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Alzheimer disease (AD) is a progressive neurodegenerative disease resulting from 

the accumulation of extracellular amyloid beta (Aβ) and intracellular neurofibrillary 

tangles. There are currently no objective diagnostic measures for AD. The aim of 

this study was to identify potential diagnostic markers for AD and evaluate the role 

of immune cell infiltration in disease pathogenesis. AD expression profiling data 

for human hippocampus tissue (GSE48350 and GSE5281) were downloaded from 

the Gene Expression Omnibus database. Differentially expressed genes (DEGs) 

were identified using R software and the Human Protein Atlas database was used 

to screen AD-related DEGs. We  performed functional enrichment analysis and 

established a protein–protein interaction (PPI) network to identify disease-related 

hub DEGs. The fraction of infiltrating immune cells in samples was determined 

with the Microenvironment Cell Populations-counter method. The random 

forest algorithm was used to develop a prediction model and receiver operating 

characteristic (ROC) curve analysis was performed to validate the diagnostic 

utility of the candidate AD markers. The correlation between expression of the 

diagnostic markers and immune cell infiltration was also analyzed. A total of 107 

AD-related DEGs were screened in this study, including 28 that were upregulated 

and 79 that were downregulated. The DEGs were enriched in the Gene Ontology 

terms GABAergic synapse, Morphine addiction, Nicotine addiction, Phagosome, 

and Synaptic vesicle cycle. We  identified 10 disease-related hub genes and 20 

candidate diagnostic genes. Synaptophysin (SYP) and regulator of G protein 

signaling 4 (RGS4) (area under the ROC curve = 0.909) were verified as potential 

diagnostic markers for AD in the GSE28146 validation dataset. Natural killer cells, 

B lineage cells, monocytic lineage cells, endothelial cells, and fibroblasts were 

found to be  involved in AD; additionally, the expression levels of both SYP and 

RGS4 were negatively correlated with the infiltration of these immune cell types. 

These results suggest that SYP and RGS4 are potential diagnostic markers for AD 

and that immune cell infiltration plays an important role in AD development and 

progression.
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Introduction

Alzheimer disease (AD) is the leading cause of dementia, which 
is among the most costly, fatal, and burdensome diseases affecting the 
global population. The estimated worldwide prevalence of dementia 
in 2018 was 50 million people, which is expected to triple by 2050 
(Hodson, 2018). AD is clinically diagnosed and characterized by 
amyloid beta (Aβ) and tau deposition and loss of synapses in many 
brain regions including the hippocampus (Jack and Holtzman, 2013). 
However, there are few objective measurements for the clinical 
diagnosis of AD; moreover, the diagnosis is often inaccurate and 
occurs when the disease is already at an advanced stage. Although it 
is possible to detect Aβ plaques and tau-related neurodegeneration by 
imaging and from analytes in the cerebrospinal fluid (Jack and 
Holtzman, 2013), about 40% of nondemented normal elderly people 
show AD neuropathology including senile plaques and neurofibrillary 
tangles (Jack and Holtzman, 2013); conversely, some clinically 
diagnosed AD cases exhibit no neuropathologic features of the 
disease (Beach et al., 2012). As such, there is a need for precise tools 
for the early detection of AD.

Immune cell infiltration has been shown to be involved in 
the onset and progression of AD; dysregulation of innate and 
adaptive immunity lead to a systemic failure of immune cell-
mediated Aβ clearance (Li et  al., 2021). Apolipoprotein E 
(APOE), inositol polyphosphate-5-phosphatase D (INPP5D), 
cluster of differentiation 33 (CD33), and phospholipase C 
gamma 2 (PLCG2) have been identified as high-risk genes in 
AD and have been linked to Aβ accumulation in AD mouse 
models (Sierksma et  al., 2020). Natural killer (NK) cell 
infiltration in the peripheral blood has been observed in AD 
patients, which may contribute to neuroinflammation (Lu et al., 
2021). The microglia receptors CD33 and triggering receptor 
expressed on myeloid cells 2 (TREM2) regulate 
neuroinflammation and are therapeutic targets in AD (Naj 
et al., 2011; Guerreiro et al., 2013; Jonsson et al., 2013). Given 
the association between immune infiltration and AD 
pathogenesis, there is potential application for immunotherapy 
in the treatment of AD. However, the types of infiltrating 
immune cells and their precise role in AD development are 
unclear. Identifying the different subsets of immune cells can 
provide insight into the molecular basis of AD pathology, which 
can in turn lead to the development of novel treatments.

