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Integrated analysis of plasma
proteome and cortex single-cell
transcriptome reveals the novel
biomarkers during cortical aging
Rui-Ze Niu†, Wan-Qing Feng†, Qing-Shan Yu, Lan-Lan Shi,
Qing-Min Qin and Jia Liu*

Laboratory Animal Department, Kunming Medical University, Kunming, China

Background: With the increase of age, multiple physiological functions of people

begin gradually degenerating. Regardless of natural aging or pathological aging,

the decline in cognitive function is one of the most obvious features in the

process of brain aging. Brain aging is a key factor for several neuropsychiatric

disorders and for most neurodegenerative diseases characterized by onset

typically occurring late in life and with worsening of symptoms over time.

Therefore, the early prevention and intervention of aging progression are

particularly important. Since there is no unified conclusion about the plasma

diagnostic biomarkers of brain aging, this paper innovatively employed the

combined multi-omics analysis to delineate the plasma markers of brain aging.

Methods: In order to search for specific aging markers in plasma during

cerebral cortex aging, we used multi-omics analysis to screen out differential

genes/proteins by integrating two prefrontal cortex (PFC) single-nucleus

transcriptome sequencing (snRNA-seq) datasets and one plasma proteome

sequencing datasets. Then plasma samples were collected from 20 young

people and 20 elder people to verify the selected differential genes/proteins

with ELISA assay.

Results: We first integrated snRNA-seq data of the post-mortem human PFC and

generated profiles of 65,064 nuclei from 14 subjects across adult (44–58 years),

early-aging (69–79 years), and late-aging (85–94 years) stages. Seven major cell

types were classified based on established markers, including oligodendrocyte,

excitatory neurons, oligodendrocyte progenitor cells, astrocytes, microglia,

inhibitory neurons, and endotheliocytes. A total of 93 cell-specific genes were

identified to be significantly associated with age. Afterward, plasma proteomics

data from 2,925 plasma proteins across 4,263 young adults to nonagenarians

(18–95 years old) were combined with the outcomes from snRNA-seq data to

obtain 12 differential genes/proteins (GPC5, CA10, DGKB, ST6GALNAC5, DSCAM,

IL1RAPL2, TMEM132C, VCAN, APOE, PYH1R, CNTN2, SPOCK3). Finally, we verified

the 12 differential genes by ELISA and found that the expression trends of

five biomarkers (DSCAM, CNTN2, IL1RAPL2, CA10, GPC5) were correlated with

brain aging.
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Conclusion: Five differentially expressed proteins (DSCAM, CNTN2, IL1RAPL2,

CA10, GPC5) can be considered as one of the screening indicators of brain aging,

and provide a scientific basis for clinical diagnosis and intervention.
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brain aging, single-nuclear transcriptome sequencing, proteome, biomarker, plasma

1. Introduction

Nowadays, human life expectancy in general has increased
dramatically, and the phenomenon of population aging becomes
one of the most significant public health problems worldwide. It
is well known that the function of the brain will gradually decline
during the aging process, mainly manifested by barriers in learning
and memory, attention, decision-making speed, sensory perception
and motor coordination (Alexander et al., 2012). Mendonca et al.
(2017) suggested that the decline of brain function roughly parallels
the time course of decline in other organ functions and accelerates
significantly after age 50. The current aging trend greatly depresses
the average quality of life of the elderly, but also increases the
pressure on family and society for providing for the aged. Brain
aging is mainly divided into normal aging and pathological aging,
and pathological brain aging represents as one leading factor
of increasing incidence of neurodegenerative diseases including
Alzheimer’s disease (AD), Parkinson’s disease (PD), etc (Isaev et al.,
2019). However, there is currently no substantial diagnostic and
therapeutic methods for the prevention of brain aging and the relief
of symptoms.

