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Background: Dementia-related disorders have been an age-long challenge to

the research and healthcare communities as their various forms are expressed

with similar clinical symptoms. These disorders are usually irreversible at their late

onset, hence their lack of validated and approved cure. Since their prodromal

stages usually lurk for a long period of time before the expression of noticeable

clinical symptoms, a secondary prevention which has to do with treating the

early onsets has been suggested as the possible solution. Connectivity analysis

of electrophysiology signals has played significant roles in the diagnosis of various

dementia disorders through early onset identification.

Objective: With the various applications of electrophysiology signals, the

purpose of this study is to systematically review the step-by-step procedures

of connectivity analysis frameworks for dementia disorders. This study aims at

identifying the methodological issues involved in such frameworks and also

suggests approaches to solve such issues.

Methods: In this study, ProQuest, PubMed, IEEE Xplore, Springer Link, and Science

Direct databases are employed for exploring the evolution and advancement of

connectivity analysis of electrophysiology signals of dementia-related disorders

between January 2016 to December 2022. The quality of assessment of the

studied articles was done using Cochrane guidelines for the systematic review of

diagnostic test accuracy.

Results: Out of a total of 4,638 articles found to have been published on the

review scope between January 2016 to December 2022, a total of 51 peer-review

articles were identified to completely satisfy the review criteria. An increasing trend

of research in this domain is identified within the considered time frame. The

ratio of MEG and EEG utilization found within the reviewed articles is 1:8. Most

of the reviewed articles employed graph theory metrics for their analysis with

clustering coe�cient (CC), global e�ciency (GE), and characteristic path length

(CPL) appearing more frequently compared to other metrics.

Significance: This study provides general insight into how to employ connectivity

measures for the analysis of electrophysiology signals of dementia-related

disorders in order to better understand their underlying mechanism and their

di�erential diagnosis.

KEYWORDS

Alzheimer’s disease, brain functional network, connectivity analysis, dementia,

electroencephalogram (EEG), magnetoencephalogram (MEG), threshold selection
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Introduction

Dementia is the collective name of a group of symptoms that

negatively impair memory, thinking, and social capabilities of

affected individuals to the extent of interfering with daily life. It is

the most researched neurodegenerative disorder and has attracted

the attention of experts in various fields of neuroscience. The most

prominent and common form of dementia disorder is Alzheimer’s

disease (AD). Other common forms of dementia include vascular

dementia, frontotemporal dementia, and dementia with Lewy body.

Although all forms of dementia disorders occur gradually, the effect

of the degeneration caused by the diseases is felt almost always

at the later stage of life, usually from 60 years of age and above.

Unfortunately, while several attempts made to provide a curative

treatment for this group of diseases seemingly proved abortive,

the global population is getting more skewed toward the young

(Liu and McKibbin, 2022), a situation worrisome to the healthcare

community. Therefore, it requires more concerted efforts from

all facets of the neuroscience research domain to critically

understand the underlyingmechanisms leading to the development

of dementia-related disorders. This is why dementia-based research

keeps gaining continuous attention in the research community.

As computation neuroscience forms an integral facet of

neuroscience, this field of study has been using connectivity

analysis as a tool to understand the brain and its functionalities.

Therefore, connectivity defines the physical or statistical

connections between regions of the brain or between neuronal

populations (Fornito et al., 2019; van den Heuvel and Sporns,

2019). Connectivities are grouped into three types structural,

functional, and effective connectivities based on their orientations

(Bassett et al., 2018; Park et al., 2018). Structural connectivity

entails the physical or anatomical connections among neuronal

populations or brain regions. Conversely, both functional

and effective connectivities deal with statistical dependencies

between physiological time series recorded across different brain

regions. While functional connectivity is non-causal, effective

connectivity is causal and directional. Generally, neuroimaging

and electrophysiology data are used in formulating connectivity-

based analysis of dementia-related disorders. Neuroimaging

modalities such as structural magnetic resonance imaging (sMRI),

functional magnetic resonance imaging (fMRI), diffusion tensor

imaging (DTI), and positron emission tomography (PET) have

been employed as biomarkers of dementia or as a discriminator of

various dementia-related disorders based on connectivity analysis.

Electroencephalogram (EEG) and magnetoencephalogram (MEG)

are both two common forms of electrophysiology signals which

are employed for understanding the mechanisms of dementia and

also for the identification of various forms of dementia disorders

Abbreviations: ADnt, AD not treated with medication; ADtrt, AD treated with

medication; aMCI, Amniotic mild cognitive impairment; bvFTD, Behavioural

frontotemporal dementia; DLB, Dementia with Lewy Body; DTI, Di�usion

tensor imaging; FTD, Frontotemporal dementia; HD-EEG, High density EEG;

LD-EEG, Low density EEG; naMCI, Non-amnestic mild cognitive impairment;

NC, Normal control; PD, Parkinson disease dementia; pMCI, Progressive mild

cognitive impairment; pca-AD, Posterior cortical atrophy AD; SCI, Subjective

cognitive impairment/decline; sMCI, Stable mild cognitive impairment; tAD,

Typical AD; VaD, Vascular dementia.

using functional and effective connectivity frameworks. Although

EEG and MEG are not as rich in terms of spatial information as

the neuroimaging modalities, they both have a very good temporal

resolution. EEG specifically is cheap, portable, and could be

easily accessed.

This study focuses on the analysis of electrophysiology signals

(MEG and EEG) of dementia-related disorders based on functional

ad effective connectivities. The study aims at providing a detailed

outline of the updated and overall procedures involved in the

diagnosis of dementia-related disorders using MEG- and EEG-

based brain network analysis approach. Understanding the current

knowledge status about electrophysiology signal applications in

computational neuroscience with respect to the identification and

discriminatory analysis of dementia-related disorders forms a key

goal of this article. To this end, the preferred reporting items for

systematic reviews and meta-analysis (PRISMA) are employed to

ensure reliable and meaningful study outcomes. The 27 checklist

items of the PRISMA protocol, which enable researchers to have

accurate and reliable evidence, are strictly adhered in this article

(Page et al., 2021a).

In the following sections, the review methodology, results,

discussion, and conclusion are presented.

Methods

Review standards

The systematic review conducted in this article is based on the

preferred reporting items for systematic reviews and meta-analysis

(PRISMA) procedures (Page et al., 2021a,b; Sohrabi et al., 2021).

The reviewed articles are selected using research questions and

research strategy to limit the effect of research expectation and the

current review study. The risk of bias was minimized using the

Cochrane collaboration method (Cumpston et al., 2019).

Research questions

• RQ1: How could computational approach be used on

electrophysiology signals for the understanding of underlying

mechanisms of dementia-related disorders?

• RQ2: What are the electrophysiological signal-based

connectome techniques employed for the understanding of

dementia disorders?

• RQ3: How could binary networks and weighted brain

networks be modeled with the use of electrophysiological

signals of dementia-related disorders?

• RQ4: Howmuch have electrophysiological signals contributed

to the identification or detection of early onset of dementia

disorders?

• RQ5: What are the graph theory metrics that have been

recently instrumental for the analysis of brain functional and

effective networks of dementia-related disorders?

• RQ6: With regards to the advancement presented in the

literature at present, what are the possible research gaps that

need to be filled in the aspect of connectivity analysis of

electrophysiology signals of dementia-related disorders?
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Study strategy

A comprehensive search of the most recent literature was done

independently using the following search engines and databases

such as ProQuest, IEEE Xplore, Science Direct, Springer Link, and

PubMed from 2016 to 2021. We first search for the following

keywords using the following Boolean operators: “functional

connectivity” OR “brain functional networks” OR “connectivity”

OR “connectome” AND “EEG” OR “Electroencephalogram” OR

“MEG” OR “magnetoencephalogram” AND “threshold selection”

OR “thresholding” OR “threshold setting” OR “threshold-ing”

OR “Binarization” OR “Binary network” OR “Binary matrix” OR

“Unweighted network” AND “Dementia” OR “Alzheimer’s diseas”

OR “AD” OR “Vascular dementia” OR “VD” OR “VaD” OR “mild

cognitive impairment” OR “MCI” OR “Frontotemporal dementia”

OR “Dementia with Lewy body.”

Due to the word length limitation of some of the search

engine used, the combination of keywords used in the

previous search terms was further split into the following

to accommodate all the employed search engines. Thus,

all the groups of keywords mentioned later are searched

independently with the presented Boolean operators and the

sum of the outputs in all corresponds to the reported search

results.

• “Functional connectivity” OR “brain functional networks” OR

“connectivity” OR “connectome” AND “EEG” OR “MEG”

AND “threshold selection” AND “Dementia” OR “Alzheimer’s

disease.”

• “Connectivity” OR “connectome” AND “EEG”

OR “Electroencephalogram” OR MEG OR

“magnetoencephalogram” AND “threshold selection”

OR “thresholding” AND “Dementia” OR “Alzheimer’s

disease.”