The aim of this study was to identify novel biomarkers for the 
early diagnosis of AD and evaluate their contribution to the 
immune microenvironment of AD using an in silico approach. 
Advancements in computer science have accelerated bioinformatics. 
As an essential part of artificial intelligence, machine learning has 
been integrated into many fields, as well as in medicine. Here, 
we trained randomForest model for predicting the onset of AD, and 
further identified diagnostic markers for AD. To explore the specific 
role of these potential markers in the occurrence and development 
of AD, we conducted immune infiltration analysis and correlation 
analysis to explain the pathogenesis of AD from the perspective of 
immune microenvironment.

Materials and methods

Data source and preprocessing

The AD datasets GSE48350 (Berchtold et al., 2008), GSE5281 
(Liang et al., 2007), and GSE28146 (Liang et al., 2007) from GPL570 
were downloaded from the NCBI Gene Expression Omnibus database1 
(Barrett et al., 2013). Hippocampus samples of 29 AD patients and 56 
normal controls were extracted from GSE48350 and GSE5281 dataset. 
Hippocampus samples from GSE28146 was used for validation. Raw 
data were read using the “affy” package (Gautier et al., 2004) of R v3.6.1 
software2 and the rate monotonic algorithm was used for background 
correction and data normalization. The GSE48350 and GSE5281 gene 
expression matrices were then combined, and the “sva” package (Parker 
et al., 2014) was used to detect and eliminate batch effects from the two 
datasets. A box plot was generated to visualize the effect of removing 
inter-batch differences, and the effect of inter-sample correction was 
assessed using a two-dimensional principal component analysis (PCA) 
cluster plot. Differentially expressed genes (DEGs) were screened with 
the “limma” package (Ritchie et al., 2015) and a volcano map of DEGs 
was constructed using the “ggplot2” package to visualize the genes. 
DEGs with an adjusted p value (false discovery rate [FDR]) <0.05 and 
|log2 fold change (FC)| >0.585 were considered significant. 
We downloaded the disease-related gene list from the Human Protein 
Atlas (HPA) protein annotation database (Uhlén et al., 2015) and 
evaluated the intersection between disease-related genes and DEGs to 
identify those specifically related to AD.

Functional enrichment analysis

The “clusterProfiler” package of R software (Yu et al., 2012) was 
used to perform Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analyses of the AD-related 
DEGs. We used the same package to perform gene set enrichment 
analysis (GSEA) of the gene expression matrix with “c2.cp.kegg.
v7.0.symbols.gmt” as the reference gene set. An FDR <0.25 and p 
value <0.05 were considered as reflecting significant enrichment.

Construction of protein–protein 
interaction network and identification of 
hub genes

The Search Tool for the Retrieval of Interacting Genes (STRING) 
database3 was used to establish PPI network of AD-related DEGs 
(Szklarczyk et al., 2019). Cytoscape 3.7.1 was utilized to visualize 
connections with combined score > 0.5. And molecular Complex 
Detection (MCODE) plugin in Cytoscape was used to identified 

1 http://www.ncbi.nlm.nih.gov/geo

2 http://www.r-project.org

3 http://string-db.org
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functional modules in the PPI network with a node score cutoff = 0.2, 
degree cutoff = 2, k score = 2, and max depth = 100 (Bader and Hogue, 
2003). We performed cytoHubba on Cytoscape to screen the top10 
node genes by the MCC, EPC and Degree methods (Chin et al., 2014).

