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Human aging is characterized by progressive loss of physiological functions.

To assess changes in the brain that occur with increasing age, the

concept of brain aging has gained momentum in neuroimaging with recent

advancements in statistical regression and machine learning (ML). A common

technique to assess the brain age of a person is, first, fitting a regression

model to neuroimaging data from a group of healthy subjects, and then,

using the resulting model for age prediction. Although multiparametric MRI-

based models generally perform best, models solely based on diffusion

tensor imaging have achieved similar results, with the benefits of faster data

acquisition and better replicability across scanners and field strengths. In the

present study, we developed an artificial neural network (ANN) for brain age

prediction based upon tract-based fractional anisotropy (FA). Consequently,

we investigated if this age-prediction model could also be used for non-linear

age correction of white matter diffusion metrics in healthy adults. The brain

age prediction accuracy of the ANN (R2 = 0.47) was similar to established

multimodal models. The comparison of the ANN-based age-corrected FA

with the tract-wise linear age-corrected FA resulted in an R2 value of 0.90

[0.82; 0.93] and a mean difference of 0.00 [−0.04; 0.05] for all tract systems

combined. In conclusion, this study demonstrated the applicability of complex

ANN models to non-linear age correction of tract-based diffusion metrics as

a proof of concept.
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Introduction

Human aging is characterized by progressive loss of
physiological functions (López-Otín et al., 2013). In the brain,
aging specifically affects the frontal lobe and, in contrast,
relatively spares posterior areas and infratentorial pathways
(Raz and Rodrigue, 2006; Cox et al., 2016; Behler et al., 2021).
Recently, the concept of brain aging has gained momentum
(Baecker et al., 2021), as advanced statistical regression and
machine learning (ML) models have opened new possibilities
in analyzing neuroimaging data. A common approach to assess
the so-called brain age of a person is fitting a regression model
to neuroimaging data from a group of healthy subjects with
their chronological age as the target variable and then using
the resulting model for individual age prediction (Cole and
Franke, 2017). This prediction, rather than chronological age,
is considered to reflect a person’s brain age which may, to a
certain extent, reflect brain “health.” The difference between the
chronological age and the estimated brain age is often referred
to as the “brain age gap” (Baecker et al., 2021) or “brain age
delta” (Smith et al., 2019), as an approximation for accelerated
or delayed aging of the brain. Correlation of the “brain age
gap” with clinical factors indicated systolic/diastolic blood
pressure, smoking habits, and cardiac function as predictors for
accelerated aging (Cole, 2020). In contrast, higher bone mineral
density was shown to be associated with delayed brain aging
(Smith et al., 2019).

A comparison of different MRI approaches showed that
diffusion tensor imaging (DTI) reached the best single modality
performance in brain age estimation (R2 = 0.53, MAE = 3.9
years) which was similar to a multimodal approach using six
MRI modalities (R2 = 0.62, MAE = 3.5 years) (Cole, 2020).
Such multimodal models are based on a wide range of features,
resulting in the need for a very high number of imaging
data for good performance. In addition, the acquisition of
multiparametric MRI is time consuming and thus limiting the
usability in clinical routine. In comparison, DTI is acquired
fast and provides comparable results across different scanners
and field strengths, as demonstrated in a large-scale multicenter
study with pooled data (Müller et al., 2016). This may become
important in terms of a general application of the model since
many brain age algorithms are sensitive to field strength or
scanner type (Cole et al., 2017; Baecker et al., 2021).

In addition to applying ML to DTI data to assess aging (Cole,
2020), ML models based on DTI data have been utilized in
clinical settings especially in neurodegenerative diseases (Dyrba
et al., 2013; Sarica et al., 2017) or in order to stratify patient
subgroups (Behler et al., 2022; Münch et al., 2022). Therefore,
DTI data sets of patients and healthy participants are usually
preprocessed to retrieve relevant anatomical / morphological
information. For instance, such features can be extracted in a
tract-based approach (Kocar et al., 2021b; Münch et al., 2022).
As an alternative to clinical considerations, feature selection
can also be done using statistical techniques (Talai et al., 2021).