• “Connectivity” OR “connectome” AND “EEG” OR “MEG”

AND “threshold selection” OR “Unweighted network”

AND “Dementia” OR “Alzheimer’s disease” OR “Vascular

dementia” OR “mild cognitive impairment” OR “MCI” OR

“Frontotemporal dementia.”

• “Functional connectivity” OR “brain functional networks”

AND “EEG” OR “MEG” AND “threshold selection” OR

“thresholding” OR “threshold setting” OR “threshold-ing” OR

“Binarization” OR “Binarymatrix” OR “Unweighted network”

AND “Dementia” OR “Dementia with Lewy body.”

• “Connectivity” OR “connectome” AND “EEG” OR “MEG”

AND “threshold selection” OR “Unweighted network”

AND “Dementia” OR “Alzheimer’s disease” OR “Vascular

dementia” OR “mild cognitive impairment” OR “MCI” OR

“Frontotemporal dementia.”

Study selection

The search produced a total output of 4,715 articles from

ProQuest (n = 1, 855), PubMed (n = 135), IEEE Xplore (n = 825),

Springer Link (n = 386), and Science Direct (n = 1, 514). Removal

of duplicate articles resulted in a total of 4,638 records. Upon

screening the articles considering only peer-review journals and

imposition of eligibility criteria, a total of 51 research articles

were found to be eligible for the proposed study. The flow

chart of the selection process for the study is presented in

Figure 1.

Types of dementia disorders and their
electrophysiological signal acquisition

Dementia-related disorders are of various types. The early onset

of dementia, i.e., the early but abnormal cognitive impairment state

is unanimously known as the mild cognitive impairment (MCI)

stage (Petersen, 2004). The later onset of dementia disorders that

are known to be irreversible is Alzheimer’s disease (AD), which

accounts for approximately 70% of known dementia, vascular

dementia (VD), which is the second most prominent, dementia

with Lewy body (DLB), and frontotemporal dementia, and mixed

dementia are the later onset dementia disorders that are known

to be irreversible. Although few other disorders are linked to

dementia, the scope of this article pays less attention to such.

The most common risk factor for these dementia disorders is age.

Dementia risk increases with age, especially as one approaches

or becomes more than 65 years of age, bearing in mind that

dementia is not a part of normal aging. Other suggested risk factors

include family history and down syndrome (Livingston et al.,

2020).

Differential diagnosis of the later stages of dementia has

been very difficult because of their similar clinical symptoms

and also overlapping underlying mechanisms. This is one of the

reasons for various modalities attempting the development of

their differential biomarkers. As electrophysiological signals (EEG

and MEG) are among the widely researched modalities for their

differential diagnosis, the most recent differential diagnosis of

various combinations of dementia is presented in the later part of

this article.

EEG and MEG signal acquisition protocols for
dementia-related disorders

Electroencephalogram system generally comes in two basic

forms, clinical EEG devices and consumer EEG devices (Ratti

et al., 2017). The former is generally employed in healthcare

sector and scientific research setting, while the later is mostly

employed in consumer and academic settings. In general, EEG

devices comprise electrodes with conducive media, amplifiers with

filters, A/D converter, and personal computers. The EEG signals

from the scalp surface are captured by the conductive electrode,

and the amplifiers bring the captured signals to the range that could

be digitized such that the converters express the analog signals in

digital form. The digitized signals are stored and displayed on a

personal computer. Various brands of EEG equipment are available

today for recording both the high-density EEG (with electrodes

above 64 channels) or low-density EEG (with less than or equal to

64 electrodes).
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FIGURE 1

Selection process and the methodology flow chart.

Magnetoencephalogram systems, on the other hand, are

basically composed of SQUID sensors bathed in a large liquid

helium cooling unit, capable of detecting and amplifying the

neuronal generated magnetic field on the scalp surface. MEG

equipment is housed in a magnetically shielded room to get rid

of interference.

The recording protocols for EEG of dementia-related subjects

(subjects belonging to MCI, AD, VD, FTD, and DLB) are

predominantly resting state data in eyes-open and eyes-closed

conditions. This has been the common practice as found in the

literature due to the difficulties associated with dementia-related

subjects with other cognitive task-based protocols.

Brain regions and brain waves

Human brain is made up of the cerebrum, the cerebellum,

the brain stem, and other components that work concertedly to

coordinate the functionalities of the human body (Carass et al.,

2011). The cerebrum is the largest and the most prominent part

of the brain. It contains the cerebral cortex of the right and left

hemispheres of the brain. The cerebral cortex is the outermost

layer of the brain which is divided into four different lobes named

the frontal, temporal, parietal, and occipital lobes (Rosdahl and

Kowalski, 2008). The parietal lobe takes care of the movement,

stimuli perception, and recognition. The frontal lobe is mostly

responsible for reasoning, movement, emotion, planning, and

problem-solving. The temporal lobe takes the responsibility for

memory, auditory stimuli, and speech recognition. The occipital

lobe coordinates actions related to visual stimuli. However, the

combination of functionally integrated and segregated processes is

brought about by information transfer among the different brain

regions (Churchill et al., 2016).

At the network level within the brain, synchronization of the

electrical activities of the neuronal population of different cortical

regions leads to the production of brain waves. These waves
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are generally classified into five broad categories. However, other

varieties of classifications are also available in previous studies

(Teplan, 2002; Al-Kadi et al., 2013). The most generally acceptable

naming of the brain waves is the one that relies on the five frequency

bands of the brain waves as: delta (0.5–4 Hz), theta (4–8 Hz), alpha

(8–13 Hz), beta (13–30 Hz), and gamma (>30 Hz) (Teplan, 2002;

Kumar and Bhuvaneswari, 2012; Jackson and Bolger, 2014). The

detail taxonomy, frequency range, description, and other referred

properties are shown in Table 1.

Connectivity analysis

Connectivity is a term generally used to depict the concepts for

understanding and describing complex systems which frequently

occurs in various fields such as neuroscience, geomorphology,

system biology, ecology, and social network science among

others (Turnbull et al., 2018). Connectivity is the extent of the

connectedness of entities within a system. Indeed, connectivity has

brought about a scientific transformation in understanding and

describing what is perceived as complex systems. Specifically, the

brain is considered one of the most complex systems in nature, and

hence, connectivity has been one of the most instrumental tools

for both the understanding of the structural relationships of the

brain components and for mapping its functionalities to various

regions. Thus, the brain as a system in neuroscience has been

understood and described as composed of neurons, cortical areas,

or cortical regions which are the entities whose relationships are

defined by connectivity.

There are broadly three types of connectivity in neuroscience

and in any other fields of study where the connectivity concept

is applicable. These are structural connectivity, functional

connectivity, and effective connectivity. Structural connectivity

(SC) measures the level of configuration or arrangement of the

network. This implies that SC quantifies the actual physical

connections between the entities of the network. Functional

connectivity (FC) describes the statistical relationship or

connectedness between the network entities. Effective connectivity

is the influence of one network entity (especially neuron at either

the synaptic level or population level, in neuroscience) over

another (Friston, 2011) or it could be stated in brevity as the causal

relationship between network entities.

Connectivity has been a very important tool unfolding a lot of

concepts in brain network science and computational neuroscience

for a couple of decades. Several studies with applications in

the brain computer interface (BCI), emotion recognition, and

identification of brain disorders have employed connectivity

analysis as the concept looks promising and remains one of the

best choices for neuroimaging and electrophysiology data analysis.

Importantly, functional and effective connectivities have found

wide applications in electrophysiological data analysis since they

both rely on activities of the brain over time series. Thus, EEG

and MEG with a very high temporal resolution reflect the optimal

neural and dynamic responses in such analysis. Considering the

field of brain network science, FC and EC measure the respective

statistical and causal relationship between pairs of cortical or scalp

regions. These measurements are classified as information-based,

linear, or non-linear techniques. They are sometimes classified

as time-domain or frequency-domain analysis, and in fact, there

are several other criteria for their distinctions. Table 2 shows the

overview of the most established methods of FC/EC that are

pervasively employed for dementia-related disorders analysis using

electrophysiology signals, within the last 5 years.

The properties of the connectivity measures listed in Table 2

are not similar and thus, they have their associated merit(s) and

demerit(s). It is, however, unfortunate that there is no golden

rule for selecting optimal technique, and so it is quite challenging

to select a connectivity measure for a particular framework. A

general rule of thumb is to employ a univariate analysis technique

when the feature of a single signal from a neurophysiological

state is of interest and also when too much care about the

sensitivity of cognitive states within the individual is not required.