Single-cell/nucleus RNA sequencing (scRNA-seq/snRNA-
seq) techniques have unraveled the transcriptional alterations
underlying the heterogeneous process of aging at individual
cell-type-specific resolution in multiple organs (Zhang et al.,
2021). Compared with scRNA-seq, snRNA-seq can directly extract
nuclei from frozen tissues to perform sequencing (Whytock
et al., 2022). Moreover, snRNA-seq provides unique advantages in
analyzing tissues difficult to be dissociated, such as the neuron-rich
brain tissues, thus reducing the bias in cellular capture and the
accompanied transcriptional artifacts (Zhang et al., 2021). At
present, many scholars are more inclined to use snRNA-seq for
scientific research on brain tissue (Preissl et al., 2018; Zhong et al.,
2020; Hao et al., 2022). The plasma proteome is a research analysis
method that focuses on the study of proteins in blood. The plasma
proteome profile changes with age throughout the human life cycle,
as does the aging of organs (Lehallier et al., 2019), and has played a
significant role in the study and exploration of neurological-related
diseases (He et al., 2021; Sorek et al., 2021), cardiovascular diseases
(Roth et al., 2020; Wang et al., 2021), tumors (Riemondy et al.,
2022), and ocular retinopathy (Menon et al., 2019). This method
provides new ideas for the diagnosis, prevention and subsequent
research of various diseases by utilizing the differential expression
of plasma proteome in different physiological states and disease
states, and also shows some prospective and application prospects
in clinical practice.

In this study, we have constructed the transcriptome profile
of PFC aging by integrating two datasets from two independent

snRNA cohort study (Brenner et al., 2020; Lau et al., 2020),
and explored new biomarkers about the PFC aging through
comprehensive integrated analysis of plasma proteome and cortical
single-cell transcriptome (Liu and Trapnell, 2016). We finally
identified five candidate proteins associated with brain aging in
plasma and verified them as potential biomarkers of brain aging
by ELISA test. This study provides novel diagnostic basis and
research ideas for the prevention and treatment of a variety of
neurodegenerative diseases related to aging in the future.

2. Materials and methods

2.1. Datasets and subjects

Two snRNA-seq datasets (GSE141552 and GSE157827) were
obtained from Gene Expression Omnibus (GEO).1 These datasets
were obtained using the 10X Genomics platform and NovaSeq 6000
sequencing platform (Brenner et al., 2020; Lau et al., 2020). The
data of plasma proteome were obtained from the “Aging Plasma
Proteome2” (Lehallier et al., 2019).

2.2. SnRNA-seq analysis

2.2.1. Preprocessing, quality control, and data
integration

The gene barcode matrices for each sample were loaded into
the R using the Read 10X function in the Seurat R package
(Nagy et al., 2020). The Seurat Object, corresponding to each
sample was created using the Create Seurat Object function
with the input gene barcode matrix provided as the raw data.
The datasets were integrated using the method of Stuart et al.
(2019). Data quality was controlled prior to integration. The
number of genes per sample, unique molecular identity counts,
and the percentage of mitochondrial genes were controlled. To
exclude potential dead cells and cell debris from the dataset, we
filtered out nuclei with ≤200 genes, ≥7500 unique molecular
identifiers, or ≥5% mitochondrial genes. In total, 65,064 high-
quality nuclei were obtained for subsequent analyses. For the
integration analysis, the highly variable features of each sample
were identified using the FindVariableFeatures function with
selection.method = vst, nfeatures = 2000. To integrate all the

1 https://www.ncbi.nlm.nih.gov/geo/

2 https://twc-stanford.shinyapps.io/aging_plasma_proteome/
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samples, the FindIntegrationAnchors function was used to anchor
the features of the samples with dims = 1:30. All samples were
integrated using the IntegrateData function with the parameter
dims = 1:30.

2.2.2. Data dimension reduction and clustering
analysis

Subsequently, we scaled the expression matrix and performed
a linear dimension reduction using the RunPCA function with
the parameter npcs = 50. The P-value distribution of each major
component was visualized using the JackStrawPlot function and
selected to perform graph-based clustering using the first 30
principal components. We performed K-nearest neighbor (KNN)
clustering using the FindClusters function with the parameter
resolution = 1 and UMAP clustering using the RunUMAP function
with the parameter dims = 1:30, which initially yielded 22
cell clusters. Differentially expressed genes (DEGs) in each cell
cluster were identified by the Wilcoxon rank-sum test using the
FindAllMarkers function with the parameters logfc.threshold = 0.25
and test.use = wilcox. We then assigned a cell-type identity to each
cell cluster according to the expression of known cell-type markers
and identified additional cell type-specific marker genes by the
Wilcoxon rank-sum test using the FindAllMarkers function with
the parameters logfc.threshold = 0.25 and test.use = wilcox. For
cell-type markers, the level of statistical significance was set at an
adjusted P-value < 0.05.