Immune cell infiltration analysis

The R “MCP-counter” package (Becht et al., 2016) was used to 
analyze the relative proportions of 8 types of infiltrating immune cell 
(total T cells, CD8+ T cells, cytotoxic lymphocytes, NK cells, B lineage 
cells, monocytic lineage cells, myeloid dendritic cells, and neutrophils) 
and 2 types of stromal cell (endothelial cells and fibroblasts) in each 
group. The Microenvironment Cell Populations (MCP)-counter 
algorithm, which estimates the number of infiltrated immune and 
nonimmune stromal cells in individual samples by quantifying cell-
specific transcript levels, and the R “pheatmap” package4 were used to 
visualize the abundance of tissue-infiltrating immune and nonimmune 
stromal cell populations.

Identification of diagnostic markers

To screen and identify the potential diagnostic indicators, the 
“randomForest” package (Izmirlian, 2004) was used to construct 

4 https://cran.r-project.org/web/packages/pheatmap/index.html

the prediction model. We  ranked genes by the importance of 
variation, and the top  20 genes as well as 10 hub genes were 
combined as candidate diagnostic genes. The GSE28146 dataset 
was used to perform receiver operating characteristic (ROC) 
curve analysis to assess the predictive value of the candidate genes 
and their expression levels were compared between AD patients 
and control subjects.

Correlation analysis of diagnostic 
markers and infiltrating immune cells

Spearman correlation analysis was performed to assess the 
relationship between the expression of the identified diagnostic 
markers and immune cell infiltration with the results visualized 
using the “ggplot2” package. The workflow of the study is shown 
in Figure 1.

Statistical analysis

Data preparation, functional analysis, and modeling were 
performed using R v4.1.1 (see text footnote 2). SPSS v15.0 software 
(IBM, Armonk, NY, United  States) was used for statistical 
analyses. Data are presented as mean ± SD and the unpaired t test 
was used to evaluate mean differences between the 2 groups. 
Correlations were determined with Spearman’s analysis. 
Differences with p < 0.05 were considered statistically significant.

FIGURE 1

The workflow of the study.
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FIGURE 2

Data from GSE483501 and GSE5281 datasets is normalized and the batch effect is removed. (A,B) The box plot of the batch effect of GSE483501 
and GSE5281 datasets before and after normalization. The blue boxes represent the signal intensity of the GSE48351 data distribution, the pink 
boxes represent the signal intensity of the GSE5281 data distribution. (C) Two-dimensional PCA cluster plot of GSE483501 and GSE5281 datasets 
before batch effect removal. The green dots represent samples from control group. The orange dots represent samples from AD group. (D) Two-
dimensional PCA cluster plot of GSE483501 and GSE5281 datasets after batch effect removal.

Results

Data preprocessing and differentially 
expressed gene identification

Microarray data of human hippocampus tissue from 29 AD 
patients and 56 normal controls were extracted from GSE48350 and 

GSE5281 datasets. A boxplot was used to show the batch effect 
(Figure 2A), and the combined gene expression matrix was normalized 
(Figure  2B). The two-dimensional PCA cluster diagram showed 
optimal clustering after eliminating the batch effect (Figures 2C,D), 
indicating that the sample source was reliable. In total, 401 DEGs 
between the AD and control groups were extracted from the gene 
expression matrix based on the criteria |log2FC| > 0.585 and FDR < 0.05 
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(Supplementary Table 1); the genes were visualized in a volcano map 
(Figure 3A). There were 104 upregulated and 297 downregulated 
DEGs. The heat map showed that the expression of 29 of these genes 
differed significantly between the two groups (|log2FC| > 1 and 
FDR < 0.01) (Figure 3B). To identify genes with diagnostic utility for 
AD, the DEGs were intersected with 107 AD-related genes in the HPA 
database (Figure  3C; Supplementary Table  2). The top  5 genes 
upregulated in AD compared with the control were CP, CXCR4, 
PRKX, AEBP1, and GLIS3; and the top 5 downregulated genes were 
GABRG2, ATP1A3, NEFL, RGS4, BDNF.

