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Background: The levodopa challenge test (LCT) has been routinely used in 

Parkinson disease (PD) evaluation and predicts the outcome of deep brain 

stimulation (DBS). Guidelines recommend that patients with an improvement 

in Unified Parkinson’s Disease Rating Scale (UPDRS)-III score > 33% in the LCT 

receive DBS treatment. However, LCT results are affected by many factors, 

and only provide information on the immediate effectiveness of dopamine. 

The aim of the present study was to investigate the relationship between LCT 

outcome and brain imaging features of PD patients to determine whether the 

latter can be used to identify candidates for DBS.

Methods: A total of 38 PD patients were enrolled in the study. Based on 

improvement in UPDRS-III score in the LCT, patients were divided into low 

improvement (PD-LCT-L) and high improvement (PD-LCT-H) groups. Each 

patient’s neural network was reconstructed based on T1-weighted magnetic 

resonance imaging data using the Jensen–Shannon divergence similarity 

estimation method. The network was established with the multiple kernel 

support vector machine technique. We  analyzed differences in individual 

morphologic brain networks and their global and local metrics to determine 

whether there were differences in the connectomes of PD-LCT-L and PD-

LCT-H groups.

Results: The 2 groups were similar in terms of demographic and clinical 

characteristics. Mean ± SD levodopa responsiveness was 26.52% ± 3.47% in the 

PD-LCT-L group (N = 13) and 58.66% ± 4.09% in the PD-LCT-H group (N = 25). 

There were no significant differences between groups in global and local 

metrics. There were 43 consensus connections that were affected in both 

groups; in PD-LCT-L patients, most of these connections were decreased 

whereas those related to the dorsolateral superior frontal gyrus and left 

cuneus were significantly increased.
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Conclusion: Morphologic brain network assessment is a valuable method for 

predicting levodopa responsiveness in PD patients, which can facilitate the 

selection of candidates for DBS.
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Introduction

Parkinson disease (PD) is the second most common 
neurodegenerative motor disorder and affects more than 6 million 
people worldwide (Feigin et al., 2019). It is characterized by the 
degeneration of dopaminergic neurons and pathologic formation 
of Louis corpuscles, leading to motor symptoms such as tremor, 
muscle stunting, movement retardation, and posture imbalance as 
well as non-motor manifestations such as sleep, olfactory, 
cognitive, and mental disorders and autonomic dysfunction 
(Poewe et  al., 2017). According to epidemiologic studies 
conducted in Europe and the United States, the prevalence rate of 
PD is 1% in people over the age of 60 years and > 4% in people over 
the age of 80 years, with the rates expected to rise over the next few 
decades (Balestrino and Schapira, 2020). The diagnosis of PD is 
mainly made and the severity determined through clinical 
examination and follow-up (Tolosa et al., 2021). In China, the 
treatment approach for PD is long-term, multidisciplinary 
integrated therapy (Chen S. et al., 2016).

Deep brain stimulation (DBS), especially closed-loop or 
adaptive DBS, is an essential aspect of PD treatment (Habets et al., 
2018). Patients undergo brain imaging including magnetic 
resonance imaging (MRI) and positron emission tomography–
computed tomography (PET-CT) before DBS is performed. The 
levodopa challenge test (LCT) is also widely recommended before 
the procedure (Saranza and Lang, 2021). A 30% or 33% 
improvement in Unified Parkinson’s Disease Rating Scale 
(UPDRS)-III score in the LCT has been set as a threshold for 
selecting candidates for DBS (Defer et al., 1999); however, it is 
unclear how this can predict the effectiveness of the DBS operation. 

It was reported that patients with a motor symptom improvement 
rate of <30% in the l-dopa impact test responded well to DBS 
(Zheng et al., 2021); and at our center, DBS was effective in some 
patients with <33% improvement in the LCT. As the LCT does not 
fully reflect brain function, it is important to establish other 
methods for predicting the response of PD patients to DBS.