2.2.3. Examination of cell type-specific
transcriptomic changes

To examine cell type-specific transcriptome changes
in the cerebral cortex of the aging group, we used the
FindMarkers function and parameters logFc.threshold = 0.25
and test.use = Wilcox by Wilcoxon rank sum test. The level of
statistical significance of cell type-specific transcriptome changes
was set to adjusted P & LT; 0.1 and log2 multiples change ≥0.25
or ≤ −0.25.

2.2.4. Gene-set enrichment analysis (GSEA)
Gene-set enrichment analysis was applied to identify a priori-

defined gene sets that show statistically significant differences
between two given clusters. The expression file was set as input,
and gene sets of KEGG pathways and Gene Ontology (GO) were
implied, which were collected in Molecular Signatures Database
(MSigDB) (Subramanian et al., 2005; Zhong et al., 2018).

2.3. GO and KEGG signaling pathway
enrichment analysis

In this study, DEGs were all mapped to the GO terms
in the Gene Ontology database,3 and the number of genes
were calculated for each term. Pathway-based analysis was
used to characterize the biological functions of the genes.
Pathway enrichment analysis identified significant signal

3 http://geneontology.org/

transduction pathways in the KEGG database.4 In GO and
KEGG enrichment analysis, R software version 3.8.1,5 and
multiple R packages, such as clusterProfiler, org.Hs.eg.db, enrichplot
and ggplot2, were used to generate the bars, bubble maps, and
signaling pathway maps.

2.4. PPI network analysis

The STRING database6 was used for DEG-associated protein
interaction analysis and production of PPI networks. Cytoscape
3.8.0 was used7 to construct the cell differential expression network.

2.5. Participant information, inclusion
criteria and ELISA assay

Participant in the age range of 20–90 years were recruited. All
of them met the following inclusion criteria to be considered in
this study: no head injury at time of death, lack of developmental
disorder, no recent cerebral stroke, no history of other psychiatric
or neurological disorders, and no history of intravenous or
polydrug abuse. Twenty healthy adult volunteers aged between
20 and 27 years were selected as the adult group, and 20 elderly
volunteers aged between 64 and 84 years were arranged into the
elderly group. All volunteers were informed of the purpose of the
study and signed informed consent forms. Blood samples collected
from participants were coagulated and centrifuged. Afterward,
plasma was collected and stored in Eppendorf tubes until use.
The levels of CA10, DSCAM, GPC5, IL1RAPL2, CNTN2 and
SPOCK3 proteins in plasma samples were detected by ELISA kit.
The operation and detection were performed strictly according
to the kit instructions as previously described (Yu et al., 2022).
A spectrophotometer (Thermo Fisher Scientific, Vantaa, Finland)
was applied to measure the absorbance [optical density (OD)
value] of each sample at a wavelength of 450 nm for 15 min.
Finally, the linear regression equation of the standard curve was
calculated by using the concentration and OD of the standard
product. Then, the concentration of each protein in the plasma
was calculated.

2.6. Statistical analysis and data
visualization

snRNA-seq data were analyzed using the Seurat package in R.
P-values were adjusted based on Bonferroni correction. For ELISA
assays, differences between aging and adult were analyzed using
Student’s t-test (SPSS v26.0, IBM, USA). P < 0.05 was considered
statistically significant. We visualized the data using Cytoscape
(version 3.8.0) and ggplot2 package in R.

4 http://www.genome.jp/kegg/

5 http://www.r-project.org

6 https://www.string-db.org/

7 https://cytoscape.org/
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3. Results

3.1. Cell-specific transcriptional profiles
of the prefrontal cortex of human brain
aging

To investigate how molecular and cellular features are altered
during brain aging in healthy individuals, we integrated the data
from two snRNA-seq datasets (Grubman et al., 2019; Brenner
et al., 2020; Lau et al., 2020) using the method of Stuart
et al. (2019) (Seurat3). Seurat3 uses canonical correlation analysis
(CCA) and mutual nearest neighbor (MNN) for data integration,
which can effectively remove batch effect between samples. The
analysis flow is shown in Figure 1A, and two datasets containing
snRNA-seq data of prefrontal tissues from 14 normal healthy
individuals across young adults to nonagenarians were analyzed.
These samples were divided into three groups according to age,
namely stage1 (adult, age 53.5 ± 6.4), stage2 (early-aging, age
75.0 ± 4.5), and stage3 (late-aging, age 89.7 ± 3.4) (Supplementary
Table 1). After standardized integration and quality control,
a total of 65,064 cells (stage1: 10343, stage2: 28897, stage3:
25824) were obtained for subsequent downstream processing
(Supplementary Table 2).

