.10 hippocampus GSE151294
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Discussion

There is growing evidence that both DM and AD diseases are 
involved in impaired glucose homeostasis and changes in brain 
function (Baglietto-Vargas et  al., 2016). Current theories and 
hypotheses suggest that defective insulin signal transduction in the 
brain causes synaptic dysfunction and cognitive impairment in AD 
(Pugazhenthi et al., 2017). In addition to common risk factors and 
clinical symptoms, metabolic defects, such as reduced cerebral 
glucose metabolism and central insulin resistance, are now 
considered inherent in AD. Therefore, some researchers believe AD 
is a “type 3 diabetes” (de la Monte et al., 2018; de la Monte, 2019). 
There is no doubt that insulin resistance is the bridge between DM 
and AD. The primary purpose of our study is to identify the common 
DEGs in AD and DM, reveal potential targets, clarify their common 
possible pathogenesis, and prevent and treat DM complicated 
with AD.

In this study, we screened 10 hub genes from 339 overlapping 
DEGs, including PTGS2, RAB10, LRRK2, SOS1, EEA1, NF1, RAB14, 
ADCY5, RAPGEF3, and PRKACG. GO, and KEGG pathway 
enrichment disclosed that hub genes were significantly involved in 
inflammatory, immune, insulin regulation, and hormone metabolism 
pathways. These 10 genes may play an important role in AD and DM 
diseases, and play a regulatory role in the occurrence and 
development of the two diseases.

Endocytosis is an active transport system, which involves the cell 
membrane of transport molecules entering and leaving the cell 
through the endocytosis transport system, and all components of the 
system form the endocytosis pathway (Hansen and Nichols, 2009). 
When the plasma membrane is partially trapped, endocytosis occurs, 
in which the contents of the vesicles are internalized through a grid-
dependent or grid-independent pathway (Khan and Steeg, 2021). 
Increasing evidence shows that endocytosis plays a role in Aβ 
metabolism (Choy et  al., 2012). Neurons can clear β-amyloid 
precursor protein (APP) through endocytosis. Genetic studies have 
shown that the occurrence and progress of AD are related to some 
endocytosis-related genes (Hollingworth et al., 2011; Lambert et al., 
2013). Therefore endocytosis gene mutations that destroy the 
physiological function of neurons may contribute significantly to the 
pathophysiology of AD (Kimura and Yanagisawa, 2018). Recently, a 
study investigated their association with AD, mild cognitive 
impairment (MCI) and brain magnetic resonance structural 
phenotypes by constructing multiple genetic risk scores (MGRS), 
suggesting that the MGRS capture endocytosis pathway is 
significantly associated with MCI (Ahmad et al., 2018). However, the 
effects of endocytosis on multiple genes of brain function seem to 
be unknown in the AD spectrum (Zhu et al., 2021). It is intriguing 
that membrane traffic-associated genes, such as RAB10 and EEA1, 
are included in the 10 hub genes.

Adenosine cyclase type 5 (ADCY5) can be used as an effector of 
neurotransmitters such as the D2 dopamine receptor, mu, δ opioid 
receptor, and mGluR3 glutamate receptor. It is preferentially 
expressed in the dorsal striatum and nucleus accumbens, and to a 
lesser extent in other regions of the brain, such as the prefrontal 
cortex and cerebellum (Lee et al., 2002; Kim et al., 2017). The change 
of ADCY5 expression in the β-cells leads to impaired glucose signal 
transduction, which indicates that ADCY5 gene polymorphism may 
affect fasting blood glucose levels and diabetes risk (Ustianowski 

et al., 2021). For the common influencing factors of AD and DM, 
such as obesity and depression, the expression of ADCY5 is increased. 
ADCY5 gene expression in adipose tissue is related to obesity in men 
and mice. In humans and mice, visceral ADCY5 expression is 
significantly higher in obese compared to lean individuals, and 
changes in adipose tissue ADCY5 expression are related to obesity 
and fat distribution, but not to impaired glucose metabolism and 
T2DM (Knigge et al., 2015).

LncRNA PTGS2 can damage islet β-cell function by regulating 
miR-146a-5p and upregulating RBP4, suggesting that LncRNA 
PTGS2 has potential value in the diagnosis of DM (Chen et al., 2021). 
Elevated levels of cyclooxygenase-2 (COX-2/PTGS2) and 
prostaglandins (PGs) are involved in the pathogenesis of AD, COX-2 
dysregulation influences abnormal cleavage of the β-amyloid 
precursor protein, aggregation, and deposition of β-amyloid plaques 
and the inclusion of phosphorylated tau in neurofibrillary tangles. 
The mechanisms of PTGS2 regulation of AD may include 
neuroinflammation, oxidative stress, synaptic plasticity, neurotoxicity, 
autophagy, and apoptosis (Guan and Wang, 2019).

