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Many diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD),

are caused by abnormalities or mutations of related genes. Many computational

methods based on the network relationship between diseases and genes have

been proposed to predict potential pathogenic genes. However, how to e�ectively

mine the disease-gene relationship network to predict disease genes better is

still an open problem. In this paper, a disease-gene-prediction method based on

preserving structure network embedding (PSNE) is introduced. In order to predict

pathogenic genes more e�ectively, a heterogeneous network with multiple

types of bio-entities was constructed by integrating disease-gene associations,

human protein network, and disease-disease associations. Furthermore, the low-

dimension features of nodes extracted from the network were used to reconstruct

a new disease-gene heterogeneous network. Compared with other advanced

methods, the performance of PSNE has been confirmed more e�ective in

disease-gene prediction. Finally, we applied the PSNE method to predict potential

pathogenic genes for age-associated diseases such as AD and PD. We verified the

e�ectiveness of these predicted potential genes by literature verification. Overall,

this work provides an e�ectivemethod for disease-gene prediction, and a series of

high-confidence potential pathogenic genes of AD and PD which may be helpful

for the experimental discovery of disease genes.

KEYWORDS
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propagation, human essential genes

1. Introduction

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are two of the most common

forms of neurodegenerative illness that affect people all over the globe. The two diseases are

both complicated problems that are associated with aging. AD is the most common cause

of dementia as well as other neurodegenerative illnesses, and the symptoms of the condition

often include behavioral abnormalities, memory loss, and cognitive impairment (Joe and

Ringman, 2019; Li et al., 2021). About 1–2 percent of adults over the age of 60 are diagnosed

with PD, making PD the most prevalent motor neurodegenerative illness (Wirdefeldt et al.,

2011; Ascherio and Schwarzschild, 2016). Diagnosis of PD can be established when typical

features of dyskinesia are combined with other features such as rigidity, tremor, and postural

instability (Postuma et al., 2015). For patients, these disease may bring them tremendous

emotional pressure and financial pressure. At the moment, patients are mostly treated

with pharmaceuticals such as N-methyl-D-aspartic acid receptor antagonists, memantine,

and cholinesterase inhibitors. For the time being, there is no all-encompassing therapeutic
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solution accessible for this condition (Jevtic et al., 2017). Therefore,

it is an urgent need to explore and evaluate novel cell-related

biomarkers and therapeutic targets to increase the level of diagnosis

and therapy offered to patients with AD or PD. The creation of

gene networks may bring about the alterations associated with the

etiology and development of AD and PD.

The screening and identification of pathogenic genes is one

of the research hot spots in the field of modern bio-medicine,

which is important to explore the pathogenic mechanism of

the disease. The rapid advancement of contemporary biomedical

technology has led to the production of a significant amount of

data about biological networks, which in turn has facilitated the

development of network bio-medicine (Ata et al., 2021; Xiang

et al., 2022b). This change has resulted in the development of a

novel concept and path for the screening of pathogenic genes.

Many network-based algorithms have been proposed to prioritize

screening disease-related candidate genes. Hu et al. (2018)

proposed a novel disease-gene-prediction method by combining

path-based structure with community structure characteristics

in human protein–protein networks. Liu et al. (2021) built a

biological heterogeneous network on known correlations between

the entities from different sets, and proposed a new network

embedded representation algorithm to calculate the correlation

between disease and genes, using the correlation score to predict

pathogenic genes. Xiang et al. (2021a) proposed a framework

of network impulsive dynamics on multiplex biological network

to predict disease-related genes which could identify disease-

related genes by mining the dynamical responses of nodes

to impulsive signals being exerted at specific nodes. Xiang

et al. (2022a) proposed a hybrid disease-gene prediction method

integrating multiscale module structure (HyMM), which could

utilize multiscale information from local to global structure tomore

effectively predict disease-related genes. Ruan and Wang (2021)

proposed a Disease-Specific Network Enhancement Prioritization

(DiSNEP) framework to improve disease gene prioritization using

networks. However, how to effectively mine the disease-gene

relationship network to predict disease genes better is still an

open problem.