Neuroimaging studies have revealed structural and functional 
alterations in multiple brain networks in PD (Ji et al., 2018). For 
example, changes in the brain network observed by 
18F-fluorodeoxyglucose (FDG)-PET/CT can be  used for PD 
diagnosis and treatment selection for patients (Li et al., 2021a) Voxel-
based morphometry (VBM) is a relatively new approach for 
analyzing MRI data that has objective and quantitative advantages 
(Lenka et al., 2015). The aim of this study was to determine whether 
morphologic brain network changes observed by MRI and VBM in 
patients with PD are associated with LCT results, and can thus 
be used to identify patients who are likely to respond well to DBS.

Materials and methods

Study population

A total of 38 patients diagnosed with idiopathic PD according 
to International Parkinson and Movement Disorder Society 
diagnostic criteria were retrospectively enrolled in the study. All 
patients underwent implantation surgery for DBS at Huashan 
Hospital, Fudan University from January 2020 to December 2021. 
Patients with a history of head trauma, stroke, intracranial tumor, 
hydrocephalus, and psychiatric illness were excluded. Medical 
records were thoroughly reviewed to collect detailed information. 
Written, informed consent was provided by each patient or their 
legal guardians. The study was approved by the Institutional 
Review Board of Huashan Hospital and Medical Ethics Committee 
of Huashan Hospital, Fudan University, Shanghai, China. The 
procedures used in this study adhered to the tenets of the 
Declaration of Helsinki.

LCT

The LCT was administered to patients by experienced 
neurologists at Huashan Hospital. To induce the “off ” medication 

Abbreviations: AAL, automated anatomical labeling; BC, betweenness 

centrality; Cp, clustering coefficient; DBS, deep brain stimulation; DC, degree 

centrality; Eglobal, global efficiency; Elocal, local efficiency; FN, false negative; 

FP, false positive; JSSE, Jensen–Shannon divergence similarity estimation; 

KL, Kullback–Leibler; LCT, levodopa challenge test; Lp, characteristic path 

length; MK-SVM, multiple kernel support vector machine; MRI, magnetic 

resonance imaging; PD, Parkinson disease; PDF, probability density function; 

PET, positron emission tomography; RHKS, reproducing Hilbert kernel space; 

ROI, region of interest; TN, true negative; TP, true positive; UPDRS, United 

Parkinson’s Disease Rating Scale; γ, normalized clustering coefficient; λ, 

normalized characteristic path length; σ, small-world.
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state, dopamine receptor agonists were stopped 72 h before the 
test, followed by levedopa and other dopaminergic medications 
12 h before the test. After the first evaluation of UPDRS-III score 
as the “off ” baseline, 10 mg domperidone was administered orally, 
followed by a dose of 150% of the standard first morning levodopa 
equivalent dose 30 min later. UPDRS-III score was assessed every 
30 min until 4 h after levodopa intake. The lowest score was 
recorded as the peak “on” value. Levodopa responsiveness (LR) 
was calculated as follows: % LR = (“off ” UPDRS-III score − peak 
“on” UPDRS-III score) / “off ” UPDRS-III score × 100%. During 
the test, patients’ heart rate and blood pressure were monitored 
and any adverse events were recorded.

Image acquisition and preprocessing

MRI was performed on an 3 T Ingenia scanner (Koninklijke 
Philips N.V., Amsterdam, The Netherlands). Structural 3D 
T1-weighted images were acquired with the following parameters: 
axial section thickness, 1.0 mm; no gap; repetition time, 6,900 ms; 
echo time, 2.9 ms; field of view, 240 × 224 mm × 170 mm; matrix 
size, 240 × 240 × 170; voxel size, 1 × 1 × 1 mm3; and signal-to-noise 
ratio (SNR), 1.004. Imaging data were preprocessed using the 
Computational Anatomy Toolbox (CAT12; http://www.neuro.
uni-jena.de/cat/) from Statistical Parametric Mapping 12 (SPM12; 
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Gray matter 
(GM) was segmented with default parameters and spatially 
normalized to the Montreal Neurological Institute space, followed 
by nonlinear modulation to compensate for potential bias. After 
these steps, a GM volume map was obtained for each subject (a 
voxel size of 1.5 × 1.5 × 1.5 mm). Spatial smoothing (Gaussian 
kernel with 6-mm full width at half maximum) was further applied 
to enhance the SNR of the GM volume map of each patient (voxel 
size of 1.5 × 1.5 × 1.5 mm). The cerebral cortex was divided into 90 
regions (45 per cerebellar hemisphere) based on automatic 
anatomical labeling (AAL) (Tzourio-Mazoyer et al., 2002).