RAB10 is a small Rab GTP enzyme involved in vesicle transport 
and has recently been identified as a new protein related to 
AD. Interestingly, RAB10 is the key substrate of leucine-rich repetitive 
kinase 2 (LRRK2) (Healy et  al., 2008). Besides, RAB10 
phosphorylation leads to neurodegeneration, which may 
be responsible for vesicular transport aberration observed in AD 
(Tavana et al., 2019).

Early endosomal antigen 1 (EEA1) was significantly increased in 
the human cerebrospinal fluid from AD patients compared with 
neurological controls, and EEA1 levels correspond to the increased 
total-tau levels (Armstrong et al., 2014). EEA1 gene is a candidate 
mutation for susceptibility to diabetes in the Japanese population, 
which has been confirmed by a genetic background of familial 
clustering of diabetes using genome-wide linkage analysis combined 
with exome sequencing (Tanaka et al., 2013). For DM patients, SOS1 
was statistically significantly associated with gestational diabetes 
mellitus risk at the gene level (Chen et al., 2018).

Based on the above literature, we  speculate (Figure  10) that 
ADCY5 stimulates RAPGEF3 and sAPPα through the cAMP signal 
pathway to play a neuroprotective effect, while PTGS2 can inhibit the 
activity of ADCY5. The trend of the expression of these genes is 
consistent with our conjecture, so we have reason to suggest that the 
loss of control of these genes leads to the destruction of 
neuroprotection; Both PRKACG and SOS1 can inhibit the Gap 
junction channel, destroying the blood–brain barrier and brain 
disease; LRRK2 and substrate RAB10 jointly mediate apoptosis, but 
this study found that the expression of these two genes in DM and 
AD were significantly increased, suggesting that their elevation led to 
neuronal apoptosis and promoted the transformation of DM to AD.

In addition, according to the DEGs of AD and DM, the small 
molecule drug prediction was carried out through the CMap 
database, and the small molecule compound, such as L-690488, 
exemestane, and BMS-345541 may reverse the pathology of AD and 
DM, was identified. Compared with other bioinformatics studies, our 
research focus is slightly different. In addition to exploring the 
common hub genes and biological pathways involved in AD and DM, 
we have also explored possible therapeutic drugs and related TFs. By 
building complex interactive networks, it is easy to get their common 
DEGs and identify potential key targets. This comprehensive 
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bioinformatics approach is reliable and informative in a variety of 
diseases (Su et al., 2021; Ye et al., 2021). In addition, we also analyzed 
the related TFs expression levels in the original data set, to explore 
whether TFs will also be affected by the disease. Although previous 
studies have explored the central genes related to AD and DM 
respectively, this study focuses on the molecular mechanism of DM 
complicated with AD, providing a potential direction for the 
mechanism of diseases with complications (Gudala et al., 2013; Li 
et al., 2020; Zhu et al., 2020).

However, we have to point out some limitations of this study. 
First of all, this is a microarray data analysis study, which theoretically 
belongs to the retrospective study, although this approach can speed 
up our work efficiency in discovering disease mechanisms, more 
external verification is needed to verify the key objects of our 
findings; Secondly, the development of DM into AD is a dynamic and 
slow process. In the future, we will study the gene matrix of DM 
complicated with AD, and look for the marker genes of this process 
(perhaps the key genes ADCY5, PTGS2, RAB10, etc. that we have 
studied play a role in this dynamic process), thereby effectively 
controlling the development of DM symptoms; Thirdly, the function 
of hub genes in disease needs further verification by corresponding 
biological models. Whether these genes have positive significance for 
clinical evaluation remains to be explored, which will be a challenge 
for our future work in AD and DM.

Conclusion

In conclusion, we explored the possible DEGs of AD and DM, 
and performed routine bioinformatics analysis and PPI network 
construction. As we  expected, AD and DM contribute various 
commonplace pathogenic mechanisms, which perchance voluntary 
by individual hub genes. Glucose homeostasis and changes in brain 
function, NF1, RAB14, ADCY5, and RAPGEF3 could be the focus 
of later studies (Figure 10). Up to now, the connection between 
essential genes and immune infiltration of AD and DM has been 
infrequently reported. Whether the key genes have clinical 
diagnostic significance and whether the factors related to immune 
infiltration are conducive to the diagnosis of AD or DM remains 
to be explored. This study states a new concept for the continued 
exploration of the molecular mechanism of DM accompanied by 
AD or other diseases.
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FIGURE 10

Exploring the hub genes related to the pathogenesis of DM complicated with AD by bioinformatics analysis. This figure was drawn by the ScineceSlides 
plugin.
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