Network embedding, which is an effective way to extract useful

information from networks, transforms the nodes of network into

low-dimensional spatial vectors while maximizes the information

about the network structure and attributes (Mikolov et al., 2013;

Perozzi et al., 2014; Tang et al., 2015; Wang et al., 2019). For

instance, Li et al. suggested a representation learningmethod which

used joint binary network embedding to conduct an analysis of

single-cell RNA-seq data. The proposed heterogeneous network

was able to incorporate numerous binary networks, allowing for a

low-dimensional representation of a variety of node types to obtain

(Li and Patra, 2010). DeepWalk (Perozzi et al., 2014) implements

a depth-first search over the network, whereas LINE (Tang et al.,

2015) implements a breadth-first searching strategy to generate a

context for nodes. Zeng et al. presented the idea of embedding

multiview knowledge in order to get an understanding of entity

embedding. This was due to the fact that multiview learning

might lead to improved generalization performance in order to

learn exhaustive entity embedding from various views (Zeng et al.,

2016). Xiang et al. (2021b) proposed a method for predicting

disease-related genes by using fast network embedding (PrGeFNE),

which could integrate multiple types of associations related to

diseases and genes.

In this paper, a method called preserved structure network

embedding (PSNE) is offered for the prediction of disease

genes. Firstly, we collect disease-gene associations, human

protein network, and disease-disease associations to construct

a heterogeneous network for integrating information. Each

node in the heterogeneous network represents a vector that

can retain the input network structure. Secondly, the network

embedding algorithm is introduced to obtain low-dimensional

vector representations of the nodes that make up the network.

Thirdly, in order to remove unnecessary information, the low-

dimensional vector representations that are retrieved from the

nodes are made to be sparse. In order to create the disease-gene

network, as well as to rebuild the heterogeneous network made

up of diseases and genes, low-dimensional vector representations

are used. In the last step, network propagation algorithm is used

in order to forecast disease genes utilizing the newly developed

two-layer heterogeneous network.

The remaining parts of the article are detailed down below.

In Section 2, the disease-related gene data sources used in this

investigation are outlined. Then, a method called PSNE is proposed

for predicting disease genes. In Section 3, we compare other

methods to confirm the excellent performance of PSNE through

experiments and analyze the gene prediction ability of the PSNE

method in AD and PD. In Section 4, we summarize the work and

discussion.

2. Materials and methods

2.1. DATASET

2.1.1. Disease-gene association
Data availability, fragmentation, heterogeneity and

inconsistency of concept description are problems that must

be overcome in disease mechanism research. DisGeNet is a

database which collects a large number of mutations and genes

related to human diseases (Mendelian genetic diseases, complex

diseases, and environmental diseases). DisGeNet is a collection of

data obtained by collating and combining the data from public

databases, scientific literature, Genome-wide association study

catalogs, and animal models. The data collected by the database are

annotated by a unified standard. In addition, there are more perfect

basic criteria to determine the order of the relationship between

genotypes and phenotypes. This information can be accessed

through web interfaces, cytoscape applications, R packages,

and scripting in several programming languages. DisGeNet is

not only a multi-functional platform but also can be used for

different research purposes, comprising the molecular essential

of specific human diseases and their complications, analyzing

pathogenic gene characteristics, constructing drug therapeutic

effects and hypotheses of adverse drug reactions, testing candidate

disease genes, and evaluating text mining approaches. The latest

version of DisGeNet is v7.0, containing 1,134,942 genetic disease

associations, between 21,671 genes and 30,170 diseases, symptoms,

characteristics, and clinical or abnormal human phenotypes, as
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well as 369,554 variant disease associations, between 194,515

variants and 14,155 diseases, characteristics, and phenotypes.

In this paper, the DisGeNet database is combed in search of

disease-gene connections and filtered the primary dataset. Firstly,

we choose “disease” as “diseaseType” and “Disease or Syndrome”

as “diseaseSemanticType.” Then, the genes that do not exist in the

human protein network are filtered out. If a disease has the same

set of disease genes, only one of the diseases is randomly retained.