To construct taxonomic maps of cell populations, all data were
subjected to principal component analysis (PCA) and uniform
manifold approximation and projection (UMAP) clustering
analysis and visualized, which yielded 22 unique cell clusters
(Figures 1B, C). Comparing differential genes across all cell types,
the specific genes expressed by each cell type were revealed
to identify cell phenotype (Figures 1D, E). Seven major cell
types were classified based on their respective transcriptomic
expression profiles and the previously reported cell type marker
genes (Mathys et al., 2019; Lau et al., 2020): Astrocytes
(Astros, C0, C17, C18, and C21; marked by AQP4/GFAP,
13.3% of the total), endotheliocytes (Endo, C15; EBF1/RGS5,
1.2%), excitatory neuron (Ex, C3, C4, C6, C10, C11, and C14;
CAMK2A/SATB2, 34.3%), inhibitory neuron (Inhib, C8, C9,
C12, and C13; GAD1 and GAD2, 14.5%), microglia (Micro, C7,
C19 and C20; PTPRC/CSF1R, 6.6%), oligodendrocyte (Oligos,
C1, C2 and C16; marked by MOG/PLP1/ST18, 22.7%), and
OPC (OPC, C5; VCAN/PDGFRA, 7.6%) (Figures 1B–G and
Supplementary Tables 2, 3). GSEA of these cell-type-specific
marker genes demonstrated functional characteristics of the
corresponding cell type (Figure 1F). For example, “synapse
assembly and organization” was enriched for the top marker
genes (log2FC > 0.25) for Ex and Inhib, “myelination and glia
cell development” for Oligos, “leukocyte activation” for microglia,
“angiogenesis” for End, etc (Figure 1F). In order to investigate
how molecular and cellular characteristics of prefrontal cortex
are altered during aging in healthy individuals, we compared
the proportion of different cell types across three stages. We
found that the proportion of Ex was sharply decreased with
age, while the OPC, Oligos, Micro was increased (Figure 1H
and Supplementary Table 3). The proportion of Astros was
increased in the early-aging (Figure 1H and Supplementary
Table 3). Then, To identify overall transcriptomic changes for
each cell type across three stage, we compared the transcriptomic

profiles of individual cell types across three age groups. A total
of 93 differentially expressed genes (DEGs) were identified for
all cell type during aging. Among them, genes upregulated
with age include 5 astrocytes, 13 endotheliocytes, 5 microglia;
excitatory neurons, inhibitory neurons, oligodendrocytes, and
OPC are not significantly upregulated with age (Supplementary
Table 4). Genes down-regulated with age include 2 astrocytes,
6 endotheliocytes, 16 excitatory neurons, 23 inhibitory neurons,
11 microglia, 6 oligodendrocytes, 6 oligodendrocyte precursors
(Supplementary Table 4).

3.2. Acquisition of differential
genes/proteins between prefrontal
cortex and plasma associated with aging

In order to investigate how molecular and cellular
characteristics of prefrontal cortex are altered during aging in
healthy individuals, we compared the transcriptomic profiles of
individual cell types across three age groups. A total of 870 DEGs
were identified for each cell type during aging (Supplementary
Tables 5–18). Then, we compared levels of gene expression in cells
across all stage by cell type, and identified 93 unique DEGs that is
constantly changing in all stages (Supplementary Table 4).

In order to identify the cell-specific plasma markers of brain
aging, we further collected and analyzed the plasma proteomics
data from 2,925 plasma proteins across 4,263 young adults to
nonagenarians (18–95 years old). There were 1,376 differential
proteins in the plasma that changed significantly with age
(Figure 2). By integrated analysis of snRNA-seq data and proteomic
data, we found 12 differentially expressed genes/proteins (GPC5,
CA10, DGKB, ST6GALNAC5, DSCAM, IL1RAPL2, TMEM132C,
VCAN, APOE, PYH1R, CNTN2, SPOCK3, Table 1) from
astrocytes (Figure 2A), excitatory neurons (Figure 2B), inhibitory
neurons (Figure 2C), oligodendrocyte progenitors (Figure 2D),
endothelial cells (Figure 2E), and microglia (Figure 2F).