Individual Jensen–Shannon divergence 
similarity estimation morphologic brain 
network construction

Early-stage PD with cognitive impairment can be predicted 
based on topologically convergent and divergent GM networks 
(Suo et al., 2021a). The distribution divergence-based method has 
been used in morphologic brain network investigations including 
in PD (Yoo et al., 2017; Fiorenzato et al., 2019; Yang et al., 2021). 
Specifically, Kullback–Leibler (KL) divergence (Suo et al., 2021b) 
was applied to construct the network according to the 
following formula:
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where P and Q represent probability density functions 
(PDFs) of voxel intensities from a pair of regions of interest 
(ROIs). We  applied the JSSE to construct individual 
mathematical relationships for any 2 ROIs to achieve a more 
accurate and symmetric estimate of morphologic brain 
connectivity. Based on the ROI parcellation from the AAL 
atlas, a 90 × 90 region correlation matrix was generated for 
each patient and the intensity of the ROI was extracted to 
estimate the corresponding PDF. Morphologic connections 
were derived as the JS divergence (relative entropy) using the 
following equation:
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(2)

where DKL  are the KL divergence. The JS divergence was 
used as a measure of morphologic connectivity to generate the 
adjacency matrix.

Computation of graph metrics

Global and local graph metrics of the morphologic brain 
network were determined by graph theoretical network 
analysis (Bullmore and Sporns, 2009) to evaluate individual 
connectivity patterns. Global graph metrics included 
clustering coefficient (Cp), small world (σ), global efficiency 
(Eglobal), local efficiency (Elocal), characteristic path length (Lp), 
normalized clustering coefficient (γ), normalized 
characteristic path length (λ), and modularity score 
(Termenon et al., 2016) and also assortativity, and nodal graph 
metrics included degree centrality (DC), nodal efficiency 
(Ne), betweenness centrality (BC), shortest path length, and 
nodal clustering coefficient (Xu et  al., 2020).In this study, 
synchronization had been adopt. Before calculating the sum 
of the corresponding node attribute values under the sparse 
threshold, we compared the network size of different sparse 
thresholds (0.02–0.5 in steps of 0.01). We then applied the sum 
of the values of each node as an attribute to train the classifier 
so that only one value corresponded to a graphical measure.

Feature combination

In order to more accurately predict levodopa 
responsiveness, connection weight, global metrics, and nodal 
metrics were combined with the multikernel support vector 
machine (MK-SVM) technique (Xu et al., 2021). In a case with 
𝑛 training samples with connection values and graph 
metrics, xi1 , xi2 , and xi31  represented the connection weight, 
global metrics, and nodal metrics, respectively, of the 𝑖th 
sample. With yi Î -{ }1 1, as the corresponding label, the 
following problem was solved:
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where fm  represents the transform from the original space in 
𝑚th data to the Represent Hilbert Kernel Space (RHKS), wm  is the 
hyperplane in RHKS, and bm  is the corresponding combined 
weight of the 𝑚th attribute. The dual form of MK-SVM is 
represented as follows:
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where k x x x xi
m
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i
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j
m,( ) = ( ) ( )f f  is the kernel matrix of 

the 𝑚th data. After training the model, we tested the new sample: 
𝑥 = { }x x xM1 2, , , . The kernel between the new test sample and 
𝑖th training sample in the 𝑚th modality was 
defined as k x x x xi

m m m
i
m T m m,( ) = ( ) ( )f f .