Finally, the number of disease-gene associations is 20,274.

2.1.2. Human protein network
To avoid the incompleteness of human protein networks caused

by a single data source, we employ extensive interactions that are

generated from the sources listed below (Menche et al., 2015).

(1) Regulatory interactions; (2) literature-compiled interactions,

which are mostly derived from low-throughput trials; (3) binary

interactions derived from numerous yeast two-hybrid high-

throughput datasets as well as data gathered from the published

literature; (4, 5) interactions of the signaling pathways; (6) pair of

kinase and substrate molecules; and (7) protein complexes.

2.1.3. Disease-disease association
By using the same method in MimMiner recently, the disease-

disease similarity scores are calculated to construct the disease-

disease network. The OMIM IDs are mapped one by one to UMLS

IDs in DisGeNet, and then k-nearest neighbor method is used to

obtain sparse disease-disease network.

2.2. Methods

Here, the disease-gene prediction method is presented by

using preserving structure network embedding (PSNE), which

can use multi-source biological information to predict disease-

related genes more effectively. The PSNE method consists

of four parts: heterogeneous network construction, network

embedding algorithm, heterogeneous network reconfiguration and

heterogeneous network propagation (see Figure 1). Next, we will

describe the details of the four parts.

2.2.1. Heterogeneous network construction
The disease gene prediction method is get start by constructing

heterogeneous networks using disease and gene association data

from multiple sources. In order to solve the network sparsity

problem, the disease-gene network is needed to enrich by using

other known human protein relationship networks and disease-

disease relationships. Heterogeneous network is constructed by

integrating three different types of connected data: disease-

gene associations, human protein network, and disease-disease

associations.

2.2.2. Network embedding algorithm
Network embedding is an algorithm to get the information

from the network, which converts the nodes into a vector of

low dimensional space while maximally preserves the network

structural information (Dai et al., 2019). There are many network

embedding algorithms. The random walk algorithm is used in the

PSNE method. The purpose of network embedding is to determine

the interconnections that exist between each node and the links

that are immediately around the node by using a series of vectors

that is created by random walk (Grover and Leskovec, 2016). The

functional similarity of two nodes in a network is correlated with

the distance between those nodes. Network analysis is utilized

to provide a quantitative assessment of the links between genes

and diseases. More researches can be done in the disease-gene

associations by applying the network embedding algorithm to the

structure.

Let G = (V ,E,W) denote a heterogeneous network, where

vertex v ∈ V indicates a gene, e(u, v) ∈ E is the edge of connecting

genes v and u, w(u, v) ∈ W is the weight of edge e(u, v), which

is used to characterize the probability of a relationship between u

and v. Here, the weight of all edges in the heterogeneous network is

set to 1, which means that they are equal to each other. Considering

the nature of grouping between heterogeneous networks, the vertex

may move toward its adjacent position with different probabilities.

In the process of random walk, nodes tend to travel along the

edge and have the highest probability of transitioning to their

proximity. Given a vertex vi and an edge e(vi−1, vi), where vertex vi
visited vertex vi−1 in the previous step. By calculating the transition

probability T(vi, vi+1) on edge e(vi, vi+1), vertex v is transferred to

one of its neighbors vi+1. The transition probability T(vi, vi+1) is

defined as follows:

T(vi, vi+1) = π(vi−1, vi+1)∗W, (1)

π(vi−1, vi+1)











1
p , dvi−1vi+1 = 0

1, dvi−1vi+1 = 1
1
q , dvi−1vi+1 = 2

, (2)