3.3. GO, KEGG, and PPI analysis of
differential genes

In order to elucidate the biological functions of these 12
molecules, GO functional enrichment analysis and KEGG signaling
pathway analysis were performed (Figure 3). The 12 genes/proteins
were mainly enriched in these biological processes (BP): synapse
organization and aminoglycan metabolic process (Figure 3A),
molecular function (MF): glycosaminoglycan binding and cell-cell
adhesion (Figure 3B), cell component (CC): anchored component
of Plasma membrane, Glutamatergic synapse, Lysosomal Lumen
(Figure 3C). KEGG analysis showed that these crucial genes
were mainly enriched in cell adhesion molecules (Figure 3D).
In order to identify whether there was a relationship among
these 12 molecules, the protein-protein interaction analysis was
performed and the PPI network was obtained (Figure 3E). The
PPI network showed that there was extensive direct and indirect
communication, physical and genetic interactions among these
12 molecules.
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FIGURE 1

Integration analysis of snRNA-seq data for prefrontal cortex during aging. (A) Integrated analysis workflow. (B,C) Unbiased recognition of cell-type
heterogeneity in the human prefrontal cortex. (B) The UMAP plot shows distribution of different cluster (left) and cell types (right) in the PFC. (C) The
distribution of different cell types in the stage1 (left), stage2 (center) and stage3 (right) PFC. (D) Bubble dot plots of the top cluster-specific marker
genes. The size of the dot indicates expression percentage and the darkness of the color indicates average expression. (E) The heatmap of top 10
DEGs in each cell types. (F) GSEA analysis of seven cell types. (G) Total captured cell number for each cell type. (H) The bar plots show the
proportion of the seven cell types found in the PFC samples during aging. Oligos, oligodendrocyte; Ex, excitatory; OPC, oligodendrocyte progenitor
cells; Astros, astrocytes; Micro, microglia; Inhib, inhibitory; Endo, endotheliocyte.
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FIGURE 2

VENNY map of cerebral cortex and plasma proteins in naturally aging patients. (A) Venn diagram shows overlap of DEGs of astrocytes and DEPs of
plasma. (B) Venn diagram shows overlap of DEGs of excitatory neurons and DEPs of plasma. (C) Venn diagram shows overlap of DEGs of inhibitory
neurons and DEPs of plasma. (D) Venn diagram shows overlap of DEGs of OPCs and DEPs of plasma. (E) Venn diagram shows overlap of DEGs of
endotheliocyte and DEPs of plasma. (F) Venn diagram shows overlap of DEGs of microglia and DEPs of plasma.

TABLE 1 Differential gene expression information.

Source Gene name Protein name Gene expression

Astrocyte GPC5 Glypican proteoglycan 5 Down

Excitatory neuron CA10 Carbonic anhydrase 10 Down

Excitatory neuron DGKB Diacylglycerol kinase beta Down

Excitatory neuron ST6GALNAC5 ST6 N-acetylgalactosaminide alpha-2,6-sialyltransferase 5 Down

Inhibitory neuron DSCAM DS cell adhesion molecule Down

Inhibitory neuron IL1RAPL2 Interleukin 1 receptor accessory protein like 2 Down

Inhibitory neuron TMEM132C Transmembrane protein 132C Down

OPC VCAN Versican Down

Endotheliocyte APOE Apolipoprotein E Up

Endotheliocyte PTH1R Parathyroid hormone 1 receptor Up

Microglia CNTN2 Contactin 2 Up

Microglia SPOCK3 SPARC (osteonectin), Cwcv and kazal like domains proteoglycan 3 Up

4. Verification of the brain aging
markers

To verify the results obtained above, we further collected
plasma from 20 young individuals and 20 elderly individuals
(SupplementaryTable19). By consulting relevant literature, 6 genes
related to neurodevelopmental and neurological diseases (GPC5,
CA10, DSCAM, IL1RAPL2, CNTN2, and SPOCK3) were verified

by ELISA method (Supplementary Table 20). The ELISA results
demonstrated that compared with the adult group, GPC5, CA10,
DSCAM, IL1RAPL2, and SPOCK3 were down-regulated in the
aging group (Figures 4A–D, F). CNTN2 showed an up-regulation
trend with significant differences (Figure 4E). The expression trends
of GPC5, CA10, DSCAM, IL1RAPL2, and CNTN2 were consistent
with snRNA-Seq and proteomic outcomes. Moreover, correlation
analysis of these genes with age revealed that there are significantly
age-related change trends for these molecules (Figure 4G).
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FIGURE 3