Moreover, multivariate analysis techniques are usually employed

when different neurophysiological states are jointly treated in an

analysis. Linear connectivity measures are applied when little or

no tolerance for noise is desired whereas nonlinear measures are

generally used for non-linearity detection in brain activity. Analyses

involving the phase component of the signal is considered more

sensitive to the detection of brain state compared to connectivity

analysis involving the use of amplitude component. The general

framework detail of the construction and analysis of brain networks

from EEG and MEG is presented in Figure 2.

Influence of EEG and MEG channel
densities on connectivity analysis

One of the choices that have to be made during the

consideration of the analysis pipeline of brain functional

connectivity based on electrophysiology signals is the choice

of the density of the modality (EEG/MEG). Classically, EEG

is considered to have an excellent temporal resolution among

the various brain imaging modalities. Its associated poor spatial

resolution has always been a point of concern. In order to have

an improvement on the spatial resolution of EEG, high-density

EEG (HD-EEG) montage which employs higher spatial sampling

of the scalp electrodes than the standard 10–20 low-density

(LD-EEG) montage has been adopted. The minimum number

of EEG electrodes required for HD-EEG montage is typically 64

channels (Seeck et al., 2017), and usually, as more electrodes are

added to this number, there is an incremental, but diminishing

spatial resolution (Sohrabpour et al., 2015). However, the use of

HD-EEG has been limited in many applications including those

of dementia-related disorders due to the equipment acquisition

cost, experimental setup, analysis and interpretation time (Chu,

2015).

Unlike the case of EEG, the number of MEG sensors has not

been a very serious concern in various applications. While EEG

sensors are placed directly on the scalp surface, MEG sensors

are positioned around the subject’s head rather than touching the

scalp (Singh, 2014). However, it has been shown that the closer

the proximity of MEG sensors are to the brain, the better the

spatial resolution and the neuronal current information provided
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TABLE 1 Classification of brain waves and their description (Kumar and Bhuvaneswari, 2012; Ismail et al., 2016; Beppi et al., 2021).

Frequency waves Frequency range (Hz) Wave
description

Physiological characters Associated
locations

Delta, δ 0.5–4.0 The slowest brain wave Highly dominant during sleeping Frontal region (adults)

The highest amplitude Posterior region
(children)

Theta, θ 4.0–8.0 Slow brain wave Dominant during meditation, deep
relaxation and dreaming

Thalamic region

Abnormal in adults and
normal in children

Alpha, α 8.0–13.0 Fast brain wave Dominant in wakeful but relaxed (eyes
closed)

Posterior region

Found in all ages

Depicts white matter Disappear during open eyes

Beta, β 13.0–30.0 Faster brain wave Dominant in attention, anxiety,
concentration alertness, thinking and
calculation

Parietal and frontal
regions

Associated with behavioral tasks such as
problem-solving, decision making and task
management

Gamma, γ >30 The fastest brain wave Dominant during high level cognitive tasks Somatosensory cortex

Related to perception, language processing
and learning

by the modality (Boto et al., 2016). In this respect, the number

of EEG and MEG sensors employed in the included articles has

been identified.

Influence of epoch length on the
connectivity analysis of electrophysiology
signals

Another methodological consideration that may bias the

topology of functional networks based on EEG and MEG signals

is the choice of epoch length. Usually, the epoch length of EEG

signals for functional connectivity analysis ranges from 1 s to

several seconds. The inconsistency associated with the selection

of epoch lengths often impedes objective comparison between

the outcomes of various studies. Among the various uncertainties

that have to do with the epoch length of EEG and MEG is

that the choice of epoch length required for optimum results in

that the analysis of connectivity measures is not the same. For

instance, in Fraschini et al. (2016), the effect of epoch length

on estimated EEG functional connectivity and brain network

organization was investigated using PLI and AEC. Therein, a

decrease in functional connectivity was found as the epoch length

increased and with the attainment of stability at 12 s and 6

s for PLI and AEC, respectively. In order to recognize the

common choice of epoch length employed in the analysis of

functional connectivity of dementia-related disorders, the various

epoch lengths employed in all the articles included in the study

are identified.

Graph theory approach

Graph theory application to neurophysiological (especially

electrophysiological data) in the area of computational

neuroscience has gained a lot of attention over the last two

decades. This field of study which is of Mathematics origin has

been employed in the area of neurological disorder diagnosis,

affective computing, and brain-computer interface. However,

our focus here is to highlight its recent usage in computational

cognitive neuroscience and specifically in the diagnosis of

dementia-related disorders.

In general, graph theory presents data as a graph comprising

of a set of nodes or vertices (V) connected together by edges

set (E). Hence, a graph G is defined as G(V ,E,A), such that

A is the adjacency matrix which is the matrix that describes

the relationship between the set of vertices V in the graph.

Therefore, studying human brain networks involves representing

the brain regions (which could be cortical areas or EEG/MEG

sensors location on the scalp) as nodes and the relationship (be

it physical, statistical, or causal) between the set of nodes as

the edges. A graph can either be weighted or unweighted. A

weighted graph is one in which the edges are assigned weights

such that the weight of an edge corresponds to its size. Conversely,

an unweighted or binary graph is one in which an edge either

exists or does not exist between two nodes such that an edge

exists if its value is “1” and does not exist if its value is “0”.

A graph could be directed or non-directed. A directed graph

is one in which the relationship between two nodes is one

way. The non-directed graph is one in which the relationship
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TABLE 2 List of functional and e�ective connectivity techniques used recently for dementia-related disorder analysis of electrophysiology signals

within the last 5 years and their respective properties.

Estimator Variable Domain Signal component Linearity Volume
conduction

Phase Lag Index (PLI) Univariate Frequency Phase Non-linear Less Sensitive

Weighted phase lag index (wPLI) Univariate Frequency Phase Non-linear Less sensitive

Partial Coherence (PC) Multivariate Frequency Phase Non-linear Robust

Coherence (Coh) Multivariate Frequency Phase Linear Highly sensitive

imaginary part of Coherence (iCoh) Multivariate Frequency Phase Linear Highly sensitive

magnitude square Coherence (msCoh) Multivariate Frequency Phase Linear Highly sensitive

Phase order parameter (POP) Univariate Frequency Phase Non-linear Highly sensitive

Synchronization likelihood (SL) Univariate Non-linear Sensitive

Phase coupling estimation (PCE) Multivariate Frequency Phase

Lagged linear connectivity (LLC) Multivariate Frequency Amplitude and phase Linear

Phase transfer entropy (PTE) Univariate Frequency Phase Non-linear Less sensitive

Normalized phase transfer entropy (dPTE) Univariate Frequency Phase Non-linear Less sensitive

Permutation disalignment entropy (PDI) Univariate Time Phase Non-linear Robust

Lagged phase synchronization (LPS)

Correlation coefficient (CC) Univariate Time Linear Highly sensitive

Directed transfer function (DTF) Multivariate Frequency Linear Sensitive

Amplitude envelope correlation with correction (AEC-c) Frequency Amplitude Linear

Phase locking value (PLV) Univariate Frequency Phase Non-linear Highly sensitive

Phase synchronization index (PSI) Univariate Frequency Phase Non-linear Highly sensitive

Phase coherence (PC) Univariate Frequency Phase Non-linear Highly sensitive

Lagged coherence (LC)

Granger causality (GC) Multivariate Time and frequency Linear Less sensitive

Mutual information (MI) Univariate Time Linear Robust

Normalized mutual information (dMI) Univariate Time Linear Robust

Epoch based entropy measure (EpEn) Univariate Time Linear Robust

Generalized composite multiscale entropy vector (GCMSEV) Univariate Time Non-linear Less sensitive

Complex tensor factorization Univariate Time Non-linear

Orthogonal least square (ROLS) Univariate Time Non-linear

Permutation jaccard distance (PJD) Univariate Time Non-linear

imaginary phase locking value (iPLV) Univariate Frequency Phase Non-linear Highly sensitive

between two nodes is bidirectional. An example of simple binary

directed and non-directed graphs is presented in Figure 3 for

illustration purposes.

Electrophysiology signal-based functional
brain network construction and analysis
framework

The framework for the construction and analysis of the brain

functional networks of electrophysiological signals of dementia-

related disorders involves the procedures that will be described in

the following sections. Special emphasis would be laid to the most

recent approaches used in the literature within the survey frame.

The objective here is to itemize the procedures in a way that would

be useful to the non-expert and semi-expert researchers in the field.