Functional enrichment analyses

To determine the function of the AD-related DEGs, GO, 
and KEGG pathway enrichment analyses were carried out. 
Links between proteins and the top five biological process, 

cellular components, or molecular function GO terms with the 
smallest p value were visualized with cnetplot. Among 
biological process terms, AD-related DEGs were mainly 
enriched in negative regulation of Cognition, Learning or 
memory, Synapse organization, Synaptic vesicle cycle, and 
Vesicle-mediated transport in synapse (Figure 4A). Among 
cellular component terms, the DEGs were mainly enriched in 
Negative regulation of exocytic vesicle membrane, Synaptic 
vesicle, Synaptic vesicle membrane, Transport vesicle, and 
Transport vesicle membrane (Figure  4B). For molecular 
function terms, AD-related DEGs were mainly enriched in 
Negative regulation of ATPase-coupled ion transmembrane 
transporter activity, GABA receptor activity, Inhibitory 
extracellular ligand-gated ion channel activity, 
Neurotransmitter receptor activity involved in regulation of 
postsynaptic membrane potential, and Structural constituent 
of synapse (Figure 4C). There were 11 genes enriched in all 

A

B

C

FIGURE 3

Landscape of differentially expressed genes (DEGs). (A) Volcano map of DEGs. Red dots represent up-regulated differential genes, blue dots 
represent down-regulated differential genes, and grey dots represent no significant difference genes. The DEGs with |log2FC| > 1 and FDR < 0.01 are 
marked on the map. (B) An expression heat map of DEGs with |log2FC| > 1 and FDR < 0.01. (C) The genes related to disease annotated in the HPA 
database were intersected with DEGs, 107 AD-related DEGs were screened out.
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FIGURE 4

GO and KEGG pathway enrichment of AD-related DEGs. (A) The circle graph shows the AD-related DEGs enriched in the top5 GO categories of 
BPs. (B) The circle graph shows the AD-related DEGs enriched in the top5 GO categories of CCs. (C) The circle graph shows the AD-related DEGs 
enriched in the top5 GO categories of MFs. The yellow dots represent the GO categories, the color of the line delivered by a dot indicates the 
category of the dot in the legend, the size of a dot indicates the number of the genes included. (D) The dot plot shows the AD-related DEGs 
enriched in the top5 KEGG pathways.

three GO categories (SCN2B, CDK5, GABRG2, GLRB, GABRD, 
SCN3B, SCN2A, GRIN2A, KCNA1, GABRA1, and SNAP25). A 
bubble chart was used to match the AD-related DEGs with the 
top 5 KEGG pathways; the genes were enriched in GABAergic 
synapse, morphine addiction, nicotine addiction, phagosome, 
and synaptic vesicle cycle (Figure  4D). KCNJ6, PRKCG, 
GABRG2, ATP6V1A, ATP6V1B2, ATP6V1E1, GABRA1, 
GABRA5, and GABRD were enriched in at least 2 KEGG 
pathways. GSEA showed that the enriched genes had an AD 
running enrichment score of 2.186 and KEGG cytokine-
cytokine receptor interaction running enrichment score of 
−2.383 (Figure 5).

Protein–protein interaction network 
establishment and hub gene 
identification

To clarify the interactions between the proteins corresponding 
to the AD-related DEGs, the STRING database was used to construct 

a PPI network of 107 disease-related DEGs (Figure 6A). The network 
comprised 77 nodes and 198 edges. We used the MCODE plugin to 
construct functional clusters; 2 clusters had an MCODE score > 5. 
Cluster 1 contained 13 nodes and 34 edges (Figure 6B), whereas 
cluster 2 contained 7 nodes and 12 edges (data not shown). The 
cytoHubba plugin and maximal clique centrality (MCC), edge 
percolated component, and degree methods were used to screen and 
identify the top 10 hub genes (Supplementary Table 3). The top 10 
hub genes ranked with the MCC method were SNAP25, SLC12A5, 
SYN1, SYP, BDNF, GRIN2A, SYT1, GAD1, NEFL, and GABRA1 
(Figure 6C); GRIN2A and NEFL were also present in the functional 
gene modules constructed with MCODE.