The functional enrichment analysis. (A–C) GO functional enrichment analysis. (A) The top 20 GO enrichments in BP. (B) The top 20 GO enrichments
in CC. (C) The top 20 GO enrichments in MF. Each node signaled a GO term, and its size represented the gene number. The color indicates the
p-value. (D) KEGG enrichment analysis and pathway mapping. (E) Differential Gene PPI Network Analysis diagram. Each circle in the diagram
represents a differentially expressed gene. The larger the circle, the higher the expression of DEG. The line connecting the DEGs represents the
correlation between them. The thicker the connection line, the stronger the correlation between DEGs.
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FIGURE 4

ELISA test verified the expression of brain aging markers. Plasma expression level of CA10 (A), DSCAM (B), GPC5 (C), IL1RAPL2 (D), CNTN2 (E),
SPOCK3 (F) in young and elderly groups. (G) Correlation analysis of the six molecules with age. *p < 0.05, **p < 0.01, ***p < 0.001.

5. Discussion

It is well known that the degeneration process of various
physiological functions caused by aging is particularly marked by
the decline in cognitive ability of the brain. Aging is a major risk
factor for human neurodegenerative disorders, such as Alzheimer’s
disease (AD), which is rapidly rising in prevalence with age and
has become the most pressing challenge to be tackled (Zhang et al.,
2021). The brain aging process is mainly reflected in the shrinkage
of the whole brain, the reduction of gray and white matter, and the
enlargement of the ventricle (Drayer, 1988). Magnetic resonance
imaging (MRI) studies have shown that age-related gray matter
loss is most prominent in the temporal and frontal lobes (Jack
et al., 1997). Histological analysis has shown that brain atrophy
is the result of a combination of physiological degeneration such
as dendritic degeneration and neuronal death (Dumitriu et al.,
2010). Thus, the degree of brain atrophy during aging can broadly
predict the onset of cognitive impairment and the degree of
cognitive decline (Jack et al., 2005). It has also been suggested
that although there are individual differences in the rate of brain
atrophy during aging, brain imaging data can still be used to
initially determine the “biological age” of a person’s brain (Cole
and Franke, 2017), but this method has limitations for primary
clinical screening. The resolution and accuracy of MRI in the
prediction of brain aging remains modest, failing to predict the
changes of brain structure or function more accurately on early
onset Previous exploratory analysis of the brain at the cellular and
molecular levels has revealed many distinct features of brain aging,
including mitochondrial dysfunction, intracellular accumulation of
oxidatively damaged proteins, nucleic acids and lipids, dysregulated
energy metabolism, impaired cellular “waste disposal” mechanisms
autophagy lysosome and proteasome function), impaired adaptive
stress response signaling, impaired DNA repair, abnormal neural

network activity, dysregulated neuronal Ca2+ processing, stem cell
depletion and neuroinflammation, etc (Mattson, 2000; Shimura
et al., 2001; López-Otín et al., 2013; Chow and Herrup, 2015; Cohen
et al., 2015). However, it is still difficult to establish and widely
promote the above-mentioned aging indicators and methods in
clinical practice. So it is especially important to find and establish
a new authoritative screening index and method related to brain
aging. Recent studies utilized single-nucleus transcriptome analysis
to investigate the transcriptomic changes in aging brains and have
revealed molecular alterations at the single-cell level using readily
available frozen brain tissues (Lau et al., 2020). However, snRNA-
seq has not been applied to explore the cellular and molecular
alterations of brain aging in the human. At present study, we first
performed snRNA-seq analyses of the post-mortem human PFC
and generated profiles of 65,064 nuclei from 14 subjects across
adult (44–58 years), early-aging (69–79 years), and late-aging (85–
94 years) stages. A total of 93 cell-specific genes were identified
to be significantly associated with age. Combined with proteomics
data, we screened 12 differential genes/proteins (GPC5, CA10,
DGKB, ST6GALNAC5, DSCAM, IL1RAPL2, TMEM132C, VCAN,
APOE, PTH1R, CNTN2, SPOCK3) associated with aging. Among
these genes, we found decreased expression of GPC5 derived
from astrocytes, VCAN derived from OPC, DSCAM, IL1RAPL2,
TMEM132C derived from inhibitory neurons and CA10, DGKB,
ST6GALNAC5 derived from excitatory neurons. Meanwhile, the
expression of APOE and PTH1R derived from endothelial cells,
and CNTN2 and SPOCK3 derived from microglia were increased.
Finally, six genes/proteins related to neurodevelopmental and
neurological diseases (GPC5, CA10, DSCAM, IL1RAPL2, CNTN2,
and SPOCK3) were verified by ELISA.