Nodes/vertices definition
The first procedure in formulating the brain functional

network from electrophysiological and other neurophysiological

data generally is to specify the network nodes/vertices. In brain

networks, the nodes are the cortical regions or the sensors’

locations on the surface of the scalp. Results and analysis of
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FIGURE 2

General framework for the construction and analysis of brain network from electrophysiology signals (EEG and MEG).

brain functional networks largely depend on the way the network

nodes are defined. There are two different approaches to the

definition of nodes in EEG and MEG data: The first approach

is the use of sensor/channel or channel names. This approach

depends on the standard definition of the EEG/MEG sensors

placement, and this approach is commonly employed in EEG-

based brain functional network construction and analysis. The

drawback of this approach is the issue associated with volume

conduction which reduces the spatial resolution of the data. The

second approach is the source reconstruction approach. This

approach relies on the standard definition of the brain region of

interest (using a standard brain atlas). It involves the computation

of the source space by solving the inverse problem after pre-

processing and segmenting the signals into epochs such that

the electrode locations in 3D are decided using the software

acquisition system. Two main procedures are involved in solving

the inverse problem, viz: (i) identification of the head model to

be used (with special reference for the realistic head model) and
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FIGURE 3

Representation of the simple graph containing 13 nodes and 19 edges.

(ii) source localization evaluation in the head model for dipole

source location identification. This would then be followed by the

reconstruction of the time course. Various algorithms developed

for the purpose of source reconstruction have been implemented

in free software such as EEGLAB, Brainstorm, Fieldtrip, sLORETA,

and MNE.

In general, it is always a requirement to record high-quality

signals from the scalp surface for effective analysis. Specifically,

subjects with dementia-related conditions are a bit difficult to

monitor, so investigators must be extra meticulous in the process

of data acquisition or recording in order to achieve very accurate

signals. Upon deciding the kind of node definition approach,

electrophysiological data must be filtered, denoised, and also

separated from various contaminating artifacts such as eye blinks

and muscle artifacts. EEGLAB, Brainstorm, and Fieldtrip. are

the common freely available software for electrophysiological

data pre-processing.

Edges definition
Edges definition is a very critical step in brain functional

network construction and analysis. Edges in brain networks

represent the connections between pairs of cortical areas or scalp

sensor locations. In the network construction process, the network

edges are formulated through the use of structural, functional,

and effective connectivity metrics depending on the type of

network in question. For the fact that we are less interested in

the structural network in this article, the focus will be on edges

definition with respect to functional and effective networks which

have been discussed in the previous section. Upon the selection

and implementation of appropriate connectivity measures, the

edges are either directed or non-directed. Given a multi-channel

EEG/MEG, the application of connectivity measure results in the

formation of a connectivity matrix, A. If the number of node

specified in a network is N, the connectivity matrix is usually

N×N symmetric matrix where the rows and columns of the matrix

represent the node numbers, i.e., Aij denotes the statistical relation

between channels i and j or region i and j.

Next, in edge definition, the connectivity matrix obtained

directly from the connectivity measure is converted to graph

adjacency depending on the type of network. Although the use

of the unweighted network is very popular in the construction

and analysis of dementia-related brain functional networks, it

is not free from the methodological issue which opens room

for the consideration of weighted and other form of brain

functional sub-networks such as minimum spanning tree (MST)

networks and minimum connected component (MCC) networks.

Formulating unweighted brain functional network usually involves

the determination of inclusion and exclusion borderline for

selecting edges as part of the network by selecting the appropriate

threshold. A lot of methods have been proposed for appropriate

threshold selection in the literature. These methods could be

grouped into two broad categories, viz: the arbitrary and

data-driven selections.

• The arbitrary/random value selection: This involves the

selection of threshold value by choosing a constant value

randomly such that an edge is kept as a true edge if and

only if its value is above the randomly selected threshold

value. The problem with this approach is that the formulated

network density varies from subject to subject and in fact,

some subjects have networks that are connected, while others

have disconnected networks (Wang J. et al., 2016; Engels et al.,

2017; Vecchio et al., 2017; Mammone et al., 2018b; Zhao et al.,

2019; Li et al., 2021; Toural et al., 2021). This makes the final

comparison of the networks across subjects or groups difficult

and may appear biased.

• Data-driven threshold selection: This involves the selection

of a threshold by either developing a technique or using a

particular criterion based on which the threshold value will

be chosen. There are various approaches developed under this

broad category and the most frequently and recently used are

summarized later.

1. Sparsity thresholding/Threshold selection based on edge

density: This involves the selection of threshold by fixing

an edge density, average degree of the network, or by

selecting a certain fixed percentage of the total number

of possible connections in the fully connected network

(Afshari and Jalili, 2016; Wang C. et al., 2016; Jalili, 2017;

Mammone et al., 2018a; Song et al., 2019; Mehraram et al.,

2020; Youssef et al., 2021). In this way, the actual values

of threshold across subjects or groups are not constant.

By this, the connectedness of the network is expected

to be more preserved compared to the case of random

value selection. However, using this approach does not also

guarantee the absence of disconnection in the formulated
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network. Thus, unbias network analysis is also not fully

guaranteed using this approach.

2. Statistical approach to threshold selection: This threshold

selection technique involves the selection of threshold

across networks using a particular statistic of the total

possible connections in the fully connected network.

Examples of this threshold selection approach include

the keeping of connection within a particular confidence

interval (it is common to use a 95% confidence interval)

(Bassett et al., 2006), the selection of themedian value of the

connectivity values as threshold (Yu et al., 2018), and the

selection of connections above a particular confidence level.

However, this approach is also not free from the question of

network comparison bias.

3. Threshold selection based on maximizing global cost

efficiency: This is a thresholding technique that relies on

the use of a fundamental property of the network, global

efficiency. In this approach, the network cost which is the

ratio of the sum of edges in a network to the total number

of edges in the fully connected network is computed such

that the difference between the global efficiency and the cost

value gives the global efficiency cost. Thresholding using

this approach involves selecting the arbitrary threshold at

which the maximum global cost efficiency occurs for the

network (Cai et al., 2020). Similar to other approaches as

mentioned earlier, this approach also does not guarantee

unbiased comparisons of network measures across a group

of subjects. The connectedness of the network is also not

automatically guaranteed using this approach.

4. Threshold selection by keeping the giant component:

This threshold selection approach is developed from the

technique to keep as many edges so as to maintain

connectedness of not less than 99% of the entire

nodes in the network (Bassett et al., 2006). Threshold

selection keeping giant component is one in which a

threshold value is based on percolation such as keeping

a minimum threshold that maintains the connectedness

of the giant component (Bordier et al., 2017). Although

this approach has not been so common, the basic

advantage of this method lies in the topological integrity

of the original network obtained directly from the

connectivity matrix. However, there is no guarantee that

spurious networks are eliminated using this approach. This

approach looks problematic for network formulation from

effective connectivity where the connectivity matrices are

mostly sparse.

The earlier threshold selection approaches are commonly

used for unweighted/binary brain network formulation despite

their associated drawbacks and differences as studied in Jalili

(2016). However, because of the methodological issues associated

with those techniques, the use of the weighted network has

been adopted (Franciotti et al., 2019). Unfortunately, the use

of the weighted network does not also avoid the thresholding

dichotomy as spurious connectivity values which need to be

eliminated are still present. Thus, the use of some of the

earlier threshold selection criteria is also employed to remove

spurious connections in weighted network analysis (Chen et al.,

2019).

Furthermore, it is obvious that the use of weighted network

does not perfectly assure freedom of network analysis from the

methodological issues associated with threshold selection bias.

Therefore, many brain network analysts have employed the use

of the minimum spanning tree, MST for non-biased network

analysis and comparisons (Jalili, 2016; Yu et al., 2016; López

et al., 2017; Das and Puthankattil, 2020; Požar et al., 2020). A

spanning tree is an acyclic network component/sub-network where

all the network nodes are connected with the minimum possible

number of edges. Typically, for an N-nodes graph, the spanning

tree of the graph connects the N-nodes with (N − 1) edges as

illustrated in Figure 3. Since a graph usually has many spanning

trees depending on the size of the graph, the spanning tree with

a minimum cost of wiring is called the minimum spanning tree.

In the brain functional network, the maximum spanning tree

is usually considered the MST. Hence, MST is perceived to be

inherently carrying the original network properties and so could

be appropriate for unbiased network analysis and comparison

(Tewarie et al., 2015). However, the minimum spanning tree-based

network is not without its shortcomings. Spanning trees usually

are acyclic in nature and so computation of graph metrics such

as clustering coefficient and transitivity involving cycles are not

possible using minimum spanning trees. Improving capability and

attempting to solve the issues associated with MST, Dimitriadis

et al. (2019) proposed the use of orthogonalMST (OMST), in which

MST is extracted successively one after the other for as long as a

given condition is satisfied.

Owing to the identified issues related to unweighted, weighted,

and MST earlier, the minimum connected component (MCC)

concept is proposed to objectively produce networks that could

be analyzed and compared objectively. MCC is a special kind of

spanning subgraph that connects all the nodes present in a graph

with the minimum number of maximum weighted edges. For a

graph having N-nodes, there are at least (N − 1) edges and at most

(N(N−1)
2 ). In Vijayalakshmi et al. (2015) and Jalili (2016), MCC

is proposed and employed for the quantitative measurement of

cognitive activity and detection of cognitive impairment. However,

MCC may not also be completely free from unbiased network

comparison as the network density of MCC for different subjects

in a group cannot be‘constant.