where dvi−1vi+1 represents the shortest path distance from the

previous vertex vi−1 to the next vertex vi+1. dvi−1vi+1 = 0 means

that vertex vi−1 and vi+1 are the same vertex, and vertex v jumps

back to its previous vertex vi−1, dvi−1vi+1 = 1 means that vertex vi+1

is the common neighbor of vertex vi−1 and v, dvi−1vi+1 = 2 means

that vi−1 and vi+1 are indirectly connected, and vertex vi+1 is not

their common neighbor. The parameter p controls the possibility

of revisiting the node during random walk. Setting the parameter p

to a higher value can ensure that we avoid sampling the nodes that

have been visited in the next step. This setting encourages moderate

exploration and avoids the redundancy of sampling. If the value of

parameter p is very low, it will cause the walk to backtrack one step,

which will make the walk close to the starting node. If the parameter

q is greater than 1, random walk will tend to be between nodes

around the starting point. Such random walk behavior reflects

breadth first search. On the contrary, if the parameter q is less

than 1, random walk is more likely to visit nodes far away from

the node, which reflects depth first search. After calculating the

transition probability of each edge in the heterogeneous network,

the normalized transition probability matrix Tnorm is defined to

ensure that the sum of the exit probability of each node is 1,

Tnorm(vi, vi+1) =
T(vi, vi+1)
∑

j∈i T(vi, vj)
. (3)
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FIGURE 1

Workflow of PSNE. The disease-disease associations, disease-gene associations, and human protein network are connected together and

constructed as a heterogeneous network. The network embedding algorithm is used to realize the low-dimensional vector representation of the

network and then a new two-layer heterogeneous network of diseases and genes is constructed. Finally, the network propagation algorithm is used

to predict the pathogenic genes.

FIGURE 2

Performance evaluation of PSNE in terms of (A) AUROC and (B) AUPRC, with comparison to the state-of-the-art methods.

Let G = (V ,E,W) denote a heterogeneous network. Let f denote

the mapping function from node to feature representation to

learn the downstream prediction task. Here, d is a parameter

that specifies the dimension of feature representation, which is

set to 128. Equivalently, f is a parameter matrix of size |V| ×

d. For each source node u ∈ V , NS(u) ⊂ V is defined

as the network neighborhood generated by node u through

domain sampling strategy S. Feature learning in networks is

described as a model that maximizes the log-probability(log Pr) of

neighbors NS(u),

max
f

∑

u∈V

logPr
(

NS(u) | f (u)
)

. (4)
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TABLE 1 Performance evaluation of PSNE in terms of top-k Recall (k = 1, 5, 10, 50, 100, and 200), with comparison to the state-of-the-art methods.

Methods Recall_1 Recall_5 Recall_10 Recall_20 Recall_50 Recall_100 Recall_200

PSNE 0.078 0.176 0.227 0.287 0.359 0.418 0.499

dgn2vec 0.075 0.174 0.223 0.279 0.349 0.411 0.497

RWRH 0.046 0.121 0.172 0.237 0.322 0.393 0.475

PRINCE 0.015 0.057 0.093 0.143 0.211 0.257 0.307

CIPHER 0.007 0.029 0.049 0.081 0.137 0.184 0.232

BiRW 0.027 0.080 0.117 0.164 0.234 0.286 0.432

RWR 0.019 0.056 0.077 0.102 0.137 0.166 0.195

DK 0.021 0.058 0.077 0.101 0.131 0.155 0.182

Bold values represent the maximum values in each column of data.

TABLE 2 For Alzheimer’s disease, the performance evaluation of PSNE in terms of top-k Recall (k = 1, 5, 10, 50, 100, and 200) with comparison to the

state-of-the-art methods.

Methods Recall_1 Recall_5 Recall_10 Recall_20 Recall_50 Recall_100 Recall_200

PSNE 0.022 0.042 0.062 0.132 0.222 0.325 0.467

dgn2vec 0.008 0.037 0.053 0.073 0.160 0.245 0.352

RWRH 0.017 0.026 0.042 0.087 0.149 0.269 0.412

PRINCE 0 0.004 0.009 0.009 0.016 0.085 0.164

CIPHER 0 0 0 0 0.006 0.018 0.052

BiRW 0 0 0.007 0.035 0.110 0.197 0.294

RWR 0.008 0.013 0.013 0.029 0.072 0.146 0.265

DK 0.015 0.031 0.057 0.077 0.146 0.215 0.290

Bold values represent the maximum values in each column of data.