Neural networks were shown to be very performant in this
context and in multiparametric MRI approaches, as well as
support vector machines (Castellazzi et al., 2020; Kocar et al.,
2021b; Tsai et al., 2022).

Quantification of physiological brain aging also plays a
role in the analysis of clinical DTI studies. The regional
differences in age-related changes in diffusion metrics and
higher-order age dependencies, i.e., non-linear changes (Hsu
et al., 2008; Westlye et al., 2010), result in the need to perform
an optimized tract-based age correction (Behler et al., 2021).
Given the limits of multimodal MRI-based brain age models,
the questions arise: (1) whether a model that captures the
interactions between white matter pathways might be just as
accurate in the brain age estimation based on diffusion metrics
and (2) whether such a model is also applicable to perform
a tract-based age correction of DTI data in an automated
approach. Since artificial neural networks (ANN) are powerful
ML models, capable of finding patterns and interactions within
data (Bishop, 2006), they are commonly used for brain age
prediction. In contrast, age correction is almost exclusively done
by simple linear regression, presumably because of the simplicity
in generating its inverse function. This is impossible in non-
linear multivariate regression models such as ANN; therefore,
an algorithmic improvement is needed.

To this end, we fitted a multilayer perceptron (MLP)
regression model as a type of ANN to a training set of tract-based
diffusion metrics gathered from healthy adults. We examined
the predictive performance of this model, compared the results
to a ridge regression model, and conducted a thorough model
inspection. Finally, we investigated how the ANN could be used
for a tract-based non-linear age correction of diffusion metrics.

Materials and methods

Data collection and processing

The data set consisted of 219 healthy adults (103 male/116
female, mean age 51.6 ± 15.9 years, range 19.5–81.9 years,
no diagnosed diseases) who underwent brain DTI and was
previously used in a study by Behler and colleagues (Behler et al.,
2021). The data were collected using three different scanners
(1.5 T and 3 T field strength) with four different protocols,
as summarized in Table 1. All subjects gave written informed
consent. The present study was in accordance with institutional
guidelines and approved by the Ethics Committee of Ulm
University, Germany (reference # 19/12 and 279/19).

For data preprocessing, the data were assessed for
completeness and - according to an established analysis
quality control (Müller et al., 2014)—corrupted gradient
directions (GD) as well as motion artifacts were excluded
from further analysis prior to correction of eddy current-
induced geometric distortions. Following a standardized
iterative stereotaxic normalization process, using scanning

Frontiers in Aging Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnagi.2022.999787
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-999787 October 19, 2022 Time: 10:59 # 3

Kocar et al. 10.3389/fnagi.2022.999787

protocol-specific DTI template sets, data were transformed to
the Montreal Neurological Institute (MNI) stereotaxic standard
space. Maps of FA were calculated from MNI-normalized DTI
data, and a Gaussian smoothing filter of 8 mm full width
at half maximum (FWHM) was applied to the normalized
individual FA maps. In order to calculate differences between
scanning protocols at the group level, FA maps were harmonized
according to an established harmonization procedure (Rosskopf
et al., 2015; Müller et al., 2016). The FA maps of age-matched
subsets of participants were arithmetically averaged separately
for each scanning protocol. The resulting averaged FA maps
were then used to calculate voxel-wise difference maps between

protocol D and any other protocol since most participants
underwent protocol D. The averaged three-dimensional (3-
D) difference matrices, i.e., linear correction matrices, were
then applied accordingly to the FA maps of all participants
who underwent scanning protocols A, B, or C. This procedure
resulted in the recalibration of all FA maps acquired with
different protocols and the harmonization of subject groups.

For the analysis of fiber tract (FT), specific tracts were
identified by using a seed-based approach based on an averaged
DTI dataset. The modified deterministic streamline tracking
approach (Mori et al., 2002; Müller et al., 2009) used an
eigenvector scalar product threshold of 0.9 and considered only

TABLE 1 Study population and imaging data.