Graph theory analysis of brain networks
Upon the formulation of unweighted, weighted, MST, or

MCC networks, the topologies of the formulated networks are

quantified using graph theory measures. With respect to dementia-

related disorders, topological quantifications are employed for

the discrimination of dementia onsets and various types of

dementia disorders at the network level. The fundamental graph

theory measures used for the brain network analysis are the

measures of functional segregation and integration, respectively.

Commonmeasures of functional segregation include the clustering

coefficient, transitivity of the network, and local efficiency.

Similarly, path length and global efficiency are the common

measures of functional integration. Other common metrics have
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been proposed at various times to access the local and global

properties of brain networks, and in fact, various toolkits have

been developed to analyze and visualize the network topological

properties (Rubinov and Sporns, 2010; Xia et al., 2013; Wang et al.,

2015; Mijalkov et al., 2017). The common graph measures that are

frequently used for the analysis of dementia-related disorders and

their basic definitions are summarized later:

1. Local measures: These are graph measures that are directly

computed at the nodal level of a graph. It must be noted

here that some measures could be employed at both local and

global levels, hence, such measures are only discussed under the

heading of global measures.

• Connection level metric (CLM): This is a graph metric

that quantifies the difference in the synchronization of two

nodes. It helps to determine the significant connections by

testing the significance of the connection strength of any

two nodes (Duan et al., 2020).

• Local efficiency (LE): This is the average efficiency of

transferring information among the nearest neighbors of a

given node (Jalili, 2017; Cai et al., 2018).

• Degree (K): This is the total number of links incident to a

node/vertex in a network (Li et al., 2019).

• Node betweenness centrality (NBC): The betweenness of

a node is the number of shortest paths passing through a

node in a graph. It is a pointer to the influence a node has

on the information flow in a graph/network (Jalili, 2016;

Abazid et al., 2021).

• Node strength (NS): Node strength measures the node’s

contribution to the entire network by taking the sum of

the weights of the link and joining it to the adjacent nodes

(Hata et al., 2016; Duan et al., 2020).

• Participation coefficient (PC): This is a measure that

quantifies the participation of a node in different network

layers according to degree distribution (Cai et al., 2020).

• Versatility (Vers): This is the measure of how a particular

node is closely affiliated with the network community

(Duan et al., 2020).

2. Global measures: These are graph measures computed at the

graphical rather than the nodal level. The commonly used global

graph measures are summarized later;

• Attack tolerance (ATol)/network resilience: This is a

measure of the ability of a network to maintain its local and

global efficiency when a certain percentage of its hub nodes

are removed/attacked (Afshari and Jalili, 2016; Duan et al.,

2020).

• Assortativity (Ac) : This is the resiliency of a network to

undergo random or internal failure/attack (Jalili, 2017). It is

also expressed as the ease with which a node links to other

nodes of a similar degree.

• Characteristic path length (CPL): Path length is one of

the most important and frequently used graph metrics for

measuring functional integration of the network. It is the

average of the shortest path length of all the possible nodes

in a network (Vecchio et al., 2017; La Foresta et al., 2019).

It is inversely proportional to the functional integration of

the network.

• Clustering coefficient (CC): This is one of the most

important fundamental graph theory metrics used in brain

network analysis to access the functional segregation of the

network. It is the measure of the extent to which nodes tend

to form a cluster together in a graph (Chen et al., 2019;

Duan et al., 2020).

• Connection density index (CDI): This is the ratio of the

total number of links in a graph to the maximum possible

number of links in the fully connected graph (Dattola et al.,

2021).

• Eigenratio/synchronizability (EigR): This is the ratio of the

largest eigenvalue of a graph to the Fieldler value/algebraic

connectivity of the graph. Theoretically, it is the measure of

the synchronizability of the network (Jalili, 2017).

• Global efficiency (GE): This is an important network

measure used for the quantification of functional

integration, i.e., the efficiency of information transfer

(Mammone et al., 2018a; Franciotti et al., 2019). It varies

inversely as the average shortest path length of the graph

such that the higher it becomes, the faster the transfer

of parallel information in the network and the better the

integration of information.

• Graph complexity index (GCI): This is the metric used for

measuring the complexity of a network. the GIC varies

between “0” and “1” and the larger the value of GIC, the

more complex the network becomes (Wang J. et al., 2016;

Yu et al., 2018).

• Modularity index (Mind): Modularity index is a measure

of the structure and topology of the network according to

edges arrangement statistically (Jalili, 2016).

• Randic index (Rind): The randic index of a network

quantifies the extent of the connectedness of a network. It is

inversely proportional to the network connectedness such

that the complete graph/network has the minimum randic

index (Dattola et al., 2021).

• Small worldness (SW): Small-worldness is the ratio of

the normalized clustering coefficient to the normalized

path length of a network. It is an important measure for

accessing network functional segregation and it conveys

integrated information on global and local network

characteristics (López et al., 2017; Cai et al., 2018).

• Transitivity (Trans): Transitivity is a global measure of

the clustering coefficient of a network that is collectively

normalized such that it does not suffer unnecessarily from

the influence of nodes with low degrees (Jalili, 2017).

• Vulnerability (Vuln): Vulnerability is the measure of

connectivity damage as a result of nodes removal from the

network (Wang J. et al., 2016).

3. Minimum spanning tree measures: As pointed earlier, MST

network is proposed for brain network analysis to basically avoid

methodology bottlenecks associated with threshold selection

and also to enable an unbiased network comparison. Since the

topological structure of MST is somewhat different from those

of the parent network/graph, its properties are measured using
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unique graph theory metrics. The most frequently and recently

used graph measures for MST are summarized later;

• Node degree (Deg): Node degree in a tree is the number

of neighbors adjacent to the node in the given tree. The

maximum node degree in an MST is always of special

importance (Požar et al., 2020; Youssef et al., 2021).

• Tree diameter (Diam): The tree diameter is the maximum

distance between any two nodes in a tree (Das and

Puthankattil, 2020; Youssef et al., 2021).

• Tree eccentricity (Ecc): The tree eccentricity is the distance

of a particular node to the farthest node away from it (Požar

et al., 2020; Youssef et al., 2021).

• Betweenness centrality (BTC): Betweenness centrality, just

like the graph betweenness centrality, measures the to

which a node is located between the path of two other

nodes (Briels et al., 2020b; Youssef et al., 2021). The

maximum betweenness centrality of a tree is usually used

in characterizing the tree.

• Leaf fraction (LFrac): This is the ratio of leaf number to the

maximal possible leaves in the tree (Das and Puthankattil,

2020; Youssef et al., 2021).

• Tree hierarchy (Hier): The tree hierarchy is a metric

that measures the equilibrium between the reduction of

diameter and overload prevention in a tree (Požar et al.,

2020; Youssef et al., 2021).

• Dissimilarity index (Dind): The dissimilarity index is

a metric used in measuring the extent of topological

difference between two trees. Basically, it quantifies the

amount of information required to transform one tree into

another (Požar et al., 2020).

• Survival ratio (SuR): The survival ratio of MST is used to

quantify the similarity between MST and a reference by

taking the ratio of the common links to the total number

of possible links in the MST network (Yu et al., 2016).

• Mean weight (Wei): This is the average weight of all the

links found in a tree. It works in the same way as the

connection level metric of a traditional network (Yu et al.,

2016).

• Degree correlation (Dcorr): The degree correlation of a

tree measures the tendency of nodes to connect with

nodes having comparable/similar degrees. In other words,

it measures how similar nodes are in a tree (Yu et al., 2016;

López et al., 2017).

• Tree efficiency (TEff): The tree efficiency indicates how

close the tree diameter is to the lowest possible value (Yu

et al., 2016).

• Tree divergence (Div): The tree divergence, also called

kappa, is the measure of the broadness of the degree

distribution in a tree (Yu et al., 2016; Požar et al., 2020).

Dementia-related conditions discrimination
In most cases, the last stage of the connectivity analysis of

electrophysiological signals of dementia-related disorders is the

stage at which the conditions of the subjects involved in the analysis

are discriminated or identified. This is because, the utmost goal of

such analysis is to achieve a differential diagnosis of the disorders to

aid therapeutic measures development. Two different approaches

are previously being considered for achieving this and the two

approaches would be looked into in what follows;

1. Statistical Analysis: As discussed in the previous section,

the formulation of brain networks is almost always followed

by network quantification using graph theory metrics.

Upon the computation of graph theory measures, statistical

methods are applied to compare the between group network

properties for possible significant difference identification.