In the Elisa sample collection process, we selected samples in
the age range of 18–95 years. The age span of the young group
increased relative to the age of the sample in the snRNA-seq
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analysis, and we used this to more broadly verify the differences and
trends of the predicted proteins between the young and old groups.
Referring to the sample size verified by Elisa experimental data in
previous articles of this kind, we selected 40 subjects of different
ages for sampling and subsequent Elisa verification and analysis.

Glypican proteoglycan 5 (GPC5) is a class of heparan sulfate
proteoglycans bound to the outer surface of the plasma membrane,
and all members of its family are expressed during the development
of the nervous system. This protein plays an important role in the
control of cell division and growth regulation involved in brain
patterning, synapse formation, axon regeneration and guidance
and has also been found in a dense network of active MS plaques
(cerebral atherosclerotic plaques) and members of this family
may be involved in the isolation of pro-inflammatory chemokines
(Kenny et al., 2017). Luxardi et al. (2007) found that GPC5 plays an
important regulatory role in cell signaling during embryogenesis,
while Gpc5 is expressed in the ventral brain when neurogenesis
begins. The presence of this protein in human and mouse brains
involves in brain development and neural function, including
neuron growth and repair (Veugelers et al., 1997; Taniuchi et al.,
2002a). In adults, GPC5 is mainly expressed in neurons of brain
tissue (Kenny et al., 2017) and it interacts with growth factors,
chemokines and extracellular matrix proteins. At present study,
we found that the GPC5 expression of astrocytes was down-
regulated with age. In combination with the ELISA experiment,
GPC5 showed a down-regulation trend in the elderly group,
corresponding to the snRNA-seq and plasma results. Recent work
has shown that in addition to being supportive cells, astrocytes are
crucial in controlling vascular blood flow, axon guidance, synaptic
formation, regulating synaptic transmission and neural circuits,
which are essential for the development and function of the central
nervous system (Zhang et al., 2016; Chai et al., 2017; Verkhratsky
and Nedergaard, 2018; Huang et al., 2020). Although astrocytes
promote neuron survival and synaptic formation, their ability to
promote synaptic formation tends to decline with age (Zhang et al.,
2016). Moreover, GPC5 can stimulate the Shh signaling pathway to
promote neuron growth and synaptic formation (Li et al., 2011).
Therefore, the down-regulation of GPC5 in astrocytes may indicate
the downregulation of synaptic formation function in the brain,
thus causing cognitive impairment.

Carbonic anhydrases (CA) are present in many organisms
where they are involved in several important biological processes.
Romeo et al. (2009) showed that this protein and its family
members are mainly expressed on neurons, especially on neuronal
axons. A research report related to glypican genes in neural
progenitor cells and differentiated neurons also pointed out that
the expression of CA was found in some mouse and human tissues,
and immunohistochemical results showed that their expression
was mainly concentrated in brain tissue compared to other organ
(Taniuchi et al., 2002a,b). Some studies have also shown that CA10
mRNA expression levels are high in the cerebellum, frontal cortex
and parietal cortex, low in the midbrain, and extremely low in the
eye (Aspatwar et al., 2010). Analysis of genome-wide genotyping
BeadChip assays in clinically relevant patients revealed that when
CA10 and its related genes involved in brain development and
neurological processes are absent, patients exhibit mild intellectual
disability, growth retardation, poor weight gain, microcephaly, long
face, large beaked nose, thick lower lip, micrognathia and other
dysmorphic features (Preiksaitiene et al., 2012). Consistently, we
found that the CA10 expression levels in excitatory neuron were

down-regulated with age and is reflected in plasma levels. These
results suggested that the decreased of CA10 in aging brain may
lead to a series of cognitive decline problems.