Protocol Age/years* Number of
subjects (m/f)

Field
strength/T

Number of
GD + (b = 0)

b-value/
(s/mm2)

Matrix (in-
plane/slices)

Resolution/
mm3

TR/ms/
TE/ms

A 49.7 (29.3–62.6)
19.5–73.3

33 (17/16) 1.5 48 + 4 1,000 128×128/64 2.0× 2.0× 2.8 8,000/95

B 64.6 (60.2–69.4)
32.7–81.9

54 (23/31) 1.5 60 + 2 1,000 128× 128/64 2.5× 2.5× 2.5 8,700/102

C 50.4 (44.7–57.0)
22.4–75.7

64 (34/30) 3.0 47 +1 1,000 96× 128/52 2.2× 2.2× 2.2 7,600/85

D 46.5 (26.7–58.3)
20.9–79.5

68 (29/39) 3.0 64 + 1 1,000 128× 128/81 1.7× 1.7× 1.7 7,600/85

*Given in median, (interquartile range), minimum—maximum. GD, gradient directions; TR, repetition time; TE, echo time.

FIGURE 1

Development of the ANN and the ANN age-correction algorithm. Circles represent neurons, the bias unit is marked with “1.” For every tract
system (input layer, blue), there is exactly one neuron in the hidden layer (light blue). Weights are displayed as lines in grayscale, with 0 as white
and 1 as black. (A) The weights between the input and the hidden layer were initialized as the identity matrix. The weights between hidden layer
and the output layer (dark blue) were initialized as the coefficients from the ridge regression (light blue box). After training, the hidden layer
processes multiple interactions from the input layer, which are represented by gray lines. (B) ANN age correction algorithm: First, the input data
x were forward propagated through the ANN with the weight matrix W, resulting in the brain age prediction y. Then, the difference between y
and the age correction target ytarget (= error E) was backpropagated to calculate the modified weight matrix W’. Forward and backpropagation
are identical to a regular gradient descent algorithm which are commonly used for ANN training. Last, the input data x were updated by matrix
multiplication (xW’W-1). These steps were repeated until the error E reached an absolute value of 1 month or less and the algorithm terminated.
dE/dθij = partial derivatives of the error with respect to the weights in the weight matrix W.
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voxels with an FA value above a threshold of 0.2 [cortical
gray matter shows FA values up to 0.2 (Kunimatsu et al.,
2004)]. Regions of interest (ROIs) with a radius of between
6 and 10 mm were defined for the seed regions. All FTs
originating in the seed ROI or multiple ROIs for extended
seed regions (e.g., callosal areas), respectively, define the
corresponding tracts of interest (TOIs). The following 21 TOI
were identified using this seed-based fiber tracking approach:
Corticospinal tract (CST), frontooccipital tract, fasciculus
uncinatus, optic radiation, superior longitudinal fasciculus
(SLF), inferior longitudinal fasciculus (ILF), cingulum, superior
cerebellar peduncle (SCP), middle cerebellar peduncle (MCP),
corticostriatal tract, corticopontine tract, corticorubral tract,
perforant path, the tract from temporal lobe to hypothalamus,
anterior limb of the inner capsule, posterior limb of the inner
capsule, and the tracts associated with the corpus callosum areas
I to V. FA values were calculated by arithmetic averaging of the
bihemispheric data.

Machine learning model construction

The orientational dependence of the voxel-wise diffusion
tensor can be performed in several combinations of the
Eigenvectors, resulting in the scalar parameters fractional
anisotropy (FA), mean diffusivity, axial diffusivity, and radial
diffusivity, which each have advantages in specific research
contexts. In order to avoid redundancy, we selected FA for

TABLE 2 Ridge regression coefficients.

Tract of interest Ridge regression coefficient

CST −0.08

Frontooccipital tract −0.08

Fasciculus uncinatus 0.02

Optic radiation −0.03

SLF 0.07

ILF −0.04

Cingulum −0.03

SCP 0.16

MCP −0.07

Corticostriatal tract −0.15

Corticopontine tract 0.08

Corticorubral tract −0.18

Perforant path −0.07

Temporal lobe to hypothalamus 0.09

AIC −0.02

PIC −0.01

CC I associated tracts −0.11

CC II associated tracts −0.08

CC III associated tracts −0.06

CC IV associated tracts −0.06

CC V associated tracts 0.06

CST, corticospinal tract; SLF, superior longitudinal fasciculus; ILF, inferior longitudinal
fasciculus; SCP, superior cerebellar peduncle; MCP, middle cerebellar peduncle; AIC,
anterior limb of internal capsule; PIC, posterior limb of internal capsule; CC,
Corpus Callosum.