TABLE 3 For Alzheimer’s disease, the performance evaluation of PSNE in terms of top-k Precision (k = 1, 5, 10, 50, 100, and 200), with comparison to the

state-of-the-art methods.

Methods Prec_1 Prec_5 Prec_10 Prec_20 Prec_50 Prec_100 Prec_200

PSNE 0.320 0.136 0.100 0.106 0.069 0.050 0.036

dgn2vec 0.120 0.104 0.080 0.058 0.050 0.038 0.027

RWRH 0.240 0.080 0.064 0.070 0.047 0.041 0.032

PRINCE 0 0.016 0.016 0.008 0.006 0.013 0.013

CIPHER 0 0 0 0 0.002 0.003 0.004

BiRW 0 0 0.012 0.028 0.035 0.031 0.022

RWR 0.120 0.040 0.020 0.024 0.023 0.023 0.020

DK 0.240 0.104 0.092 0.060 0.046 0.034 0.022

Bold values represent the maximum values in each column of data.

Two standard assumptions are made in order to help the

optimization problem easy to handle. One is conditional

independence. Given the characteristic representation of nodes,

the possibility is decomposed by assuming the possibility of

observing neighborhood nodes is independent of observing any

other neighborhood nodes:

Pr
(

NS(u) | f (u)
)

=
∏

ni∈NS(u)

Pr
(

ni | f (u)
)

, (5)

And the other is symmetry of feature space. Source nodes and

neighborhood nodes have symmetrical influence on each other in

the feature space. Therefore, the condition of each node pair is

modeled as a unit, and parameterize the node pair through the

point product of their characteristics:

Pr
(

ni | f (u)
)

=
exp

(

f (ni) · f (u)
)

∑

v∈V exp(f (v) · f (u))
. (6)

With the above assumptions, the objective in Equation 4 is

simplified as:
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TABLE 4 Top 20 related genes of AD predicted by PSNE.

Top 1–10 gene Evidence Top 11–20 gene Evidence

GRN PMID: 35039149 POMC PMID: 32982666

OXT PMID: 31775875 TOMM40 PMID: 29777097

CHRNA4 PMID: 23701948 PON1 PMID: 30714958

PAH PMID: 27294413 ATP13A2 PMID: 25056458

TYROBP PMID: 25052481 SOD1 PMID: 33402227

IL6 PMID: 30104698 END1 PMID: 33723589

TFB1M PMID: 32497722 CAT PMID: 27809706

NOS2 PMID: 32087283 NGF PMID: 30804738

IFNG PMID: 20213229 IL10 PMID: 31879236

CBS PMID: 32754109 PTGS2 PMID: 29784049

TABLE 5 For Parkinson’s disease, the performance evaluation of PSNE in terms of top-k Recall (k = 1, 5, 10, 50, 100, and 200), with comparison to the

state-of-the-art methods.

Methods Recall_1 Recall_5 Recall_10 Recall_20 Recall_50 Recall_100 Recall_200

PSNE 0.008 0.067 0.119 0.188 0.324 0.430 0.510

dgn2vec 0.014 0.064 0.089 0.148 0.298 0.403 0.489

RWRH 0.012 0.020 0.043 0.069 0.140 0.235 0.381

PRINCE 0 0 0 0.027 0.038 0.056 0.078

CIPHER 0 0 0 0 0 0.006 0.043

BiRW 0 0 0 0.027 0.038 0.056 0.079

RWR 0 0.002 0.010 0.020 0.041 0.051 0.093

DK 0 0.002 0.006 0.013 0.028 0.044 0.056

Bold values represent the maximum values in each column of data.

TABLE 6 For Parkinson’s disease, the performance evaluation of PSNE in terms of top-k Precision (k = 1, 5, 10, 50, 100, and 200), with comparison to the

state-of-the-art methods.