Sometimes, the results of the real brain networks obtained

from electrophysiological data are statistically compared with

the theoretical network such as random, lattice, or scale-free

networks. Accessing statistical variability between different

groups of dementia-related disorders depends on factors such

as the size of the dataset (number of subjects considered or

number of samples considered) and the underlying distribution

of the samples. As it is the case in most other applications of

statistical analysis tools, 95% confidence intervals are commonly

employed for between dementia groups’ discrimination using

parametric statistics such as one-way ANOVA. Non-parametric

statistics such as Kruskal–Wallis method (Kruskal and Wallis,

1953; Corder and Foreman, 2011), permutation statistics,

and bootstrapping (Moore, 1999) are also widely considered

appropriate especially when the data fail to be normally

distributed.

2. Learning Approach: Machine and deep learning approaches

have been consistently and continuously gaining attention in the

classification and identification of dementia-related disorders

on the basis of brain network framework. Feature extraction

techniques are employed to mine useful features before

the condition-based classification using appropriate classifiers.

Similarly, deep learning approaches such as feed-forward

neural networks have been employed for the dementia-related

condition-based classification. Table 3 shows the summary of

the most recent classification frameworks on electrophysiology-

based functional/effective brain networks of dementia-related

disorders using learning techniques.

Results

Study selection

Based on the selection criteria, a total of 51 articles were selected

among which 25 articles (49%) of the total were published between

2016 and 2019, and the rest (51%) were published within the last

3 years (2020–2022) (see Figure 4A). Hence, the present study

demonstrated an increasing trend in the research domain of brain

functional network analysis of dementia-related disorders using

electrophysiology signals. It is expected that future studies will grow

further compared to the present trend.

Connectivity analysis

This article considered studies that employed both functional

and effective connectivity measures as shown in Figure 4B. Out

of the total of 29 different connectivity measures found in the

considered articles, four articles (about 7.84%) employed effective
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TABLE 3 Recent learning-based classification of dementia disorders using various functional connectivity features.

Data type Study pathology and population Classifier Highest accuracy(%) References

EEG AD-32, DLB-25, PDD-21, NC-18 Random forest 66± 13 Mehraram et al., 2020

EEG sMCI-28, pMCI-25 and AD-17, NC-24 Svm with cubic kernel 83.3 and 85.5 Duan et al., 2020

EEG sMCI-28, pMCI-25 and AD-17, NC-24 RESNET-18 93.42 and 98.54 Duan et al., 2020

EEG aMCI-28, NC-21 Svm with rbf kernel 66.6± 17 Li et al., 2021

EEG AD-30, NC-30 open eyes and closed eyes Takagi-Sugeno-Kang network 94.78 and 97.3 Yu et al., 2020

EEG MCI-7, NC-7 KNN and neuro-fuzzy-kNN 95.9± 0.4 and 97.2± 0.5 Jamaloo et al., 2020

EEG AD-20, NC-20 KNN 90± 5.34 Zhao et al., 2019

EEG AD-25, NC-20 Svm with rbf kernel 83 Jalili, 2017

EEG AD-20, NC-20 Svm (multiplex network features) 92.5 Cai et al., 2020

EEG aMCI-43, NC-51 Random forest 87.2 Youssef et al., 2021

EEG AD-14, NC-14 Svm with rbf kernel 98.9 Yu et al., 2018

EEG MCI-13, NC-27 Linear discriminant analysis 86.5 Požar et al., 2020

EEG AD-25, NC-26 Linear discriminant analysis 94 Afshari and Jalili, 2016

EEG AD-15, NC-15 Svm with rbf kernel 96 Song et al., 2019

EEG ADD-42, DLB-34, PDD-34, NC-40 Linear discriminant analysis 84 Babiloni et al., 2018

EEG AD-MCI-30, DLB-MCI-23, NC-30 ROC curve 75 Babiloni et al., 2019

MEG sMCI-27, pMCI-27 Svm with rbf kernel 100 Pusil et al., 2019

EEG sMCI-76, NC-53 KNN and svm > 95 Xu et al., 2021

EEG AD-20, MCI-14, NC-53 2 layer feed-forward neural network > 94.44 Toural et al., 2021

EEG AD-118, MCI-135, NC-198 Penalized logistic regression > 70− 80 Farina et al., 2020

EEG AD-28, MCI-28, NC-22 Svm with rbf kernel > 90− 100 Abazid et al., 2021

EEG aMCI-139, naMCI-58 Naive Bayes Algorithm 89 Kim et al., 2022

EEG AD-20, NC-20 Graph neueral network (GNN) 92 Klepl et al., 2022

MEG SCI-105, MCI-45, AD-127, DLB-27, FTD-33 Graph neueral network (GNN) Variable Scheijbeler et al., 2022

FIGURE 4

Frequency of the usage of connectivity measures for dementia-related disorders with (A) annual distribution of the reviewed studies and (B)

frequency distribution of the usage of connectivity measures.

connectivity measures. The effective connectivity measures

considered include phase transfer entropy (PTE), normalized

phase transfer entropy (dPTE), granger causality (GC), and

directed transfer function (DTF). The remaining studies either

employed or developed functional connectivity measures for their

analysis. Weighted phase lag index (wPLI) and phase lag index

(PLI) are much more frequently in use than any of the other

functional connectivity measures. In Spyrou et al. (2019), complex
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tensor factorization (CTF) was proposed to estimate functional

brain connectivity with EEG and in Mammone et al. (2018b),

permutation Jaccard distance (PJD) is introduced to compute

coupling strength between EEG time series. In Zhao et al. (2019),

revised orthogonal least squares (ROLS) algorithm was proposed

to measure connectivity between pairs of EEG signals, and in

Song et al. (2019), a strategy was developed to evaluate the brain

functional network based on generalized composite multiscale

entropy vector (GCMSEV).

EEG and MEG channel densities and epoch
length of surveyed articles

Within the frame of the considered articles, it is found that all

the seven articles that employed MEG signals used 306 channels,

while 27.27% of the remaining 44 articles that employed EEG

signals usedHD-EEGmontage and the rest used LD-EEGmontage.

Meanwhile, the largest proportion (29.54%) of the reviewed articles

employed the use of 19 electrodes with no clear reason for

the selection except for analysis convenience and the cost of

equipment acquisition.

Similarly, with regards to the selection of the epoch length of the

signals, it is found that there has been no specific consideration for

the epoch length selection for the connectivity analysis of dementia-

related disorders among the reviewed articles. The various channel

densities and epoch lengths employed for the surveyed articles are

presented in Table 4 for reference.

Assessment of studies qualities

The strength of the study’s evidence was evaluated using the

Cochrane Guidelines for Systematic Review of Diagnostic Test

Accuracy (Smetana et al., 2012). The evaluated domains include

random sequence generation, selection bias, performance bias,

attrition bias, detection bias, and reporting bias, respectively.

Evaluating the quality of evidence across studies, the lack of

completeness, and missing data from the included studies was

carefully examined. Thus, studies were categorized into three

different groups (high, average, and low with a respective number

of low-risk domain≥ 4,= 3,≤ 2), where high-quality studies were

judged to have low bias, average-quality studies were judged to have

unclear criteria and low-quality studies were judged to have a high

bias. Out of the total of 51 studies considered, 34 are classed as high

quality, 14 are classed as average quality, and three are classed as

low quality as shown in Figure 5.

Among all the 51 articles considered, 14 articles (27.5% of the

total studied articles) analyzed {AD, NC} groups. A total number

of eight studies (15.7% of the total studied articles) was considered

{AD, MCI, NC}, while a total of six articles (11.8% of the total

studied articles) analyzed {MCI, NC} group. Other considered

groups of dementia disorders are as presented in Figure 6. Stable

mild cognitive impairment (sMCI) and progressive mild cognitive

impairment (pMCI) groups were studied in three study articles. In

Briels et al. (2020a), the efficacy of an inhibitor of the glutaminyl

cyclase enzyme (PQ912) was evaluated in patients with early

AD using functional connectivity. Similarly, Park et al. (2022)

studied the neurophysiological changes in QEEG after 24-week

multidomain lifestyle intervention program for the prevention of

cognitive impairment in at-risk older adult individuals.

Graph theory metrics and minimum
spanning tree metrics

As shown in Figure 7A, clustering coefficient (CC),

characteristic path length (CPL), and global efficiency are the

most frequently employed graph theory measures. Clustering

coefficient has been used by 19 articles, while global efficiency

and characteristic path length have been used by 15 and 14

articles, respectively. Small worldness (SW), local efficiency, node

betweeness centrality, and nodal degree have also been frequently

used as compared to the other metrics (see Figure 7). Similarly, the

frequently used minimum spanning tree network metrics include

the tree betweenness centrality (BTW), tree degree, tree diameter,

and leaf fraction all of which have been used in five of the studied

articles. Eccentricity (Ecc) and tree hierarchy have been employed

for spanning tree network quantification in four articles each as

presented in Figure 7B.