the analyses performed in the current study, which already
showed to be a robust representation of (age-related) diffusion
properties (Salat et al., 2005; Behler et al., 2021; Kocar et al.,
2021a; Münch et al., 2022). The selection of the TOI was
performed in such a way that various functional areas and
diffusion directions were covered. Clinical significance of these
tracts has been shown, both for aging (Behler et al., 2021) and
neurodegenerative diseases (Kocar et al., 2021b). Beyond this
preprocessing, no further restrictions preceded the construction
of our models. Although incomplete samples were not a
problem in the original data set regression analysis, here, they
represent one in the application of more complex ML models.
Therefore, two samples had to be discarded from the initial data
set due to a missing FA value in one tract. From the remaining
217 samples, a training and a test data set were defined by a
random 80:20 split. Within the training data set, leave-one-out
cross validation (LOOCV) was used for hyperparameter tuning
(Hastie et al., 2017). All FA values were z-transformed based
on the training data set for calibration. Rescaling of the target
variable (age) was performed to reduce the computational load
during ML model calculation. Conversely, for data presentation,
the transformation was reversed.

Using the scikit-learn 0.24.2 library for python (Pedregosa
et al., 2011), two ML models were implemented, a ridge
regression and by an introduction of a hidden layer (as an
extension to the ridge regression) an MLP regression. Ridge
regression is a robust model for statistical regression even
in the presence of collinearity (Leeuwenberg et al., 2022).
MLP as a type of ANN is highly efficient in finding complex
interactions within data and are overall powerful algorithms,
given enough data and a sound construction process (Bishop,
2006). Unless stated otherwise, the default hyperparameters
of the Ridge classes were used: fit_intercept = True,
max_iter = None, tol = 0.001, solver = “auto,” positive = False,
random_state = None. The same applies to the MLP Regressor:
solver = “adam,” batch_size = “auto,” learning_rate_init = 0.001,
shuffle = True, random_state = None, tol = 0.0001,
warm_start = False, early_stopping = False, beta_1 = 0.9,
beta_2 = 0.999, epsilon = 1e-08, n_iter_no_change = 10. In the
ridge regression model, the L2-regularization parameter was
determined by an exhaustive grid-search, ranging from 100 to
0 with a decrement of 0.1. Each value in the grid was tested by
LOOCV and the best value in terms of the least squared error
as a performance metric was chosen for the final model, which
was trained on the entire training data set.

The MLP contained only one hidden layer with a single
weight matrix, given the amount of data and overall model
complexity. For every TOI in the input layer, we chose to have
one neuron in the hidden layer, resulting in 21 neurons and
a square weight matrix. A graphical abstraction of the model
building process is presented in Figure 1A. As an activation
function, a rectified linear unit (ReLU) (Glorot et al., 2011)
was used, as it resembles the complex relationship between
age and tract-based FA values. During adulthood, an age range
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without changes in the FA values is followed by a linear decrease
(Westlye et al., 2010; Behler et al., 2021). In addition to L2-
regularization, non-random initialization and pruning were
used to prevent overfitting (Kukaèka et al., 2017). For initializing
the weight matrix, an identity matrix was used (Le et al., 2015).
This not only aimed to prevent overfitting but also increased the
explicability of the model, as the neurons in the hidden layer
may retain some resemblance to their respective input neuron
after training. All biases between the input layer and the hidden
layer were set to 0. Between the hidden layer and the output
layer, the coefficients from the trained ridge regression model
for weight initialization and the intercept for bias initialization
were used as a pre-trained last layer. Training was conducted
by first forward propagating the training sample’s data through
the initialized model and then backpropagating the loss function
(= squared error∧ L2-regularization) through the hidden layers
by calculating the partial derivatives with respect to the model
parameters. Then, the weights and biases were adjusted using
the gradient descent algorithm. This procedure was repeated for
up to a maximum of 100,000 iterations to ensure convergence.
After training the entire model, the weights of the neural
network were pruned by setting the lowest absolute value to
0, until there was at least one sample for each parameter (Han
et al., 2015; Blalock et al., 2020). Similar to the ridge regression
model, the L2-regularization parameter was determined by an
exhaustive grid search, ranging from 20 to 0 with a decrement of
0.1 and choosing the best value by LOOCV.