The predictive level based on MK-SVM was formulated using 
the following equation.
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To evaluate the gain in predictive performance of the 
combined information (ie, connection and global and nodal graph 
metrics in addition to LCT results), we  employed the most 
commonly used and simplest linear kernel k x xi

m
j
m,( ),  according 

to the following equation.
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Feature selection and validation

To determine whether there were differences between the 2 
groups, the strictest nested leave-one-out cross-validation (CV) 
(Li et al., 2017) was used in the construction of connections by 
combining the information from connection weights and global 
and nodal graph metrics.

All data processing and classification procedures used in the 
study are shown in Figure 1.

Results

Demographic and clinical characteristics 
of the study population

The demographic and clinical characteristics of the study 
population are shown in Table  1. Age, education, and sex 
distribution were similar between the 2 groups. According to the 
results of the LCT, patients were divided into PD-LCT-L 
(UPDRS-III score improvement rate ≤ 33%) and PD-LCT-H 
(UPDRS-III score improvement rate > 33%).

FIGURE 1

Data-processing and classification procedures adopted in the study. The JSSE was chosen to construct the morphological network. Then, the 
nodal and global graph metrics were computed. In the end,the MK-SVM was adopted to combine these information for comparison.
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Global and local graph metrics of the 
brain connectome

The global graph metrics of the PD-LCT-L and PD-LCT-H 
groups are shown in Table  2. Compared with the PD-LCT-H 
group, hierarchy (𝐻𝑟) was increased whereas assortativity, Cp, 
Eglobal, Elocal, Lp, modularity score, synchronization, g l, ,  and s
were decreased in the PD-LCT-L group. However, the differences 
were not statistically significant ( p > 0 05. ).

Consensus connections of the 
morphologic brain connectome

As mentioned above, we selected consensus connections with 
p < 0 05.  in each inner CV loop. As the selected connections in 

each loop could differ, we recorded all selected features during the 
entire training process—i.e., consensus connections. Specifically, 
we selected significant consensus connections with p < 0 05.  in 
each loop for a total of 43 (Table 3). Most of these were decreased 
in PD-LCT-L patients, except for those in the frontal and temporal 
lobe regions, which were increased. Significant consensus 
connections in the thalamus and putamen differed significantly 
between the 2 groups.

Degree analysis of the morphologic brain 
connectome

We visualized the mean degree of each node in the PD-LCT-L 
and PD-LCT-H groups to compare the degree distribution of the 
estimated brain connectomes. Specifically, there were 6 significant 
nodes with the average degree in the PD-LCT-L and PD-LCT-H 
groups (Table 4). Nodes with a standard deviation degree higher 
than the mean of the degree of all nodes were identified as degree 
hub nodes. A comparison of hub nodes between 2 groups in the 
same modal network revealed that most overlapped. There were 
also several hub nodes that corresponded to specific groups.

BC analysis of the morphologic brain 
connectome

To investigate the BC of the estimated morphologic brain 
connectome, 5 significant nodes with average betweenness in the 
PD-LCT-L and PD-LCT-H groups were examined (Table 5). The 
betweenness of left anterior cingulate cortex, left amygdala, left 
temporal pole of the superior temporal gyrus, and right 
parahippocampal gyrus tended to decrease in the PD-LCT-L 
group compared with the PD-LCT-H group, whereas that of the 
left precuneus tended to increase.

TABLE 1 Demographic and clinical characteristics of the study 
population.

Variable PD-LCT-L 
(N = 13)

PD-LCT-H 
(N = 25)

p

Age, years 63.38 ± 3.95 63.76 ± 7.85 0.873

Sex (male/female) 8/5 10/15 0.307

Education

Illiteracy 0 1 0.095

Primary school 1 6

Middle school 7 13

University 5 4

Disease duration 

(months)

10.23 ± 3.44 9.72 ± 3.29 0.657

Values are shown as mean ± SD or n.
PD-LCT-H, Parkinson disease patients with high improvement on the levodopa 
challenge test; LCT-L, Parkinson disease patients with low improvement on the 
levodopa challenge test.