Immune cell infiltration analysis

To evaluate immune status in AD patients, infiltrating cells 
were analyzed with the MCP-counter algorithm. The heat map 
shows the distribution of 8 types of infiltrating immune cell and 2 
types of stromal cell (Figure 7A). The correlation heat map of the 
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10 cell types revealed a significant positive correlation between 
CD8+ T cell, NK cell, B lineage cell, and myeloid dendritic cell 
numbers. Monocytic lineage cell, neutrophil, and endothelial cell 
numbers were positively correlated whereas NK cell numbers 
showed a significant negative correlation with the number of 
fibroblasts (Figure 7B). AD patients showed higher numbers of 
NK cells, B lineage cells, monocytic lineage cells, endothelial cells, 
and fibroblasts compared with healthy controls (Figure 7C).

Screening and verification of diagnostic 
markers

We used the random Forest algorithm to construct a 
prediction model (Figure  8A) and found significant 
differences in predictive scores for diagnosis using training 
and test datasets (Supplementary Figure 1). After calculating 
the importance of variation, the top 20 genes were selected as 
candidate markers for AD diagnosis (Figure  8B; 
Supplementary Table 4). To evaluate the predictive utility of 
these markers, ROC curve analysis was performed for the 
diagnostic model using the GSE28146 dataset 
(Supplementary Tables 5, 6). RGS4 had the highest area under 
the ROC curve (AUC; 0.869) among the top  20 candidate 
marker genes, whereas SYP had the highest AUC (0.869) 

among the 10 hub genes (Figure 9A). When the 2 genes were 
combined into a single variable, the predictive value improved 
in the validation set (AUC = 0.909, 95% confidence interval: 
0.789–1.000; Figure 9B). Additionally, RGS4 and SYP were 
downregulated in the hippocampus of AD patients compared 
with healthy controls in the validation set (Figures 9C,D). 
These results suggest that RGS4 and SYP have diagnostic 
value for predicting AD with high accuracy.

Correlation analysis between diagnostic 
markers and immune cells

The correlation analysis showed that SYP expression was 
negatively correlated with the number of monocytic lineage 
cells (r = −0.313, p = 0.004), myeloid dendritic cells 
(r = −0.233, p = 0.032), B lineage cells (r = −0.375, p < 0.001), 
neutrophils (r = −0.431, p < 0.001), endothelial cells 
(r = −0.56, p < 0.001), and fibroblasts (r = −0.532, p = 0.031; 
Figure  10A). Meanwhile, RGS4 expression was negatively 
correlated with the number of monocytic lineage cells 
(r = −0.328, p = 0.002), B lineage cells (r = −0.327, p = 0.002), 
neutrophils (r = −0.499, p < 0.001), endothelial cells 
(r = −0.475, p < 0.001), and fibroblasts (r = −0.429, p < 0.001; 
Figure 10B).

FIGURE 5

Gene set enrichment analysis. Running enrichment score was positive in Alzheimer’s disease and negative in KEGG cytokine-cytokine receptor 
interaction pathway.
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FIGURE 6

Protein–protein interaction network of AD-related DEGs and screening of hub genes. (A) The STRING database is used to construct the PPI 
network of AD-related, with 77 nodes and 198 edges. The upregulated genes are shown in orange and the downregulated genes are shown in 
green. The wider the edge, the higher the combined score. (B) The gene cluster with the highest score of AD-related DEGs PPI network. (C) The 
top10 hub genes constructed by the MCC method using Cytohubba plugin.

Discussion

Alzheimer disease is primarily diagnosed based on 
pathologic Aβ deposition and tau (total and phosphorylated tau) 
accumulation (DeTure and Dickson, 2019). The mechanisms 
underlying the progressive accumulation of Aβ and 
neurofibrillary tangles in AD remain unknown. Immune cells 
participate in neuroinflammation and Aβ clearance, and 
potentially contribute to the neuropathology of AD (Britschgi 
et  al., 2009; Baulch et  al., 2020). It is therefore important to 
identify novel molecular markers for the early diagnosis of AD 
and clarify the role of immune cells in AD pathogenesis. In this 
study, we identified SYP and RGS4 as novel diagnostic markers 
for AD, and found that myeloid cells may participate in 

neuroinflammation and thereby contribute to synapse loss in the 
pathogenesis of this disease.

