Further studies are needed to improve the understanding of the pathological process underlying cognitive impairments. The purpose of this study is to investigate the global and topographic changes of white matter integrity and cortical structure related to cognitive impairments in a community-based population.
A cross-sectional analysis was performed based on 995 subjects (aged 56.8 ± 9.1 years, 34.8% males) from the Shunyi study, a community-dwelling cohort. Cognitive status was accessed by a series of neurocognitive tests including Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), category Verbal Fluency Test (VFT), Digit Span Test (DST), and Trail Making Tests A and B (TMT-A and TMT-B). Structural and diffusional MRI data were acquired. White matter integrity was assessed using fractional anisotropy (FA), mean diffusivity (MD), and peak width of skeletonized mean diffusivity (PSMD). Cortical surface area, thickness, and volume were measured using Freesurfer. Probabilistic tractography was further conducted to track the white matter fibers connecting to the cortical regions related to cognition. General linear models were used to investigate the association between brain structure and cognition.
Global mean FA and MD were significantly associated with performances in VFT (FA, β 0.119,
Disrupted white matter integrity and regional cortical surface area were related to cognition in community-dwelling populations. The associations of cortical surface area and cognition were independent of the connecting white matter tract.