TABLE 2 Global and local graph metrics of the brain connectome.

Global graph metric PD-LCT-L PD-LCT-H p

Ar 0.1809 ± 0.04 0.1827 ± 0.04 0.9021

Q 17.6911 2.20± 18.2621 ± 2.45 0.4454
Hr 0.0469 ± 0.02 0.0439 ± 0.02 0.6520
Eglobal 0.2171 ± 0.01 0.2158 ± 0.01 0.6663
Elocal 0.3621 ± 0.01 0.3648 ± 0.01 0.2825
Cp 0.3159 ± 0.01 0.3196 ± 0.01 0.2432
γ 1.0029 ± 0.12 1.0254 ± 0.15 0.6088
λ 0.5780 ± 0.02 0.5805 ± 0.04 0.7954
σ 0.7598 ± 0.09 0.7798 ± 0.10 0.5133
Lp 1.0962 ± 0.07 1.1021 ± 0.08 0.8222
Sr −1.1078 ± 1.65 −0.9257 ± 1.26 0.7218

Ar , assortativity; Cp , clustering coefficient; Eglobal , global efficiency; Elocal , local efficiency; Hr , hierarchy; Lp , characteristic path length; PD-LCT-H, Parkinson disease 
patients with high improvement on the levodopa challenge test; LCT-L, Parkinson disease patients with low improvement on the levodopa challenge test; Q , modularity score; Sr , 
synchronization; γ, normalized clustering coefficient; λ, normalized characteristic path length; σ, small-world.
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Ne and nodal local efficiency analysis of 
the morphological brain connectome

The Ne values of 4 significant nodes in the PD-LCT-L and 
PD-LCT-H groups are listed in Table  6. The Ne of the left 
middle frontal gyrus, left insula, and right thalamus showed a 
decreasing tendency in the PD-LCT-L group, whereas the Ne 
of the left precuneus showed the opposite trend. Meanwhile, 
NLe of the right pallidum and left thalamus tended to decrease 
whereas both Ne and NLe of the left fusiform gyrus increased 
in the PD-LCT-L group compared with the PD-LCT-R  
group.

Classification performance

We evaluated the classification performance of the combined 
information and proposed JSSE method based on accuracy, 
sensitivity, and specificity, which were calculated with the 
following equations:

 
Accuracy TP TN

TP FP TN FN
=

+
+ + +  

(7)

 
Sensitivity Tp

TP FN
=

+  
(8)

 
Specificity TN

TN FP
=

+  
(9)

where is true positive (ie, number of positive subjects correctly 
classified in the identification task); FP is false positive (number 
of negative subjects that were incorrectly classified in the 
identification task); and TN and FN are the number of true 
negative and false negative subjects, respectively (see Table 7).

To validate the combined information results, we  also 
determined the single-kernel SVM classification based on 
connection and global and nodal metrics. The receiver operating 
characteristic curve showed that the performance of the 
combined information results were superior to that of the global 
metric (Figure  2). However, the combination of connection, 
global metrics, and nodal metrics did not outperform the results 
obtained using all 4 measurements (ie, including the LCT results).

Discussion

The diagnosis of PD is mainly symptom-based. The 
heterogeneity of clinical presentation and disease course in PD 
reflects a complex pathogenesis and can determine the most 
effective treatment. Stratifying PD patients can facilitate the 
selection of individually tailored treatment strategies. This study 
investigated whether morphologic brain networks identified by 
MRI and analyzed by JSSE can predict the response to DBS in PD 
patients stratified according to improvement rates in the LCT. The 
results showed that while there were no significant differences in 
global graph metrics, the 2 groups differed with respect to DC, 
BC, Ne, NLe, NCp, and NLp. Thus, combining morphologic brain 
network characteristics and LCT results can provide detailed 
information regarding disease state in individual PD patients. 
Moreover, JSSE applied to T1-weighted MRI data can reveal inter-
individual differences in brain connectivity that can inform 
treatment selection for patients with PD.