Discussion

A lot of interesting findings regarding dementia-related

disorders have unfolded within the last 5 years as a result of

connectivity analysis of electrophysiology signals. Research into

connectivity and brain network analysis of dementia disorders

has gained attention and it is expected to attract more interest

in the next couple of years as the rate of people living with

dementia is constantly on the rise. Currently, about 55 million

people or more live with dementia worldwide with about 60%

of this population from the low- and middle-income nations of

the world (WHO, 2021). This is one of the major reasons why

electrophysiology signals especially EEG becomes a very important

tool in the detection of the early onset of dementia and also in the

differential diagnosis of the later stages. On account of the increase

in the proportion of the older population in every country of the

world, about 78 million people are projected to develop dementia

in 2030 and about 139 million in 2050 (WHO, 2021). The expected

rise of interest to research in this domain necessitates the review.

Upon rigorous screening process, 51 pair review articles that

satisfactorily meet the study criteria are systematically reviewed,

and the summary of the primary findings of the included articles

is presented in Table 4.

Overall, the percentage of the reviewed articles that focus on

the use of MEG as electrophysiology signals for their analysis

is about 14%, while the percentage of studies that used EEG

for their analysis is about 86%. This could be attributed to the

relative availability of EEG signals compared to MEG signals

based on their installation cost and other logistics (Singh, 2014).

Similarly, most of the studies considered concentrated more on

the identification of AD and MCI groups despite the fact that

other groups of dementia disorders are on this rise too. This

is due to the fact that AD accounts for at least two times the
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TABLE 4 Data type, channel density, epoch length and primary findings of the reviewed studies.

S/N Data type Channel
density

Epoch
length (s)

Primary findings References

1 EEG 21 8.2 Selective involvement of frontal network in bvFTD against
global efficiency and parietal and occipital loss of network
organization in AD

Yu et al., 2016

2 HD-EEG 128 1 Presence of significantly higher local connectivity in AD
than healthy controls in alpha and beta bands due to
compensatory increase in local connectivity as a result of
wide-spread decline in the long-range connections

Afshari and Jalili,
2016

3 HD-EEG 128 1 Detection of dependence of AD-related abnormalities on the
methods employed for network dependency estimation and
binarization

Jalili, 2016

4 EEG 16 8 Better discrimination of AD from NC based on the brain
functional network constructed by limited penetrable
visibility graph and phase space method than the analysis of
single series, which is instrumental for revealing the
underlying pathology the disease

Wang J. et al., 2016

5 EEG 19 2 Representation of neurophysiological biomarker of AD
using functional connectivity disruptions between certain
brain regions, as measured with lagged phase
synchronization

Hata et al., 2016

6 EEG 32 0.6 Detection of a weakened outgoing information flow, a
decrease in out-degree, and an increase in in-degree at the
parietal region in VaD patients, compared to healthy controls

Wang C. et al., 2016

7 EEG 19 2 Representation of structural hippocampal atrophy
functionally using small world connectivity pattern

Vecchio et al., 2017

8 MEG 306 10 Information flow hindrance between brain regions,
particularly from posterior hub regions due to AD
pathology, and indication of pathophysiological process of
the disease in the information flow in beta band

Engels et al., 2017

9 HD-EEG 128 1 Stability of network properties across all frequency bands
and also significant reduction of local efficiency and
modularity measures in AD brains at eyes-closed condition

Jalili, 2017

10 MEG 306 16 Identification of increasing and decreasing PLI values in
lower and upper alpha bands respectively in MCI patients
which are interpreted as a dual pattern of disconnection and
aberrant functioning

López et al., 2017

11 EEG 16 8 Discovery of a more homogeneous functional brain network
in AD subjects and also a decline in small world efficiency of
AD networks

Yu et al., 2018

12 EEG 19 2 Discovery of a more compromised neurophysiological
reserve in ADD than DLB, at both group and individual
levels using functional cortical connectivity markers in delta
and alpha sources

Babiloni et al., 2018

13 HD-EEG 256 1 Formulation of compression strategy for HD-EEG signal
reconstruction with minimum information loss in dementia
related disorders

Mammone et al.,
2018a

14 EEG 19 5 Objective evaluation of the connectivity density
modifications associated to the MCI-AD conversion by
mixing nonlinear analysis with a machine learning approach

Mammone et al.,
2018b

15 EEG 16 8 Identification of elevated small world properties in the
cross-frequency networks in AD compared to control,
indicating an impaired balance between within and cross
frequency interaction

Cai et al., 2018

16 EEG 16 8 Development of a novel EEG-based strategy for functional
connectivity quantification and enrichment of topographical
biomarkers used for neurophysiological assessment

Song et al., 2019

17 HD-EEG 128 2 Identification of brain connectivity and location of couples
sources for EEG-based MCI dataset using approach that
relies on tensor factorization

Spyrou et al., 2019

(Continued)
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TABLE 4 (Continued)

S/N Data type Channel
density

Epoch
length (s)

Primary findings References

18 MEG 306 4 Development of dynamic network multi-frequency analysis
approach for effective construction of a sensitive MEG-based
connectome biomarker for the prediction of conversion
from MCI to Alzheimer’s disease

Pusil et al., 2019

19 EEG 19 2 Identification of abnormal lower widespread
interhemispheric and intrahemispheric LLC solutions in
alpha sources in both MCI groups compared with the NC
group

Babiloni et al., 2019

20 EEG 19 16 Alteration of topological properties of network in AD
patients also in its prodromal stage, starting with the
reduction of edge density and then loss of the local and
global efficiency

Franciotti et al.,
2019

21 EEG 32 7 Characterization of AD-induced brain networks by lower
degree, clustering coefficient at the frontal pole and medial
orbitofrontal across all frequency range, compared to the
networks of age-matched healthy controls

Li et al., 2019

22 HD-EEG 256 1 Identification of consistently weak small world properties of
brain functional networks of MCI and AD patients
formulated from HD-EEG compared to healthy subjects

La Foresta et al.,
2019

23 HD-EEG 128 4 Proposition of a novel brain functional connectivity imaging
technology aiming to determine the contribution of
non-linearity and dynamics for AD and NC participants
discrimination

Zhao et al., 2019

24 MEG 306 1 Adaptation of a novel data-driven thresholding scheme
based on OMSTs and extraction of prototypical network
microstates (FCµstates) for both the control and MCI group

Dimitriadis et al.,
2019

25 EEG 19 9 Involvement of topological reorganization of brain
functional network in the evolution of AD and importance
of Network measures for the evaluation of symptom severity
in AD

Chen et al., 2019

26 EEG 16 8 Discovery of the local efficiency and clustering coefficient as
one of the most effective factors in AD identification at
functional network level

Yu et al., 2020

27 EEG 30 2 Direct comparison of EEG and sMRI for differential
identification of AD and aMCI

Farina et al., 2020

28 EEG 21 8 Improvement of functional connectivity in early AD,
measured with AEC-c in the alpha frequency band upon
treatment with PQ912

Briels et al., 2020a

29 EEG 32 5 Disintegration of functional network in alpha band under
eyes open protocol and elevated hub strength in central
region during cognitive task for the detection of early onset
of AD

Das and
Puthankattil, 2020

30 HD-EEG 64 2 Identification of significant decrease in functional
connectivity and a less integrated graph topology MCI based
networks ad also development of MCI prediction framework
using a combination of functional connectivity, topological
and cognition measurements

Požar et al., 2020

31 EEG 16 50 Application of multiplex framework to explore functional
integration and segregation of brain networks and
characterize the abnormalities of brain function

Cai et al., 2020

32 EEG 19 10 Formulation of extra discriminating information for MCI
and NC by combining the weighted connectivity metrics

Jamaloo et al., 2020

33 EEG 21 10 Explanation of the atypical pattern of neurodegeneration in
PCA-AD based on regional vulnerability of the posterior
network

Briels et al., 2020b

34 EEG 19 20 The main frequency bands that are different between MCI
patients and controls are the theta and lower alpha bands,
and the affected brain areas are the frontal, left temporal and
parietal areas

Duan et al., 2020

(Continued)
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TABLE 4 (Continued)

S/N Data type Channel
density

Epoch
length (s)

Primary findings References

35 HD-EEG 128 2 Consistency of weighted network measures across global
thresholding levels, and reflection of the network properties
reduction of connectivity strength in the dementia groups

Mehraram et al.,
2020

36 EEG 30 20 Effective analysis of brain networks of dementia disorder
stages using statistical entropy

Abazid et al., 2021

37 EEG 19 2 Development of biomarkers that integrate connectivity,
spectral characteristics, complexity and P300 diagnosing AD,
MCI and NC

Toural et al., 2021

38 MEG 306 2 Prediction of the progression of patients with mild cognitive
impairment (MCI) to AD, and identify brain regions with
network alterations related to MCI