Machine learning model inspection

The coefficients of the ridge regression model were
analyzed as a proxy for feature importance. For the ANN,
the permutation importance for each feature was calculated
using the test data set and 1,000 iterations (Breiman, 2001).
For further insights, the weights of the ANN were inspected.
Weights converging on a single hidden layer neuron were taken
as an indication of possible interactions between the respective
input TOIs.

Brain age prediction

Brain age prediction was conducted on the validation
and test data set using both ridge regression and the
ANN. For evaluating the performance of the models, the R2

value and the mean absolute error (MAE) were calculated.
The 95%-confidence intervals (CI) were determined by
bootstrapping with 1,000 iterations (Efron and Tibshirani,
1993). In addition, the distributions of the prediction error,
i.e., the difference between chronological age and predicted
brain age, were tested for normality using the Shapiro-Wilk test
(Shapiro and Wilk, 1965).

Age correction

Age correction of the tract-based FA values was conducted
for samples in the test data set with the test samples’ mean
chronological age as the global target age. The basic structure
of the age correction approach outlined here is adopted from
an image generation algorithm that combines the artistic style
from one image and the content from another image (Gatys
et al., 2015, 2017). In summary, the gradient descent algorithm
was applied not to update the weights and biases of the ANN,
but to modify the input data (Figure 1B). First, the tract-
based FA values (= input data x) from each sample were
forward propagated through the ANN, putting out the predicted
brain age y. Then, the age difference between the sample’s
chronological age and the global target age was added to the
predicted brain age y to define the sample’s age correction target
ytarget . Note, that ytarget cannot be set to the global target age,
as this would lead not only to the desired age correction, but
also the correction of the “brain age gap.” To modify the input
data x, the difference between y and ytarget (= error E) was
backpropagated through the ANN. The hyperparameters of the
ANN were set to warm_start = True, max_iter = 1, solver = “sgd”
and alpha = 0, and exactly one step of gradient descent was
conducted to calculate the modified weight matrix W’. Finally,
instead of updating the weights and biases of the model like in a
regular gradient descent algorithm, the input data were updated.
The updated input data were calculated as the dot-product of the
input data x, the modified weight matrix W’, and the inverse of
the original weight matrix W. Adjustment of the input data was
restricted by the following rules:

1. If the global target age is higher than the chronological age,
FA values of the individual sample must decrease.

2. If the global target age is lower than the chronological age,
FA values of the individual sample must increase.

3. The FA values derived from the superior and MCP (SCP
and MCP) should remain unchanged, as these tracts
generally do not exhibit age-associated alterations (Cox
et al., 2016; Behler et al., 2021).

For any value that did not meet these requirements,
the initial value was retained. Forward propagation,
backpropagation and updating the input data were repeated
until the error E reached an absolute value of less than 1
month. Then, the algorithm was terminated and the modified
input data were considered age-corrected. When processing
these new age-corrected input data with the ANN, the output
age differs from the original predicted age by the difference
between the sample’s chronological and the global target age.
The algorithm corrects all tract-based FA values to the same
target age and cannot introduce tract-specific age targets, as in a
tract-wise age correction.
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FIGURE 2

Important features in the ridge regression and the artificial neural network (ANN). Feature importance is displayed as the absolute value of the
ridge regression coefficients (Left) and the mean permutation importance (PI) values from the ANN (Right). For better visualization, PI values
were rescaled and negative PI values were set to 0. CST, corticospinal tract; SLF, superior longitudinal fasciculus; ILF, inferior longitudinal
fasciculus; SCP, superior cerebellar peduncle; MCP, middle cerebellar peduncle; AIC, anterior limb of internal capsule; PIC, posterior limb of
internal capsule; CC, corpus callosum.