LCT is a valuable tool for identifying the optimal treatment for 
PD and is required prior to DBS. However, the test has certain 
limitations. First, there is no absolute standard for the results. An LR 

TABLE 3 Consensus connections.

LCT-L LCT-H p

‘PHG.R’ ‘THA.R’ 1.533859 1.793755 8.47E-05

‘CUN.R’ ‘THA.L’ 1.610628 1.855255 0.000359

‘THA.L’ ‘MTG.L’ 1.538496 1.767644 0.000404

‘ORBsup.L’ ‘AMYG.L’ 1.621654 1.654497 0.000469

‘PCG.R’ ‘HIP.L’ 1.593433 1.731876 0.000654

‘CUN.R’ ‘THA.R’ 1.580043 1.52271 0.000672

‘IPL.R’ ‘THA.R’ 1.428361 1.460949 0.00072

‘DCG.L’ ‘THA.R’ 1.435743 1.799698 0.000749

‘THA.R’ ‘MTG.L’ 1.509259 1.58111 0.00116

‘CAU.L’ ‘STG.L’ 1.67633 1.718709 0.001267

HG.R, right parahippocampal gyrus; THA.R, right thalamus. CUN.R, right cuneus; 
THA.L, left thalamus; MTG.L, left middle temporal gyrus; ORBsup.L, left superior 
frontal gyrus; AMYG.L, left amygdala; PCG.R, right posterior cingulate gyrus; HIP.L, left 
hippocampus; Cun.R, right cuneus; IPL.R, inferior parietal, but supramarginal and 
angular gyri; DCG.L, left median cingulate and paracingulate gyri; CAU.L, left caudate 
nucleus; STG,L, left superior temporal gyrus.

TABLE 4 Six significant nodes with average degree.

MFG.L INS.L AMYG.L CUN.L FFG.L PoCG.L

LCT-L 12.76077 12.23853 4.453462 16.89981 11.78564 17.02436

LCT-H 14.85375 14.04729 6.398854 14.89708 9.802083 14.75219

p value 0.043823 0.021711 0.042738 0.021208 0.019236 0.008371

AMYG.L, left amygdala; CUN.L, left cuneus; FFG.L, left fusiform gyrus; INS.L, left 
insula; LCT-H, high improvement on the levodopa challenge test; LCT-L, low 
improvement on the levodopa challenge test; MFG.L, left middle frontal gyrus; PoCG.L, 
left posterior cingulate gyrus.

TABLE 5 Betweenness centrality.

ACG.L PHG.R AMYG.L PCUN.L TPOsup.L

LCT-L 8.515045 21.04107 7.207643 64.74832 6.455661

LCT-H 13.84427 28.18066 12.3366 48.01521 12.32528

P value 0.012843 0.03375 0.049101 0.028623 0.044767

ACG.L, left anterior cingulate cortex; AMYG.L, left amygdala; LCT-H, high 
improvement on the levodopa challenge test; LCT-L, low improvement on the levodopa 
challenge test; PCUN.L, left precuneus; PHG.R, right parahippocampal gyrus; 
TPOsup.L, left temporal pole of the superior temporal gyrus.
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of 30% was proposed based on a placebo effect observed in one-third 
of patients, but a value of 33% was set in the Core Assessment 
Program for Intracerebral Transplantations and Core Assessment 
Program for Surgical Interventional Therapies in Parkinson’s Disease 
preoperative protocols (Defer et  al., 1999); the latter value had 
moderately high sensitivity and a specificity of 70% for chronic 
levodopa, with a positive predictive value of 92.3% and negative 
predictive value of 32.1% (Schade et al., 2017). Second, LCT results 
can set certain expectations for operators, follow-up regulators, and 
patients (Lang and Widner, 2002). However, LCT results may 
be  biased by the patient’s long-term oral drug use as well as 
psychological and other factors (Anderson and Nutt, 2011). Third, 
higher-than-usual doses of drug can cause gastrointestinal 
symptoms, but abrupt discontinuation of dopaminergic drugs can 
lead to neuroleptic malignant syndrome-like events in PD patients 
(Ikebe et al., 2003). Other factors such as oral drug dose and test time 
can also affect the results. For these reasons, most neurosurgeons 
base their assessment of the patient’s condition and the choice of 
treatment strategy on other modalities in addition to the LCT 
(Schade et al., 2017). In this study, the LCT was typically administered 
early in the morning when the patient was in a fasting state, and a 
dose of 150% of the standard morning levodopa dose was used. 
Improvement in motor scores compared with the “off” state was 
evaluated every 30 min for 4 h. Several patients complained of 
gastrointestinal symptoms and dizziness.