Methods Prec_1 Prec_5 Prec_10 Prec_20 Prec_50 Prec_100 Prec_200

PSNE 0.160 0.264 0.240 0.192 0.134 0.089 0.052

dgn2vec 0.280 0.264 0.180 0.150 0.123 0.083 0.050

RWRH 0.240 0.088 0.088 0.069 0.058 0.049 0.039

PRINCE 0 0 0 0.028 0.016 0.012 0.008

CIPHER 0 0 0 0 0 0.001 0.005

BiRW 0 0 0 0.028 0.016 0.012 0.008

RWR 0 0.008 0.020 0.020 0.018 0.011 0.010

DK 0 0.008 0.012 0.014 0.012 0.010 0.006

Bold values represent the maximum values in each column of data.

max
f

∑

u∈V



− logZu +
∑

ni∈NS(u)

f (ni) · f (u)



 . (7)

For large scale networks, the calculation cost of partition function

Zu =
∑

v∈V exp(f (u) · f (v)) of each node is very high, the

negative sampling is used to approximate the partition function

Zu. The stochastic gradient ascent algorithm is used to optimize the

Equation 7 on the model parameters that define the feature f .

2.2.3. Heterogeneous network reconfiguration
Network structures are concise and efficient data structures,

which are used to describe related problems in bio-informatics

(Hohmann, 2010). The connections between nodes represent

their interactions, such as diseases caused by gene expression,

reactions between proteins and other interactions. If two

nodes in the network are connected, the information shown

by the two nodes is considered related. The heterogeneous

network representation learning algorithm embeds the rich
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TABLE 7 Top 20 related genes of PD predicted by PSNE.

Top 1–10 gene Evidence Top 11–20 gene Evidence

DNAJC13 PMID: 24218364 NOS3 PMID: 18663495

PDYN PMID: 17203488 NOS2 PMID: 32003282

CAT – KMT2B –

PODXL PMID: 26864383 SERPINA1 PMID: 27184740

GSR PMID: 30156440 C2orf50 –

DRD4 PMID: 23232665 ADH1C PMID: 15642852

IL1B PMID: 32003282 GLUD2 PMID: 33093440

NTRK2 PMID: 31991178 XK –

ALDH5A1 – POLG PMID: 32364361

TH – PON1 PMID: 32002976

structural and semantic information in the heterogeneous

network into the low-dimensional node representation, which

is convenient for downstream applications. Low-dimensional

node vectors represent useful high-level correlation information

in heterogeneous networks. The data are used to reconstruct a

two-layer heterogeneous network. In specifically, Ci,j =
EsTi ·Esj
|Esi|·|Esj|

is

used to calculate the cosine similarity between different diseases,

where Es represents the embedding vector of node and EsT is the

transposition of Es, and the network embedding algorithm is used

to the enhanced disease network. Similarly, an enhanced gene

network is made. After that, there is the revised gene association

network as well as the disease association network, and disease-

gene network is integrated to form a new disease-gene two-layer

heterogeneous network D, which can be represented by,

D =

(

HI HG

HT
G HN

)

, (8)

where HI represents the improved disease network, HN represents

an improved gene network,HG indicates a disease-gene association

andHT
G is the transposition ofHG. In contrast to the heterogeneous

networks described earlier, the two-layer heterogeneous networks

include more concentrated and more pertinent information.

2.2.4. Heterogeneous network propagation
The network propagation is simulated in the new two-layer

heterogeneous network of diseases and genes to determine the

likelihood of disease-associated genes. A disease network HI , a

gene network HN , a disease-gene network HG and HE which is

the transposition of HG are given, each of them is denoted by a

symbol. Then, we come up with the following diagonal matrix DI ,

DN ,DG andDE, where the elements of the diagonal are specified by

(DI)i,j =
∑

j (HI)j,i, (DN)i,j =
∑

j (HN)j,i, (DG)i,j =
∑

j (HG)j,i and

(DE)i,j =
∑

j (HE)j,i. Then, the normalized matrices of HI , HN , HG

and HE can be written as,

ĤI = HID
−1
I

ĤN = HND
−1
N

ĤG = HGD
−1
G

ĤE = HED
−1
E



















(9)

These normalized matrices allow us to construct a new matrix.