The ANN-based age-corrected FA values were compared
with those that were age-corrected using a tract-specific linear
regression approach proposed by Behler and colleagues (Behler
et al., 2021). As a performance metric, the R2 values and
95% confidence intervals were calculated by bootstrapping with
1,000 iterations, both for the individual tracts and the combined
data set. In addition, Bland-Altman analysis was performed for
the individual tracts and the combined data set (Bland and
Altman, 1986).

Results

Model construction and inspection

The exhaustive grid searches determined the L2-
regularization term as alpha = 62.4 for the ridge regression
and alpha = 10.5 for the ANN. Pruning of the ANN resulted
in a sparse weight matrix with 67% zeroes. The coefficients

of the ridge regression are reported in Table 2, the intercept
was 0. Parameter inspection of the ANN showed that the main
diagonal of the weight matrix contained the highest value
for each hidden layer neuron (Figure 1 and Supplementary
Table 1), retaining the initial relationship to their input TOI.
In the hidden layer neurons 4, 8, 14, and 21, respectively, 10
or more non-zero weights from the input layer converged.
With respect to their largest weight, these hidden layer neurons
corresponded to the optic radiation, SCP, temporal lobe to
hypothalamus, and corpus callosum area V-associated tracts.
Permutation importance indicated that features with large
coefficients in the ridge regression were also important for brain
age prediction in the ANN, most notably the corticorubral tract,
the SCP, and the corticostriatal tract (Figure 2).

Age prediction

The following results are reported as the mean, with the
95% CI in square brackets. Ridge regression achieved an R2
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TABLE 3 Performance metrics of the ANN-based age correction of
fractional anisotropy (FA) compared to a tract-wise linear
age-correction.

Tract of interest R2 [95% CI] Mean difference
[limits of agreement]

CST 0.68 [0.28; 0.88] 0.00 [−0.02; 0.02]

Frontooccipital tract 0.34 [−0.41; 0.72] 0.01 [−0.02; 0.04]

Fasciculus uncinatus 0.92 [0.85; 0.96] 0.00 [−0.01; 0.00]

Optic radiation 0.57 [−0.54; 0.85] 0.00 [−0.04; 0.04]

SLF 0.84 [0.67; 0.94] −0.01 [−0.02; 0.01]

ILF 0.20 [−0.97; 0.63] 0.00 [−0.03; 0.03]

Cingulum −1.85 [−6.39; 0.11] −0.01 [−0.08; 0.06]

SCP 1.00 [1.00; 1.00] 0.00 [0.00; 0.00]

MCP 1.00 [1.00; 1.00] 0.00 [0.00; 0.00]

Corticostriatal tract −0.60 [−1.45;−0.01] 0.03 [0.00; 0.05]

Corticopontine tract 0.96 [0.92; 0.98] 0.00 [0.00; 0.01]

Corticorubral tract 0.57 [0.31; 0.77] 0.01 [−0.01; 0.03]

Perforant path 0.68 [0.33; 0.86] 0.00 [−0.01; 0.01]

Temporal lobe to
hypothalamus

0.96 [0.81; 1.00] 0.00 [−0.01; 0.01]

AIC 0.35 [−1.87; 0.85] 0.00 [−0.04; 0.03]

PIC 0.80 [0.62; 0.90] 0.00 [−0.02; 0.01]

CC I associated tracts 0.62 [0.34; 0.79] 0.02 [−0.03; 0.06]

CC II associated tracts 0.61 [0.30; 0.79] 0.01 [−0.03; 0.05]

CC III associated tracts 0.72 [0.40; 0.86] 0.01 [−0.02; 0.05]

CC IV associated tracts −2.66 [−11.99;−0.20] 0.01 [−0.12; 0.14]

CC V associated tracts 0.95 [0.76; 0.99] 0.00 [−0.02; 0.02]

R2 values are displayed with the 95% confidence interval (CI). The mean differences
between both age-corrected FA-values and the limits of agreement were obtained by
Bland-Altman analyses.

value of 0.38 [0.27; 0.48] in the LOOCV and 0.38 [0.10; 0.59]
in the test data set. The MAE was 10.59 [9.53; 11.76] years in
the LOOCV and 8.36 [6.71; 10.29] years in the test data set. The
ANN achieved an R2 value of 0.47 [0.36; 0.56] in the LOOCV
and 0.47 [0.23; 0.66] in the test data set. The MAE was 9.93
[8.95; 10.98] years in the LOOCV and 7.61 [6.01; 9.53] years
in the test data set. Prediction errors in the ANN and in the
ridge regression were normally distributed with p > 0.05 (also
see Supplementary Figure 1).