High-resolution (3.0 T or 7.0 T) MRI can provide information 
on pathologic changes in the brain of PD patients (Sclocco et al., 
2018). Previous brain network-related studies in PD patients have 
mainly focused on diagnosis; analyzing the relationship between 
GM network topology and the GM network determined from 
imaging data and disease severity can provide greater resolution 

for early diagnosis (Suo et al., 2021b). PD patients have higher 
Eglobal and Elocal than normal subjects, which are unrelated to their 
clinical features (Zhang et  al., 2015). In studies investigating 
PD-associated patterns in metabolic brain networks, relatively 
overactive areas were considered as the source of PD brain 
network dysfunction (Lin et  al., 2008). Some studies on the 
efficacy of DBS surgery found that structural and functional 
connectivities were independent predictors of clinical 
improvement (Horn et al., 2017). However, there have been no 
studies on the correlation between dopamine impact tests and 
brain networks. Our results confirm that the morphologic brain 
network of PD patients with different LCT test results have certain 
differences that warrant closer examination in future studies.

All patients enrolled in our study were diagnosed with PD by 
at least 1 neurologist and 1 neurosurgeon. T1-weighted MRI data 
were acquired before subthalamic nucleus DBS surgery. The graph 
theory was applied to examine individual morphologic brain 
networks. Both groups of patients exhibited small-world 
properties for global and local graph metrics of the brain 
connectome, and the groups did not differ in terms of nodes and 
global graph metrics, consistent with previous research (Jia et al., 
2015). This suggests that information transmission efficiency in 
the whole brain was reduced in the early stage of PD disease and 
remained relatively stable with disease progression. We also found 
that the connectivity of many brain areas was weaker in the 
PD-LCT-L group than in the PD-LCT-H group, especially in the 
temporal lobe, limbic system, and thalamus, reflecting damage to 
these areas associated with low improvement in the 
LCT. Connection between the thalamus and cuneus were also 
altered in the PD-LCT-L group, which has been reported in 
patients suffering from both PD and cognitive impairment (Li 
et al., 2020). A correlation has been observed between atrophy of 
thalamic neurons, reduced thalamic volume, and cognitive 
function (Chen F. X. et al., 2016). As a key hub of the default mode 
network, the precuneus is involved in many advanced cognitive 
functions; impaired connections in the precuneus reflected a 
decline in the cognitive level of patients in the PD-LCT-L group. 
Among indicators of complex network operation, the cluster 
coefficient measures the degree of collectivization of the network, 
node degree describes centrality in the network, and Eglobal and 
Elocal represent the network’s global and local transmission 
capacities, respectively (He and Evans, 2010).

Compared with the PD-LCT-H group, the PD-LCT-L 
group showed increased connectivity in a few areas of the 

TABLE 6 Nodal efficiency and nodal local efficiency.

Ne NLe

MFG.L INS.L FFG.L THA.R FFG.L PAL.R THA.L

LCT-L 0.247463 0.246564 0.243791 0.07538 0.366236 0.015702 0.141954

LCT-H 0.267427 0.265425 0.222839 0.107153 0.340273 0.043692 0.202459

P value 0.03846 0.013344 0.038538 0.027674 0.037574 0.042931 0.030709

FFG.L, left fusiform gyrus; INS.L, left insula; LCT-H, high improvement on the levodopa challenge test; LCT-L, low improvement on the levodopa challenge test; MFG.L, left middle 
frontal gyrus; Ne, nodal efficiency; NLe, nodal local efficiency; PAL.R, right pallidum; THA.L, left thalamus; THA.R, right thalamus.