DSCAM is a member of the cell adhesion molecule (Ig-CAM)
immunoglobulin superfamily and is involved in the development
of the human central and peripheral nervous system. DSCAM is
expressed in the nervous system of invertebrates and vertebrates,
as well as a candidate gene for Down syndrome and congenital
heart disease (DSCHD) (Barlow et al., 2001; Boulanger, 2009).
DSCAM is involved in cell migration, synaptic targeting, axon
guidance, dendrites and cell tiling, axon fascicles and branching,
programmed cell death and synaptogenesis in the nervous
system, all of which can influence the establishment of motor
circuits during development and the effects are maintained into
adulthood (Garrett et al., 2012). There is growing evidence that
DSCAM expressed in vertebrates also plays an important role in
axonal growth, fasciculation and branching, dendritic arborization,
mosaic spacing of cells, and synaptogenesis (Garrett et al., 2012;
Montesinos, 2014, 2017; Mitsogiannis et al., 2020), and that this
protein promotes pyramidal neuron morphogenesis by regulating
dendritic arborization and spine formation during cortical circuit
development (Agarwala et al., 2001; Maynard and Stein, 2012).
So far, we experimentally showed that DSCAM was significantly
down-regulated in the elderly group. Combining previous research
and analysis by other scholars, when it was decreased in adult brain,
the axonal and dendritic developmental processes and intercellular
interactions of various neuronal cells are also adversely affected,
leading to a series of neurodegenerative diseases and behaviors (Li
et al., 2023). Accordingly, the down-regulation of this protein may
also predict brain aging and cognitive disorder.

IL1RAPL2 is a member of the interleukin 1 receptor family
and located on the X chromosome in a region associated with
X-linked non-syndromic cognitive impairment. Ferrante et al.
(2001) showed that IL1RAPL2 is specifically expressed in the
nervous system from embryonic day 12.5 through in situ expression
studies on RNA of mouse embryonic tissue sections at different
developmental stages. IL1RAPL2 has a restricted and specific
expression in the brain during development, which may point
to a precise role of this gene in the development or function
of the nervous system (Ferrante et al., 2001). Because of its
specific expression pattern, it is restricted to structures related
to cognitive function, such as the PFC and hippocampus, which
is also consistent with our experimental results that the gene is
down-regulated in the old group. Therefore, it also suggests that
IL1RAPL2 could be used as a candidate protein for brain aging to
predict brain aging.

Current research on specific protein markers for
neurodegenerative diseases has evaluated 30 highly specific
proteins associated with the brain as candidate biomarkers for
the diagnosis of AD, Among these proteins, CNTN2 may also
be indicators of disease progression, showing weak to moderate
correlation with cognitive tests, which contain the CNTN2 protein
of our interest (Begcevic et al., 2018). Some scholars believe
that CNTN2 is expressed in neurons and oligodendrocytes and
is highly regulated in developing neurons, especially in axonal
growth and guidance and neuronal migration (Huang et al.,
2014). On the other hand, CNTN2 expressed by oligodendrocytes
interferes with the process of myelination, and its ablation leads
to hypomyelination. Wang et al. (2018) and Zou et al. (2020)
demonstrated through a series of experiments that CNTN2
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overexpression or knockdown could reverse the effects of miR-
34a upregulation or downregulation on proliferation and migration
of Schwann cells, respectively. Combined with our experimental
results, CNTN2 showed an up-regulation trend in the elderly
group, then we can speculate that this protein can also be one
of the candidate blood markers of brain aging. However, the age-
related CNTN2 we found was mainly derived from microglia, so
the dysfunction caused by the rise of CNTN2 in microglia require
further investigation. SPOCK3 is a heparan sulfate proteoglycan,
also known as testosterone-3, expressed in the nervous system.
Some scholars have also stated that SPOCK1 is a member of
the Spock family, and Spock1 inhibits the attachment to the
substrate and the neurite growth of neuronal cells, so SPOCK3 is
also considered to be related to neuron development (Yamamoto
et al., 2014). At present study, SPOCK3 protein showed an
increasing trend from the snRNA-seq and plasma proteomics, but
the experimental results were contrary to it. This situation may
be related to the multiple and complex regulatory roles of spock3
protein.

In conclusion, this article presents a validation and analysis of
biomarkers of brain aging in blood. The biomarkers of brain aging
in blood were screened by the analysis of human cerebral cortex
scRNA-seq data and plasma proteome. After validation of the
predicted and screened candidate proteins by Elisa method using
peripheral blood plasma from young and old groups, GPC5, CA10,
DSCAM, IL1RAPL2, CNTN2 have certain correlation with age.
These proteins can be combined with imaging detection methods
to provide certain reference value for the prevention and diagnosis
of brain aging, and also provide new ideas and directions for future
research on brain aging related topics.
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