Age correction

The comparison of the ANN-based age-corrected FA with
the tract-wise linear age-corrected FA resulted in an R2 value of
0.90 [0.82; 0.93] and a mean difference of 0.00 [-0.04; 0.05] for
all tract systems combined. The tract-wise comparison of both
approaches showed an inconsistent pattern, with the frontal
tracts showing more concordance than the posterior ones. Low
or negative R2 values were noted in the frontooccipital tract, the
optic radiation, the ILF, the cingulum, and the tracts associated
with segment IV of the corpus callosum. The Bland-Altman

analysis indicated that FA values were systematically lower after
ANN vs. tract-wise linear age correction in the corticostriatal
tract. For a complete overview, see Table 3 and Figure 3.

Discussion

Artificial neural network for age
correction based on diffusion metrics

In the present study, we provided the proof of concept
for non-linear age correction of tract-based diffusion metrics
data using an ANN. First, the ANN was trained on tract-based
DTI metrics gathered from healthy adults, then, the ANN was
applied to a separate test data set for age correction, using a
modified gradient descent algorithm. The comparison with a
state-of-the-art linear tract-wise age-correction (Behler et al.,
2021) gave an R2 value of 0.90. As an overall pattern, ANN age
correction was more concordant with tract-wise age correction
in frontal areas, less in occipital or infratentorial areas.

Artificial neural network explained
about 50% of the subjects’ age

In the current approach, the ANN explained about 50% of
the subjects’ chronological age by white matter diffusion metrics
alone, which is in line with previously reported performance
metrics (Cole, 2020; Niu et al., 2020).

In brain age prediction models, the difference between the
predicted brain age and the chronological age is often referred
to as the “brain age gap” and is considered an indicator for
accelerated or delayed brain aging. The age prediction errors
of the ANN were normally distributed. Biological markers and
their measuring errors generally follow a normal distribution
which is often explained by central field theory (Lyon, 2014).
We regard the normal distribution of the age prediction errors
of the ANN as consistent with the idea that both brain age and
the “brain age gap” can be regarded as biomarkers (Franke and
Gaser, 2019).

Some lifestyle and biographical factors such as alcohol
consumption (McEvoy et al., 2018), body composition (Beck
et al., 2022), or previous childbirths (Voldsbekk et al., 2021)
are associated with white matter alterations. If a detailed
description of these factors is available in a given study
population, this information could be included in the model
and corrections for factors other than age could be possible.
Given the difficulties in obtaining these data in retrospective
clinical studies, we suggest applying the proposed ANN age-
correction at the group level only, where the influence of
different biographies and lifestyles should be averaged out.
In addition to physiological aging, diseases such as alcohol
dependence can have a long-term impact on DTI metrics
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FIGURE 3

Tract-wise comparison of two different approaches for age correction of fractional anisotropy (FA) values. The tract-wise linear age-corrected
FA values is plotted against the artificial neural network (ANN) age-corrected FA values of each subject in the test data set (N = 43). The bisector
is displayed as a “guide for the eye.” CST, corticospinal tract; SLF, superior longitudinal fasciculus; ILF, inferior longitudinal fasciculus; AIC,
anterior limb of internal capsule; PIC, posterior limb of internal capsule; CC, corpus callosum.

(Pfefferbaum et al., 2014). As the ANN was trained on
data of healthy participants with no known pathological
conditions or cognitive deficits, it cannot take disease-specific
alterations into account. In patient data, disease-specific tract
data would not be modified beyond what can be explained
by physiological aging alone. In turn, disease-age interactions
cannot be accounted for.