TABLE 7 Classification performance corresponding to different 
methods.

Method Sen Spe Acc AUC

Global(G) 72.94 100 0 0.3076

Nodal(N) 82.98 88.23 69.23 0.9343

Connection(C) 87.23 94.12 69.23 0.9547

N + G 85.11 91.17 69.23 0.9389

C + G 89.36 94.12 76.92 0.9547

C + N 93.61 100 76.92 0.9660

C + G + N 95.74 100 84.61 0.9773

SEN, sensitity; SPE, specificity
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frontal and temporal lobes, and the cluster coefficients of the 
dorsolateral superior frontal gyrus and DC, Ne, and NLe of 
the left fusiform gyrus were increased; moreover, the DC of 

the left cuneus and left postcentral gyrus and BC of the 
precuneus were also increased. These brain regions are all 
related to cognition and movement.From the Figure  3, 
we observed that the brain areas with increased connectivity 
in the PD-LCT-L group tended to be on the left side rather 
than on the right, and the left fusiform gyrus connectome 
showed a compensatory increase in connectivity. In terms of 
consensus connections, the right parahippocampal gyrus–
right thalamus network was the most prominent. As the main 
cortical input to the hippocampus, this pathway plays an 
important role in cognition and emotion, which explains the 
anxiety and depression observed in patients with poor drug 
control (Zhang et al., 2019). Another important pathway for 
consensus connections identified in our study was the 
orbitofrontal cortex–amygdala and Heschl’s gyrus. The 
orbitofrontal cortex is essential for processing visual, spatial, 
and emotional information (Rolls, 2019). We found that this 
brain area was closely linked to the parietal occipital lobe and 
was also a central node in the morphologic brain network. 
Heschl’s gyrus is located in the primary auditory cortex, 
occupying Brodmann areas 41 and 42; it is the first cortical 
structure to process incoming auditory information (Abdul-
Kareem and Sluming, 2008). We  observed significant 
differences in mood, anxiety, and depression between 
PD-LCT-L and PD-LCT-H patients; the connection networks 
related to motor disorders validated in our study may provide 
insight into the pathophysiology of certain emotional 
disorders and their relationship to clinical symptoms in 
PD. We also found that the connection between the thalamus 
and putamen differed between the 2 groups, with fewer 
connections in the PD-LCT-L group; this was previously 
shown to be related to the degree of cognitive dysfunction and 
tremor severity in some patients with PD (Halliday, 2009; Li 
et al., 2021b, 2022). Taken together, these findings provide an 
anatomic basis for evaluating the clinical symptoms of PD as 
well as potential imaging biomarkers for diagnosis.

There were several limitation to this study.We havenot adopt 
multiple comparison correction analysis, such as Bonferroni 
correction, false discovery rate correction, and we will promote 
in the future work. Additionally, the data were analyzed 
retrospectively and could not be stratified according to different 
PD clinical symptoms. A control cohort would be explored in 
future investigations.

Conclusion

The results of this study show that JSSE based on MRI data 
can be  used in conjunction with LCT results to identify 
candidates for DBS among patients with PD. Our findings also 
provide new insight into abnormalities in the morphologic 
brain network in PD that can inform individualized 
treatment decisions.

FIGURE 2

The ROC results of different methods.

FIGURE 3

The most consensus connections mapped on the International 
Consortium for Brain Mapping (ICBM) 152 template using the 
BrainNet Viewer software package http://nitrc.org/projects/bnv/ 
and circularGraph, shared by Paul Kassebaumb http://www.
mathworks.com/matlabcentral/fileexchange/48576-
circulargraph. The connectivity matrices of the fully connected 
network of PD-LCT -L compared to PD-LCT-H are shown. The 
43 most significant connections were retained.
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