Xu et al., 2021

39 HD-EEG 256 1 Revelation of a higher robustness in the brain networks of
healthy people, followed by MCI and, finally, by AD patients,
consistent with the hallmarks of Alzheimer’s disease based
on graph measures

Dattola et al., 2021

40 EEG 16 1 Demonstration of the strength of directed brain network
models for better classification for aMCI diagnosis compared
to undirected networks

Li et al., 2021

41 HD-EEG 64 4 Discovery of a more prominent post-task resting state
alteration of functional network in aMCI patients which
could be employed as possible biomarkers of the disease

Youssef et al., 2021

42 EEG 18 1 Compared to the HC and PD groups, the PDMCI group is
characterized by a more posterior topography of the
delta-theta PAC and a reversed delta-low frequency alpha
PAC direction

Bayraktaroǧlu et al.,
2022

43 MEG 306 3.2 Resting-state functional connectivity changes in frontal,
limbic and subcortical regions are accentuated in early
symptomatic ALS patients and they overlap considerably
with bvFTD

Govaarts et al., 2022

44 EEG 19 2 Lost of the main hub of HC (Parietal area) in FTD patients at
onset of dementia, substituted by provincial hubs in frontal
leads and no changes in global network organization in AD

Franciotti et al.,
2022

45 EEG 19 2 Higher modularity is found in the beta band and lower
radius in the gamma band in aMCI compared to naMCI

Kim et al., 2022

46 EEG 64 10 Functional connectivity improvement of the right PCC to
the right DC is a possible mechanism by which overall
cognitive and memory function in MCI patients improves
through rTMS

Zhang et al., 2022

47 EEG bi-polar 23 12 Development of GNNmodels to compare the performance
of selected FC measures and for classification of AD and NC
networks

Klepl et al., 2022

48 EEG 19 3.2 Detection of a decrease in the characteristic path lengths of
the alpha1 band in the right supramarginal gyrus and right
rostral middle frontal cortex were observed in participants
who received intervention

Park et al., 2022

49 MEG 306 3.2 Demonstration of the potential for MEG biomarkers to
increase diagnostic accuracy of cognitive decline and
dementia in a noninvasive manner

Scheijbeler et al.,
2022

50 EEG 30 8 Identification of a more severe pathological changes in
EOAD patients compared to LOAD based on evaluation of
coherence alterations and diagnostic value of coherence
measure

Fide et al., 2022

51 EEG 30 20 Detection of a network that is more resilient to neuronal
damage in SCI compared to that of MCI and even more
compared to that of AD

Abazid et al., 2022
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FIGURE 5

Risk of bias assessment using the Cochrane Collaboration tool.

FIGURE 6

Groups of dementia-related disorders studied.

proportion of other dementia disorders put together (WHO, 2021).

Setting aside the focus on AD, a notable fraction of the reviewed

studies also paid attention to the detection of the early onset

of dementia (MCI). It is believed that the inability to develop a

therapeutic treatment for dementia until now is the irreversible

mechanism behind its formation, and so a lot of researchers have

proposed the concept of addressing the impairment from the

MCI stage. However, it is very difficult to discriminate between

normal aging and the early/MCI stage of dementia. This is the

reason why there is an increasing interest toward differential

diagnosis between normal aging and MCI stages. One of the

reviewed studies focused on evaluating the efficacy of an anti-

dementia medicine (glutaminyl cyclase enzyme (PQ912), and

found increasing functional connectivity in alpha frequency band

after the treatment of patients with early dementia with PQ912

(Briels et al., 2020a). However, further validation of the study over

a large sample population is necessary. Furthermore, it is found

that the majority of the reviewed articles focus on AD as the most

prevalent form of dementia disorders. However, it is not a new

concept that most dementia disorders have overlapping clinical

symptoms and so it becomes necessary for experts in this domain to

look into developing discriminatory frameworks for the differential

diagnosis of dementia-related disorders.

Going by the trend of dementia-related research and the

development of therapeutic measures, the most promising

direction is the early identification of the patients at risk of

developing dementia in future. This discrimination possibility

will ensure secondary prevention as a solution to the seemingly

irreversible disorders (Weintraub et al., 2018). However, the present

study shows that the functional and effective connectivity-based

analysis of electrophysiology signals is lacking in this direction.

From the 41 articles reviewed, only two articles (one for each of
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FIGURE 7

Usage of graph theory measures with (A) being the usage of graph theory metrics and (B) being the usage of spanning tree metrics.

EEG and MEG) focused on the identification of the stable from the

progressive mild cognitive impairment (see Figure 6).

With regard to the connectivity analysis of dementia-related

disorders, the reviewed studies employed the use of different

connectivity types for their analysis. The majority of the studies

employed functional connectivity tools (about 85% of the

total connectivity usage), while effective connectivity tools were

employed in about 15% of the total connectivity usage. As there

are different metrics used for accessing functional connectivity

between pairs of electrodes/pair of region of interest, most of the

study’s articles employed those metrics that measure functional

connectivity using the phase information of the signals. This

may be attributed to the fact that the phase information of

electrophysiology signals is more sensitive to neurological states

than amplitude information. It is very important to be aware

of the strengths and weaknesses of all forms of functional and

effective connectivity measures. Somemeasures are highly sensitive

to volume conduction, while some are quite robust. The linearity

of a measure as well as the domain of measures are all ingredients

to be aware of before deciding the employment of a particular

measure for analysis. Table 2 provides detailed information about

the properties of the frequently used measures within the last 5

years to aid easy access.

As the conversion of the connectivity matrix to the brain

network is very crucial in brain network analysis of dementia

disorders, threshold selection, a tool used for connectivity-network

transformation plays a vital role in the analysis process. Threshold

selection tends to have a significant influence on the results of the

complete analysis. Ever since, the vast body of literature in this

domain has shown that there has been a dichotomy with respect

to threshold selection, with no golden rule absolutely accepting a

method. Very recently, data-driven approaches have been proposed

and they appear to have advantages over the previously common

arbitrary/random selection. The important criteria that should be

fundamental to any data-driven approach are the maintenance of

connectedness, formation of comparable network densities across

a group of networks in the same analysis, and formation of

network with small-world properties among others. Unfortunately,

no single known approach has considered these approaches in

unison, and this is part of the reason why approaches such as MST

and MCC are gaining unprecedented attention in the general brain

network mapping of electrophysiology signals using functional

connectivity. On this note, the development of a threshold selection

framework that considers the aforementioned criteria is desired.

Looking into threshold selection development on the basis of the

eigenvalues of connectivity matrices might be very interesting in

this regard.

For the automatic classification of dementia-related disorders,

various traditional machine learning-based classifiers such as the

support vector machine (SVM), random forest, linear discriminant

analysis, and k-nearest neighbors. have been previously employed

to classify or recognize various neurological states based on

electrophysiological signals. In the last one decade, deep learning

has been very popular and has found various applications in

different domains with its superb power of performing automatic

feature extraction and prediction or classification. One of the

frequently used deep learning techniques for functional/effective

brain network classification is the graph convolution network

(GCN). GCN has been successfully applied for emotion prediction,

brain-computer interface, and other applications (Lun et al.,

2020; Zhong et al., 2020; Chen et al., 2021). However, the

advantage of various deep learning techniques including GCN is

underutilized in electrophysiology-based brain network analysis

of dementia-related disorder. It is, therefore, recommended that

GCN, transformer network, and other deep learning techniques

should be employed for the automatic discrimination of these

disorders with overlapping underlying mechanisms.

Conclusion

This article features an increasing trend in the studies

of electrophysiology signal-based functional and effective brain

networks of dementia-related disorders over the last 5 years.

The article mainly focuses on two electrophysiology signals; EEG

and MEG especially because of their high temporal resolutions
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and also because of the acquisition cost (for EEG) which makes

these modalities serve as promising tools for the diagnosis of

dementia disorders. Most of the articles reviewed employed

electrophysiology data at rest (eyes-open or eyes-closed). Although

it may be difficult to record data from dementia-related subjects

during cognitive task protocol, designing and achieving such

protocols could improve our understanding of the underlying

mechanism of dementia-related brain networks. The various

measures of connectivity that have been used up to date are

highlighted with their respective properties to guide the usage

selection. The conversion of the connectivity matrix into brain

networks using the threshold selection approach is also discussed

together with details of the very recently proposed and employed

techniques. Recommendations are made to the important criteria

that can enable the development of unbiased threshold selection.

The emergence of graph theory metrics as valuable ingredients

of functional and causal brain network analysis of dementia-

related disorders has also been reviewed. It is found that clustering

coefficient (CC), global efficiency, and characteristic path length

(CLP) are more frequently employed in the analysis of dementia-

related disorders. Various machine learning techniques recently

employed for the classification of dementia-related disorders based

on functional/causal brain network features are also identified.

As deep learning techniques have been underutilized in this

domain, recommendations are made to harness its full potential

for dementia-related identification basic on the complex network

theory framework.
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