D̂ =

(

(1− β)ĤI βĤG

βĤE (1− β)ĤN

)

, (10)

where β is the jump probability between layers. The random walk

can jump to the gene network with probability β when applying

to the disease network, or remain in the original network with the

probability 1− β .

The inter-layer jump can take place only when the node reached

by the random walk algorithm is linked to the node of another

layer’s. In such case, node can only be moved to that is close to

the node in the layer, or may be taken back to the node where the

node began. In light of this, we refer to a diagonal matrix as HḊ

and
(

HḊ

)

i,i
=
∑

j(D̂)j,j. In a two-layer heterogeneous network, the

following approaches is used to get the final transfer matrix T of the

network propagation process,

T = D̂ ·H−1

D̂
. (11)

The model of a random walk with a reset can be described by,

qt+1 = (1− α)T · qt + αq0. (12)

The initial probability vector of the random walk is characterized

by q0 =
(

qT0D, q
T
0G

)T
, where qT0D is the initial probability vector

of the disease network. The initial probability vector of the gene

network is denoted by qT0G, where parameter α ∈ (0, 1) is the restart

probability, which means that the random walk algorithm will have

probability α to return to the initial position. After a certain number

of steps, the acquired probability will eventually arrive at a state

of stability. The genes can be sequenced in accordance with the

probability which will stabilize, and then the genes can be predicted

which are associated with the diseases.

3. Results

3.1. Evaluation parameters

In this section, we utilize the disease gene association network

that is included inside DisGeNet as a standard dataset to assess the
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effectiveness of PSNE. In addition, a number of traditional well-

performance disease gene prediction methods, such as dgn2vec,

PRINCE (Vanunu et al., 2010), CIPHER (Wu et al., 2008), BiRW

(Xie et al., 2015), RWR (Köhler et al., 2008) and DK (Köhler et al.,

2008) are used as comparison.

In the comparison of performance, all other genes are used as

control group except for genes related to diseases in training and

testing groups, which are called genome-wide control set. AUROC,

AUPRC and top-K Recall and Precision then are used as evaluation

parameters (Vihinen, 2012). AUROC is defined as the area under

the receiver’s operating characteristic curve and AUPRC is defined

as the area under the precision-recall curve, the two parameters

are able to use the intuitive indications of the data in order to

assess the performance of the classifiers, and effective reflection of

predictive sequencing of disease-associated genes is possible. The

greater score means that the performance of the classifier is better.

For the disease d in the disease set D, TD represents the set of

genes in the test set. The disease gene prediction algorithm will

provide a ranking list of candidate genes for disease d. We use

RD(k) to represent the collection of the first k candidate genes in the

ranking list. Then, Recall in the top-k ranking list is set as Recall =
∣

∣Td ∩ Rd(k)
∣

∣ / |Td|, and Precision in the top-k ranking list is set as

Precision =
∣

∣Td ∩ Rd(k)
∣

∣ /
∣

∣Rd(k)
∣

∣.

3.2. Overall comparison

Figure 2 shows the AUROC and AUPRC values of PSNE,

dgn2vec, RWRH, PRINCE, CIPHER, BiRW, RWR and DK where

AUROC values are 0.868, 0.867, 0.856, 0.821, 0.628, 0.768, 0.653,

0.641; AUPRC values are 0.125, 0.121, 0.078, 0.032, 0.016, 0.046,

0.031, and 0.032, respectively. Compared with other advanced

methods, PSNE has different degrees of improvement, with a

maximum increase of 27.5% (AUROC) and 74.8% (AUPRC).

Table 1 shows that the top-k Recall rates for PSNE are 0.078, 0.176,

0.227, 0.287, 0.359, 0.418, and 0.499. In the top-k Recall rate, PSNE

is better than all comparison methods.

3.3. Comparison of the results and case
study for Alzheimer’s disease

Tables 2, 3 show that the top-k Recall and Precision rates

of PSNE and other methods. It is also obvious from the figure

that the performance of PSNE is superior to other methods.

To further illustrate the performance of PSNE, we used PSNE

method to predict and analyze the genes that may cause AD.