We integrated and analyzed the GSE48350 and GSE5281 
datasets and identified 107 AD-related DEGs. GO 
enrichment showed that AD-related DEGs were mainly 
enriched in the terms Regulation of membrane potential, 
Regulation of postsynaptic membrane potential, Cognition, 
Synapse organization, and Learning or memory. GABRG2, 
GABRD, RGS4, GABRA1, GPI, SNAP25, SLC12A5, PRKCG, 
TBR1, SERPINF1, GLRB, SCN2A, BDNF, CDK5, GRIN2A, 
and GABRA5 were enriched in at least 2 of these 5 biological 
processes, implying that these genes impact the structure 
and function of synapses in AD development. KEGG 
pathway enrichment analysis showed that upregulated 
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AD-related DEGs were mainly enriched in complement and 
coagulation cascades, whereas downregulated AD-related 
DEGs were mainly enriched in GABAergic synapse. The 
complement system is essential for the innate and adaptive 
immune responses, which inhibit the formation and promote 
the clearance of amyloid plaques (Morgan, 2018). 
Dysregulation of the complement cascade can lead to 
chronic neuroinflammation and neurodegeneration 
associated with AD (Eikelenboom and Veerhuis, 1996; Shen 
and Meri, 2003). Complement cooperates with microglia in 
synapse elimination, resulting in hippocampal dysfunction 
(Hong et  al., 2016). The complement and coagulation 
cascades are significantly altered in both the peripheral 
blood and central nervous system (CNS) of patients with AD 

(Chen and Xia, 2020). Thus, complement system activation 
may be related to AD pathology. It was also reported that 
dysfunctional GABAergic neurons contribute to amyloidosis 
and tauopathy, causing altered synaptic plasticity and severe 
memory impairment (Loreth et  al., 2012; Levenga et  al., 
2013; Soler et al., 2017). By analyzing the PPI network of 
AD-related DEGs, we identified SNAP25, SLC12A5, SYN1, 
GRIN2A, GAD1, NEFL, and GABRA1 as being among the 
top  10 hub genes screened using 3 different topologic 
methods. Synaptosomal-associated protein 25 kDa (SNAP25) 
was the top gene with all 3 methods. SNAP25 is a calcium-
dependent protein that is expressed at the presynaptic 
terminals of mature GABAergic neurons and is a component 
of the SNARE complex that stimulates GABA release (Tafoya 

A

B C

FIGURE 7

Evaluating and identifying the AD immune microenvironment. (A) Heat map presenting results of 8 types of immune cells and 2 types of non-
immune stromal cells. (B) Correlations heat map of 8 types of immune cells and 2 types of non-immune stromal cells. Red represents a negative 
correlation, and blue represents a positive correlation. The darker the color, the stronger the correlation. (C) Bar plot illustrating the proportion of 
8 types of immune cells and 2 types of non-immune stromal cells between AD (red) and control (blue) group.
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FIGURE 8

Screening of diagnostic candidates by machine-learning approach. (A) The randomForest algorithm is used to construct a prediction model. 
(B) Importance of variables for top20 genes recognized from random forest analysis.

et al., 2006). Our results suggest that GABAergic signaling 
is an important mechanism of AD pathogenesis 
and progression.