Tract-specific predictive contributions

Model inspection revealed high importance of the
corticorubral tract, the SCP, and the corticostriatal tract in
brain age prediction and indicated interaction effects in optic
radiation, SCP, the tract from temporal lobe to hypothalamus,
and corpus callosum area V-associated tracts. The importance
of the SCP was surprising, as previous studies have shown no
age-related changes in diffusion metrics in cerebellar tracts
(Behler et al., 2021). This result could be explained by the SCP
serving as a reference against which the frontal areas were
compared. Accordingly, non-specific changes in whole-brain
FA (e.g., due to lifestyle) would not automatically change the age
prediction, since the SCP would partially level out the changes

in the frontal lobe. If this interpretation is correct, the proposed
ANN may even account for some of the lifestyle factors, even if
they are not explicitly presented to the model.

Non-linear age correction can be
performed by artificial neural network

The comparison of ANN age-corrected FA values with age-
corrected FA based on an established tract-wise method showed
similar results with a good overall performance (R2 = 0.90).
Nevertheless, the ANN struggled to accurately correct tracts
in posterior brain areas, namely the frontooccipital tract,
the optic radiation, the ILF, the cingulum, and the tracts
associated with area IV of the corpus callosum. Inaccuracies
during ANN age-correction compound with every iteration
of gradient descent and there is no mechanism to limit
the range of possible values. For training ML models, this
limitation is generally implemented by L2-regularization.
The lack of such a feature in our ANN age correction
algorithm might explain the more pronounced deviations
found in the cingulum and the corpus callosum area IV
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associated tracts (see Figure 3), where implausibly high/low
FA-values were suggested as age-corrected by the ANN.
The feed-forward nature of the age-correction algorithm
(see Figure 1B) may provide an explanation for some of
the outliers. In theory, the issue could be addressed by
introducing L2-regularization to the outlined method of ANN
age correction. However, the implementation might prove
challenging, as high L2-parameters would prioritize FA-values
close to 0 (z-transformed mean) over reducing the actual
error term. A more practical approach could be to use
ANN age-correction only when the amount of intended age-
correction is low.

ANN-based non-linear age correction generates synthetic
data for the intended target age. These synthetic tract-based
diffusion data could not only be used for age correction in
group studies but could also be for data augmentation and
sharing. Data augmentation, which can also be considered
a form of regularization (Kukaèka et al., 2017), is common
in advanced ML techniques such as deep neural networks
(Abadi et al., 2016). In various neurodegenerative diseases, ML
models based on neuroimaging data can strengthen diagnostic
accuracy (Lampe et al., 2022). However, collecting a large
amount of neuroimaging data in rare brain diseases is often
challenging, as it is to train complex yet accurate ML models
(Castiglioni et al., 2021). The data generation used here for
age correction might be used for data augmentation of limited
diffusion metric data sets by using the existing data sets to
create new ones.

Limitations

The present study is not without limitations. The
relatively small sample size (n = 217) prompted us to
prune the weight matrix to reduce model complexity.
Given this sample size, we also decided against performing
subgroup analyses, e.g., of gender differences. While we
assumed that our subjects were healthy based on the
absence of diseases, the finding of accelerated brain
aging in some subjects may contradict this notion.
Possible underlying factors were not investigated in
the present study. There were no signs of impaired
neurological and neurocognitive functioning among the
study participants according to medical history and clinical
impression, however, no standardized neurocognitive
screening was performed.

DTI measures a physical parameter, i.e., the results should
theoretically be the same for every protocol independent
of the scanner. However, there are differences in DTI
parameters occurring from different values for TE, B0, and
voxel volumes. In order to reduce these effects, a (linear)
harmonization of FA values from different protocols has been
applied. The differences measured in FA maps of age-matched

(healthy) controls can be used for this task (Müller et al.,
2016). The use of age-matched control groups enabled us to
calculate the protocol-based differences, at the expense of small
differences of age-matched subject groups that are assumed
to be one or two orders of magnitude lower than protocol
differences.

Conclusion

In conclusion, the present study provided a proof of concept
for the use of ANN in non-linear age correction of tract-based
diffusion metrics. Future studies could extend the proposed
method of ANN age correction to data augmentation.
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