Table 4 shows the top 20 Alzheimer’s-related genes predicted by

PSNE and the corresponding literature support. Progranin encoded

by GRN gene, plays a key role in the development, survival,

function andmaintenance of neurons andmicroglia in mammalian

brain. GRN functional deletion mutations cause neuronal waxy

lipofuscinosis or frontotemporal dementia-GRN (FTD-GRN) in

a dose-dependent manner. Mutations that lower PGRN levels

increase the risk of AD (Rhinn et al., 2022). The implication of

genome-wide significant differential methylation of OXT, encoding

oxytocin, in two independent cohorts indicates it is a promising

target for future studies on early biomarkers and novel therapeutic

strategies in AD (Lardenoije et al., 2019). Ma et al. (2015) suggested

that targeting TYROBP might provide a new opportunity for

the treatment of AD based on its potential protective role in

the pathogenesis of AD. The report from Marioni et al. (2019)

evidence that the association of SNPs in the TOMM40 gene with

AD is potentially mediated by both gene expression and DNA

methylation in the prefrontal cortex.

3.4. Comparison of the results and case
study of Parkinson’s disease

Tables 5, 6 show that the top-k Recall and Precision rates of

PSNE and other methods. Except that Recall-1 and Precision-1 is

not higher than dgn2vec and RWRH, the effect of PSNE is better

than other methods. Generally speaking, PSNE also has advantage

in the prediction of Parkinson’s-related genes.

Likewise, we used the PSNE method to predict and

analyze the genes that may cause PD. Table 7 shows the

top 20 Parkinson’s-related genes predicted by PSNE and the

corresponding literature support. In late-onset disease which is

most reminiscent of idiopathic PD subtle deficits in endosomal

receptor-sorting/recycling are highlighted by the discovery of

pathogenic mutations DNAJC13. Molecular deficits in these

processes are genetically linked to the phenotypic spectrum of

Parkinsonism associated with Lewy body pathology (Vilariño-

Güell et al., 2014). Nitric oxide synthase (NOS) genes (NOS1,

NOS2A, and NOS3) may create excess nitric oxide that contributes

to neurodegeneration in Parkinson’s disease (PD). NOS genes

might also interact with one another or with environmental

factors in PD (Hancock et al., 2008). The protein product of the

nuclear-encoded POLG gene plays a key role in the maintenance of

mitochondrial DNA replication, and its failure causes multi-system

diseases with varying severity. It is known that mitochondrial

dysfunction in Parkinson’s disease plays a key role in the loss of

dopaminergic neurons in the substantia nigra. Therefore, changes

in the POLG gene may influence the development of various

hereditary neurodegenerative diseases, including monogenic

Parkinsonism (Illés et al., 2020).

4. Conclusion

In the context of the globalization of AD and PD, it is

crucial to identify and predict the pathogenic genes of AD and

PD for disease prevention and treatment. In this paper, we

first combined a disease-gene network, disease-disease network,

and human protein network to build a heterogeneous network

model, used a network embedding algorithm to achieve low

dimensional vector representation of the network. In network

embedding algorithm, nodes tended to walk along the edge with

the highest transition probability to their neighbors. Assuming

that a node had n neighbors, it took O(N) time to find the exit

edge with the highest transition probability. Then, a new two-

layer heterogeneous network of diseases and genes was constructed.

Finally, the network propagation algorithm was used to predict

the disease genes. Unlike previous methods of referring to the
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topological features of heterogeneous protein networks or learning

features from gene sequences, this method represented nodes

in heterogeneous networks as potential feature vectors. It used

network embedding to maximize cross-relationships. We applied

the network embedding algorithm to the constructed dataset, and

the results showed that our method can achieve better prediction

performance. At the same time, we used this method to predict the

candidate genes related to AD and PD and carried out literature

verification through the PubMed website. We confirmed that most

of the predicted candidate genes correlate with AD and PD. In

addition, a small number of candidate genes had not been proven

on the PubMed website, but at the same time, there was no

objection. Perhaps these tiny numbers of genes without examples

could provide helpful ideas for the medical research of AD and PD.
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