We used a machine learning approach to construct a diagnostic 
model and identified the top 20 genes as candidate markers for AD 
diagnosis. Combined with the top 10 AD-related hub genes, a total of 
30 putative markers were validated in validation set, including 
synaptophysin (SYP) and regulator of G protein signaling 4 (RGS4). 
SYP is an integral membrane protein of synaptic vesicles and a marker 
of synaptic density and synaptogenesis (Evans and Cousin, 2005). 
SYP is associated with neuronal plasticity in learning and memory 
(Fagnou and Tuchek, 1995); aberrant SYP expression has been linked 
to synaptic loss in neurodegenerative diseases including AD and 
Parkinson disease (PD; Zhan et al., 1993; Dinda et al., 2019). RGS4 is 
a small regulator of the 23-kDa G protein that is abundantly expressed 

in the CNS and heart in humans (Zhang et al., 1998; Erdely et al., 
2004). In the CNS, RGS4 mRNA is present at high levels in the 
amygdala and striatum but is also detected in most cortical layers 
(Ebert et al., 2006). As a GTPase-activating protein for Gαq and 
Gαi/o, RGS4 provides negative feedback regulation of postsynaptic G 
protein-coupled signaling pathways in synapse assembly (Fossella 
et al., 2003). RGS4 is known to be a schizophrenia susceptibility gene 
and is downregulated in the cortex of schizophrenia patients 
(Schwarz, 2018). In the striatum, RGS4 regulates cholinergic and 
dopaminergic signaling; its dysregulation is associated with motor 
deficits in PD (Geurts et al., 2003; Ding et al., 2006). Given its role in 
synaptogenesis, RGS4 may be involved in synaptic loss in AD and 
consequent cognitive defects.

Neuroinflammation contributes to AD progression by 
altering the expression of neuronal synaptic proteins. AD 
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patients show a high infiltration of NK cells, B lineage cells, 
monocytic lineage cells, endothelial cells, and fibroblasts. 
NK cells have been implicated in neuroinflammation in AD 
patients and are involved in the pathogenesis of the disease 
(Krishnaraj, 1991; Camous et al., 2012). Genomic analyses 
have identified AD risk genes that modulate the epigenome 
and transcriptome of myeloid lineage cells including 
monocytes, macrophages, and microglia (Huang et al., 2017; 
Finucane et al., 2018) as well as their enhancers (Novikova 
et  al., 2021). Although there is limited evidence of a 
pathogenic or protective role of B cells in AD, B cell 
depletion has been shown to delay AD progression in mice 
by reducing Aβ plaque accumulation and inhibiting disease-
associated microglia (Kim et al., 2021). Endothelial cells and 
fibroblasts are the main cell types that constitute blood–
brain barrier (BBB). Neurovascular dysfunction and BBB 

breakdown have been observed in the hippocampus during 
aging (Montagne et al., 2015). Thus, NK cells, B lineage cells, 
monocytic lineage cells, endothelial cells, and fibroblasts 
may be components of the immune microenvironment in 
AD. A correlation analysis showed that RGS4 and SYP 
expression was negatively correlated with the number of 
monocytic lineage cells, B lineage cells, neutrophils, 
endothelial cells, and fibroblasts; there was also a negative 
correlation between SYP expression and myeloid dendritic 
cell numbers. These results indicate that myeloid cells may 
be involved in neuroinflammation-related synaptic loss in 
the hippocampus of AD patients. As few is known about SYP 
and RGS4 function in the immune response, their specific 
physiology in regulating immune microenvironment of AD 
is worthy of further study and exploration. To summarize, 
we  found that SYP and RGS4 are potential biomarkers of 

A B

C D

FIGURE 9

Verification of diagnostic markers. (A,B) The ROC curve of the diagnostic efficacy in verification set GSE28146. (C,D) The expression level of SYP 
and RGS4 in hippocampus between AD and control group from verification set.
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FIGURE 10

Correlation between diagnostic markers and 8 types of immune cells and 2 types of non-immune stromal cells. (A) Correlation between SYP and 
10 types of cells. (B) Correlation between RGS4 and 10 types of cells. The larger dots represent the stronger correlation between genes and cells. 
p < 0.05 indicated statistically significant.

AD, and may affect the pathogenesis of AD by influencing 
immune microenvironment.

Conclusion

The study revealed that SYP and RGS4 is related to the AD 
pathological process, and could be potential diagnostic markers 
of AD. Besides, it is noteworthy that the close relationship between 
immune microenvironment and AD neuroinflammation in the 
pathological process of AD. These findings may shed light on 
potential early diagnosis and novel immunotherapy of AD.
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